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ABSTRACT 

Stochastic simulations require large amounts of time to generate enough trajectories to attain statistical 

significance and estimate desired performance indices with satisfactory accuracy. They require search 

spaces with deep uncertainty arising from inadequate or incomplete information about the system and the 

outcomes of interest. Paratemporal methods efficiently explore these large search spaces and offer an 

avenue for speedup when executed in parallel. However, combinatorial explosion of branching arising from 

multiple choice points presents a major hurdle that must be overcome to implement such techniques. In this 

advanced tutorial we show how to tackle this scalability problem by applying a systems theory-based 

framework covering both conventional and newly developed paratemporal tree expansion algorithms for 

speeding up discrete event system stochastic simulations while preserving the desired accuracy.  
 

1 INTRODUCTION 

Climate change mitigation, communication network design, and command and control decision support are 

examples of complex problems for which stochastic simulations are needed. They require search spaces 

with deep uncertainty arising from inadequate or incomplete information about the system and the outcomes 

of interest (Tolk 2022; Davis 2023; Oren et al. 2023). Consequently, stochastic simulations require large 

amounts of time to generate enough trajectories to attain statistical significance and estimate desired 

performance indices with satisfactory accuracy (Choi et al. 2014a; Choi et al. 2014b; Amaran et al. 2016; 

Liu 2016; Tsattalios et al. 2023). Furthermore, simulation models for system engineering analyses present 

challenges to today’s computational technologies. First, questions addressed at the Systems of Systems 

(SoS) level require large and detailed models to provide sufficient representation of relevant system-to-

system interactions of stochastic nature. Second, they also require multiple executions with multiple random 

seed state initiations to cover the wide range of configurations necessary to obtain statistically significant 

measurement of performance outcome distributions. 

Parallel execution of simulations offers an avenue for the speedup of complex simulations. 

Exploitation of such parallelization poses many challenges in today’s computational technologies (Park and 

Fishwick 2010; Xu et al. 2015) thus begging for ways to achieve parallelization in more model-centric 

ways. Paratemporal and other cloning simulation techniques have been introduced that increase 

opportunities for reuse of state information and parallelism (Lammers et al. 2009; Yoginath et al. 2019; Li 

et al. 2017). However, scalability, the ability to overcome the combinatorial explosion of branching arising 

from multiple choice points, presents a major hurdle that must be overcome to implement such techniques. 

Nutaro et al. (2024) examined the use of tree expansion methods in lieu of the conventional sampling 

of outcomes when working with the uncertainty inherent in stochastic simulations. Conventional techniques 
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simulate a large number of randomly sampled trajectories from start to finish in one-at-a-time fashion. Such 

trajectories can be viewed as paths from an initial state of the stochastic system (the root of the tree) to one 

of the terminal states (leaves of the tree) in a manner consistent with random sampling. One advantage of 

tree construction is that states of the model that have been reached at any point—nodes of the tree—can be 

cloned for reuse, thus avoiding duplication. Branches in the tree from a state correspond to draws of the 

random variable whose values determine the subsequent course of the model from that state.  In particular, 

tree expansion with breadth-first traversal can significantly speed up the computation required to generate 

the same sampling outcomes as the one-at-a-time technique. However, the speedup is limited by the 

exponential growth of the tree with increasing depth. To achieve scalability, Zeigler (2024) showed that 

merging of states based on homomorphism concepts can reduce tree growth from exponential to polynomial 

in depth, thus significantly speeding up computation over that possible with cloning alone. 

2 PARATEMPORAL SIMULATION OVERVIEW 

2.1 General Background 

In this tutorial, we explicate paratemporal methods based on tree expansion with node merging that have 

been shown to be effective in speeding up stochastic discrete event simulations. In such methods, tree 

expansion starts with one decision point, the root node, and each decision point (node) thereafter creates 

new branching possibilities. The root node contains the initial state of the stochastic system. When a new 

node is generated, it holds the information of the current state of the system, and the probability of the state 

occurring. The state refers to the set of conditions and variables that define the current status of the 

simulated systems at a specific point in time. The components of a state include: 1) variables and 

parameters, which capture the dynamic and state properties of the system; 2) probabilistic information 

which includes probabilities associated with events or outcomes; and 3) branching information, describing 

the current path of a simulation. A simulation is executed for one possible branch, until another branching 

point is reached. This process of tree expansion is repeated until all endpoints are reached when the 

simulation stops. These endpoints are called leaf nodes. The method uses breadth-first traversal to explore 

all possible paths at the same level, rather than traversing one path of the tree at a time until an end condition 

is reached at a leaf node. The explorations can be done in parallel to the extent that available processors 

allow. 

2.2 Binary Tree Expansion Example 

We will use a binary tree as an illustration of tree-expansion based paratemporal simulation. A binary tree 

is structured starting with a root node (initial state) and branching off to at most two children nodes, each 

branch with an associated probability of being taken in a simulation. As the tree expands in depth, 

conceptually, all the new (children) leaves are attached to the previous parent leaves in parallel. Later we 

add an important exception to this step when we consider so-called node merging. As the tree expands in a 

breadth-first manner, two child nodes are generated concurrently at each parent, rather than descending the 

tree in a single branching path and then backtracking.  The product of the probabilities of the branches along 

any path in the tree gives the probability of that path being taken in a simulation. As the tree grows deeper, 

the probabilities get much smaller, as there are more possibilities, thus there is a diminished probability of 

a particular path being taken.  
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Figure 1: Binary tree illustrating paratemporal methods. 

For example, imagine tossing an (unfair) coin three times with tree expanding to represent possible 

outcomes of each toss. Then the tree in Figure 1 has expanded to depth 3 and has 8 leaves at level 3 that are 

children of the 4 nodes at level 2. Left and right branches from any node have probabilities .4 and .6 

respectively of being taken in a simulation. Nodes are named by the paths taken to reach them from the root 

(EMPTY). Product probabilities are accumulated as the tree descends. For example, the path 00 has 

probability 0.16 (.4 * .4) and the extension 000 has probability 0.064 (.16 * .04).  Now let each of the leaves 

have an outcome value associated with it. For example, this could be the number of ones in its name. Then 

the average of all the outcomes at level 3 in Figure 1 is easily computed to be 1.8 (3 tosses have been made 

with 0.6 as the probability of each adding a one to the total). In a paratemporal simulation this average is 

obtained by accumulating all the outcomes weighted by the associated path probabilities. 

        In contrast, in a typical stochastic simulation, a path down the tree is generated in a depth-first manner, 

so that for example, three coin tosses are made and the number of ones is obtained as the outcome for that 

path. This is called a sample of the outcome considered as a random variable. The number of samples taken 

is determined by the desired statistical significance of the estimate, which is the numerical average of the 

outcomes produced. So, we see here that the paratemporal tree expansion approach potentially can be both 

much faster and more accurate than sampling approaches in that the tree yields one (correct) outcome 

average rather than an estimated average based on a finite number of samples. Since the tree is expanding 

 

Figure 2: Effect of node merging on paratemporal tree growth. 
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exponentially, the potential becomes actual if the expansion of the tree can be controlled so that it expands 

in polynomial time such as constant or linear with depth. Here we explain how node merging can achieve 

this feat for several examples. Details are available in (Zeigler 2024).  

3 HOMOMORPHIC MERGING IN STOCHASTIC SIMULATION TREE EXPANSION 

3.1 Motivation 

Stochastic simulations require large amounts of time to generate enough trajectories to attain statistical 

significance and estimate desired performance indices with satisfactory accuracy. In such cases, the 

computational time for a single model execution may require from a few minutes up to several hours. On 

the other hand, depending on the problem dimensionality and the irregularity of the response surface, a 

typical global optimization algorithm may need to evaluate the objective function (and hence call the 

simulation model) thousands of times, in order to converge to a satisfactory solution. Consequently, 

application of global optimization typically becomes time prohibitive to complex problems such as climate 

change mitigation, network design, and command and control decision support. Such search spaces are 

characteristic of problems with deep uncertainty with inadequate or incomplete information about the 

system and the outcomes of interest (Tolk 2022; Davis 2023).  This motivates the need to speed up 

paratemporal simulations using merging of nodes. 

3.2 Homomorphic Merging of Nodes in Tree Expansion 

As illustrated on the left side of Figure 2, conventional generation of trajectories can be viewed as traversing 

paths from an initial state of the stochastic system (the root of the tree) to one of the terminal states, leaves 

of the tree, in a manner consistent with random sampling. The advantage of tree construction is that states 

of the model that have been reached at any point – nodes of the tree - can be cloned for reuse thus avoiding 

duplication. Branches in the tree from a state correspond to draws of the random variable whose values 

determine the subsequent course of the model from that state.  

 

 In particular, tree expansion with breadth first traversal can significantly speed up the computation 

required to generate the same sampling outcomes as the one-at-a-time technique (Nutaro et al. 2024).  

However, speedup is limited by the exponential growth of the tree as its depth extends. Zeigler (2024) 

introduced merging of states based on homomorphism concepts to mitigate against such growth. As 

illustrated on the right-hand side of Figure 2, we will show by examples that such merging can reduce tree 

growth from exponential to polynomial in depth thus significantly speeding up computation over that 

possible without merging.  

4 EXAMPLE: TREE EXPANSION FOR CHEMICAL REACTION NETWORKS 

4.1 Review of Chemical Reaction Modeling and Simulation 

Biochemical reactions underlie all biological activities among micro-organisms such as communication 
among members of a bacterial population and synchronization of toxin release to attack another population. 
Networks of such reactions form well-known metabolic pathways within bacterial cells, but also constitute 
less well-known media for interaction among cells and their internal and external environments. Such 

reaction networks are composed of large numbers of different molecules in relatively small amounts or 
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concentrations that require stochastic modeling and simulation approaches with the attendant computational 
challenges of time and accuracy generally described above (Roy 2019). 

4.2 The Gillespie Algorithm 

In this tutorial we consider that conventional approaches to simulating cellular biochemical reactions are 
based on the Gillespie algorithm, and we show how this algorithm can be formulated within the 

paratemporal framework to achieve faster and more accurate portraits of resulting behavior. The Gillespie 
algorithm is a relatively simple framework for model construction that can be expressed within the DEVS 
modeling formalism (Zeigler et al. 2013; Zeigler et al. 2018). In the spirit of a tutorial, we limit the 
discussion to a relatively simple example (one discussed in the above referenced Wikipedia entry) and leave 
details to further consideration available in other literature. The Gillespie algorithm, given a set of reactions 
and their rate equations, generates statistically correct trajectories of the numbers of reagents. The algorithm 

can be considered as a variant of dynamic Monte Carlo methods and similar to the kinetic Monte Carlo 
methods (Gillespie 1977). 

4.3 Simple Reaction Example 

In the simple reaction shown in Figure 3, A and B react reversibly to form an AB dimer, and the AB dimer 

dissociates into A and B. In the forward reaction, the reaction rate constant for a given single A molecule 

reacting with a given single B molecule is 𝑘𝐷. In the backward direction, the reaction rate for an AB dimer 

breaking up is 𝑘𝐵. When considering the reaction involving many molecules, the rate of dimer formation 

is 𝑘𝐷 ∗ 𝑛𝐴 ∗ 𝑛𝐵. where there are 𝑛𝐴 and 𝑛𝐵 molecules of type A and B respectively. The rate of dimer 

disassociation is 𝑘𝐵 ∗ 𝑛𝐴𝐵 where there are 𝑛𝐴𝐵 molecules of type AB. 

 

 

Figure 3: Example chemical reaction with forward and backward reactions. 

Rather than considering each reaction as occurring at its own rate, the Gillespie algorithm assumes that 

the total reaction rate, 𝑅𝑇𝑂𝑇 = 𝑘𝐷 ∗ 𝑛𝐴 ∗ 𝑛𝐵 + 𝑘𝐵 ∗ 𝑛𝐴𝐵, is the rate at which the reaction evolves. Thus, to 

advance the simulation, the time of the next event is selected from an exponential distribution with mean, 

1/𝑅𝑇𝑂𝑇. Appendix 1 discusses how a DEVS model formulation elucidates the different possibilities for 

modeling such a reaction, of which Gillespie is one. Having decided how to compute the advance of time, 

the algorithm decides which individual reaction will occur at that time using probabilities which are the 

ratios of the individual rates to the total rate. For the forward choice  

𝑃(𝐴 + 𝐵 → 𝐴𝐵) = (𝑘𝐷 ∗ 𝑛𝐴 ∗ 𝑛𝐵)/𝑅𝑇𝑂𝑇 , 
and for the backward choice  

𝑃(𝐴𝐵 → 𝐴 + 𝐵) = 𝑘𝐵 ∗ 𝑛𝐴𝐵/𝑅𝑇𝑂𝑇 = 1 − 𝑃(𝐴 + 𝐵 → 𝐴𝐵). 
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Figure 4: Time evolution of the reaction in Figure 3 of the number of A molecules (black) and AB dimers 

(red) (this figure is adapted from Wikipedia). 

Figure 4, taken from the Gillespie algorithm Wikipedia article, plots a sample trajectory of the Gillespie 

algorithm where the number of A molecules (black curve) and AB dimers as a function of time starting 
with 𝑛𝐴  =  𝑛𝐵  = 10 molecules at time 𝑡 = 0. Since every reaction event affects the A and B molecule 
type in the same way, the number of B molecules is always equal to the number of A molecules and so 𝑛𝐵 
is not shown in the figure. We see that the number of A (and B) molecules tends to decrease with time 
trending toward fluctuating around a level of two; while the number of dimers increases and fluctuates 
around 8. In this simple case, the equilibrium state can be easily calculated using conservation of matter to 

reduce the number of variables and setting the forward and backward rates to be equal. This results in a 
quadratic equation confirming that 𝑛𝐴  = 2 and 𝑛𝐴𝐵  =  8. Due to the small numbers of molecules under 
study, fluctuations around these values are relatively large. The Gillespie algorithm is used to study systems 
where these fluctuations are important.  
 

5 PARATEMPORAL TREE EXPANSION IMPLEMENTATION  

Figure 5 illustrates how the paratemporal tree expansion works in the case of the Gillespie Algorithm for 
the Dimer reaction. Each node represents a state of the reaction viz., the number of A types and number of 
AB types (as before the number of B types is redundant). The root node starts the assumed initial state of 
the reactants. The tree is binary since there are two branches corresponding to the forward and backward 
reactions. Accordingly, each branch represents one of these reactions with the associated probability and 
its effect on the state of the reaction. As illustrated in the tree expansion of Figure 1, as the new branches 

are created, we keep track of the accumulated probabilities associated with the paths leading to the nodes 
being added. In this application, the depth of the tree corresponds to the number of reactions that have 
occurred. Figure 6 plots features of the probability distributions at each depth up to 15 for the two reactants 
including their averages, minima, and maxima. The standard deviation of the distribution for the A type at 
each depth is plotted in Figure 6 and its relatively small value suggests that the distribution stays closely 
clustered around the average as time advances. 
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Figure 5: Tree expansion for paratemporal simulation of reaction in Figure 2. 

 

Figure 6: Plots of time course of reaction of Figure 2 generated by paratemporal tree expansion method. 

5.1 Merging Nodes to Speedup Execution 

As explained above the tree expands exponentially so that successive expansions take longer and longer to 
generate and eventually memory is exceeded forcing the algorithm to crash – typically this occurs at around 
depth 22 for the memory available in today’s personal computers. However, we can take advantage of node 
equivalence based on state equality. The state of the chemical reaction system is characterized entirely by 
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the quantity of A molecules and AB molecules at that stage. Two nodes in the tree at the same level can 
then be merged if they have the same numbers of A types and AB types irrespective of the history of that 
node. For instance, a forward reaction followed by a backward reaction will generate the same state if 
instead a backward reaction were followed by a forward reaction. We can apply merging at each level of 
tree expansion (breadth first) so that the number of new nodes added is greatly reduced. When two nodes 

are merged, their path probabilities are added so that the effect on the outcome computation is unchanged. 
The benefit of such merging is that it drastically limits the tree expansion, changing it from exponential to 
linear growth (see Figure 6). This greatly reduces the computation time and allows practically unlimited 
depths to be achieved. Recall that as illustrated in Figure 6, a full depiction of the distribution of reactant 
numbers is obtained at each depth by this approach as opposed to sampled trajectory estimates obtained in 
conventional approaches.  

6 EXAMPLE: BASEBALL SIMULATION 

6.1 Background 

Another illustration of Paratemporal tree expansion is to predict baseball game outcomes based on player 
batting averages. Rather than 0s and 1s being the branching possibilities in the binary tree example, the 
branches will represent the possible outcomes from each at-bat. These outcomes are an out, single, double, 
triple, home run, and walk/hit-by-pitch. The walk and hit-by-pitch are grouped together because the 

advancements of the base runners are the same for both. Note that we will focus only on a batter’s 
appearance at the plate and the configuration of the bases during the progress of the game, while we 
aggregate all other details into batter average statistics. This (large) simplification allows us to use real 
player data from Major League Baseball teams to determine the model’s probability of the 6 different 
outcomes for each player. Appendix B gives more details on the implementation of the methodology 
applied to this example. 

6.2 Objective and Results 

The objective is to compute the outcomes for all 9! different lineups of the same players to find the top 10% 

performing ones and assess how much such arrangements matter by comparing the best and worst runs 

produced. Nine distinct players complete a full baseball lineup and play in the lineup specified order. The 

depth that the tree traverses will be representative of the batting characteristics of the player in the lineup. 

The state of each node will encompass the type of hit, current batter’s name, number of outs, number of 

runs, base configuration, probability of current player’s hit outcomes, and probability of the branching 

occurring (product of probabilities). The logic of the tree expansion follows a basic baseball game. A base 

runner can only advance the number of bases that is achieved for the given hit. For example, if a double is 

hit, all base runners will advance two bases. The only exception is a walk/hit-by-pitch, in which the batter 

will then occupy first base. Runners will only advance if the previous base is occupied, forcing them to take 

the next base. Runs are calculated based on the base configuration and the hit type. When a base runner 

reaches home, a run is added to the team’s total score. Outs are also tracked throughout the simulation. For 

the baseball game, the equivalence of two nodes is characterized by the base configuration, the number of 

runs, and the number of outs. For example, if the first two batters hit singles, then they occupy the first and 

second bases. This is equivalent to the scenario that the first batter hits a double and the second is walked. 

The merging of nodes in this system is what makes it feasible to explore all 9! batting configurations in a 

reasonable time. 
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Figure 7: Showing for each player and lineup position pair, the relative number of times that pair occurs in 
the top 10% performing lineups. 
 
 Each lineup is evaluated by expanding a tree to represent enough rotations typically seen in any given 

baseball game. Figure 7 visualizes the strategy derived for player assignment: prefer to assign players to 
the position they most frequently occupy in the top decile (shown by the longest patch of the associated 
color in each column). For example, player p3 is assigned to be first in the lineup (L1) because s/he is found 
most frequently in the place in the top performing lineups. More useful insights are gleaned from these 
results but space does not allow going into them here. The full generation and analysis of all 9! lineups is 
intractable to conventional approaches in that achieving sufficient statistical significance requires sampling 

millions of simulated baseball games requiring years of computation to perform. The developed 
paratemporal simulation approach obtained results in under 10 hours.  

6.3 Application to Serial Compositions 

Many stochastic systems attribute randomness to a continuous variable such as time. Series-Parallel 
compositions are examples of stochastic models composed of distinct and independent processes that unfold 
either one after another (in series) or at the same time (in parallel). The probability of successful completion 

of tasks by such compositions can be evaluated using simulation where the behaviors of the individual 
systems can be generated and their couplings specified. In Appendix C we discuss an example 
implementation of systems entirely composed of serial processes where total system success is determined 
only by all processes succeeding one after another. The discussion illustrates how tree expansion can be 
applied to such problems, how the approach can be much faster than conventional sampling of trajectories, 
and how accuracy and computation tradeoffs can be evaluated.  
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7  CONCLUSIONS 

Paratemporal methods based on tree expansion have proven to be effective in efficiently generating the 
trajectories of stochastic systems. However, combinatorial explosion of branching arising from multiple 
choice points presents a major hurdle that must be overcome to implement such techniques. Zeigler (2024) 
tackled this scalability problem by developing a systems theory-based framework covering both 

conventional and proposed tree expansion algorithms for speeding up discrete event system stochastic 
simulations while preserving the desired accuracy. This tutorial presented this framework in an informal 
way and illustrated it with several example applications. We introduced the concept of tree expansion for 
stochastic simulation with coin tossing followed by an application to a simple formulation of chemical 
reaction simulation. We then overviewed applications to baseball simulation and to a general class of serial 
compositions to estimate probability of success of multistage processes. These examples show how merging 

of nodes in tree expansion is needed to overcome exponential tree branching and can be very effective in 
producing fast running generation of accurate outcome summaries for stochastic search spaces. 
 

  APPENDIX A DEVS FORMULATION OF DIMER REACTION 

To formulate DEVS models for the dimer reaction we start with a basic state vector of the form: 

(number of As, number of Bs, number of ABs, forward phase, backward phase) 

  

where the forward and backward phases can be {passive, active}. 

Then once one or the other (or both) of the reactions reach the active phase, the transition can be defined 

which moves the appropriate numbers of molecules and returns to the passive phase, 
 

𝛿(𝑛𝐴, 𝑛𝐵, 𝑛𝐴𝐵, 𝑎𝑐𝑡𝑖𝑣𝑒, 𝑝𝑎𝑠𝑠𝑖𝑣𝑒) = (𝑛𝐴 − 1, 𝑛𝐵 − 1, 𝑛𝐴𝐵 + 1, 𝑝𝑎𝑠𝑠𝑖𝑣𝑒, 𝑝𝑎𝑠𝑠𝑖𝑣𝑒), 
𝛿(𝑛𝐴, 𝑛𝐵, 𝑛𝐴𝐵, 𝑝𝑎𝑠𝑠𝑖𝑣𝑒, 𝑎𝑐𝑡𝑖𝑣𝑒) = (𝑛𝐴 + 1, 𝑛𝐵 + 1, 𝑛𝐴𝐵 − 1, 𝑝𝑎𝑠𝑠𝑖𝑣𝑒, 𝑝𝑎𝑠𝑠𝑖𝑣𝑒). 

 

The time advance to return to the passive phase could be 0, 
 

𝑡𝑎(𝑛𝐴, 𝑛𝐵, 𝑛𝐴𝐵, 𝑎𝑐𝑡𝑖𝑣𝑒, 𝑝𝑎𝑠𝑠𝑖𝑣𝑒) = 0, 
𝑡𝑎(𝑛𝐴, 𝑛𝐵, 𝑛𝐴𝐵, 𝑝𝑎𝑠𝑠𝑖𝑣𝑒, 𝑎𝑐𝑡𝑖𝑣𝑒) = 0. 

 

The difference in potential model formulations stems from the mechanism employed to go from passive to 

active phases: Do we choose forward activation, 
 

𝛿(𝑛𝐴, 𝑛𝐵, 𝑛𝐴𝐵, 𝑝𝑎𝑠𝑠𝑖𝑣𝑒, 𝑝𝑎𝑠𝑠𝑖𝑣𝑒) = (𝑛𝐴, 𝑛𝐵, 𝑛𝐴𝐵, 𝑎𝑐𝑡𝑖𝑣𝑒, 𝑝𝑎𝑠𝑠𝑖𝑣𝑒), 
 

backward activation, 
 

𝛿(𝑛𝐴, 𝑛𝐵, 𝑛𝐴𝐵, 𝑝𝑎𝑠𝑠𝑖𝑣𝑒, 𝑝𝑎𝑠𝑠𝑖𝑣𝑒) = (𝑛𝐴, 𝑛𝐵, 𝑛𝐴𝐵, 𝑝𝑎𝑠𝑠𝑖𝑣𝑒, 𝑎𝑐𝑡𝑖𝑣𝑒), 
 

or both,  
 

𝛿(𝑛𝐴, 𝑛𝐵, 𝑛𝐴𝐵, 𝑝𝑎𝑠𝑠𝑖𝑣𝑒, 𝑝𝑎𝑠𝑠𝑖𝑣𝑒) = (𝑛𝐴, 𝑛𝐵, 𝑛𝐴𝐵, 𝑎𝑐𝑡𝑖𝑣𝑒, 𝑎𝑐𝑡𝑖𝑣𝑒). 
 

Also, the time advance should be associated with such choices  

 

𝑡𝑎(𝑛𝐴, 𝑛𝐵, 𝑛𝐴𝐵, 𝑝𝑎𝑠𝑠𝑖𝑣𝑒, 𝑝𝑎𝑠𝑠𝑖𝑣𝑒) = ? 
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The Gillespie algorithm chooses randomly based on computed probabilities which reaction to activate and 

samples the time advance from an exponential distribution based on the summed reaction rates. 

 

The simpler version of this algorithm used in the tree expansion illustrated above sets the time advance to 

the mean time of the just mentioned distribution, namely the inverse of the summed reaction rates. 

 
Another choice is to use exponential distributions based on the individual reaction rates of each reaction to 
sample the time advances of each separately and select the minimum as the time advance. In this case, 
either or both of the reactions could be activated. 

 

Figure A1: Tree Expansion for Baseball Simulation. 

  APPENDIX B BASEBALL APPLICATION AND SIMULATION ARCHITECTURE 

The tree expansion methodology was applied to simulate baseball outcomes.  New nodes were generated 

with the different outcomes of a baseball at-bat. This includes 6 outcomes: out, single, double, triple, 

homerun, and walk. Figure A1 illustrates how the tree expands with each consecutive batter. The levels of 

the expansion are representative of the batters within the lineup. Each node carries the current state of the 

game, which includes the number of outs, runs, current base configuration, player batting, probability of 

players outcome occurring, and cumulative product of the entire branches’ probabilities. The figure shows 

the simulation of two batter outcomes, with the first batter being the 1st level (blue nodes) and the second 

level being the second batter (orange nodes). These probabilities are used to calculate the probability of 

each branch, or situation, occurring. For example, if the results of the first and second at-bats were both 

outs, the resulting probability of those two outcomes occurring would be 0.657×0.593. The terminal nodes, 

or the final nodes of a branching sequence, are used to calculate the main performance metric. The 

probability and runs of each terminal node are summed together to get the expected runs of the simulated 

batters in the lineup order. Figure A1 also shows how fast the expansion grows given the 6 outcomes from 

each node. Homomorphic merging is used to limit this branching by merging nodes that have equivalent 

game states. This equivalence requires that merged nodes have the same number of runs, outs, and base 

configurations. The probabilities of the two merged nodes are summed together to represent the probability 

of the retained node.  

 The architecture of the simulator is illustrated in FigureA2. The framework is described by an upper 

level run control and a lower level run control. The upper level run control is comprised of a series of 

methods that are used to control the expansion of the tree and ensure that new nodes are generated from the 

most current state of the game. Each new node is created as an instance of a new at-bat, which is simulated 
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through the methods of the lower level run control. The lower level run control takes the state inputs from 

the upper level run control and simulated on instance of an at bat to send back to the upper level run control. 

This frame work is generalized to be used for many different problem scenarios. 

Figure A2: Architecture of Simulator. 

 

 

  APPENDIX C PARATEMPORAL APPROACH TO SERIES-PARALLEL COMPOSITIONS 

A large class of stochastic models are characterized by distinct and independent processes that unfold either 

one after another (in series) or at the same time (in parallel). Here we discuss an example implementation 

of systems entirely composed of serial processes where total system success is determined only by all 

processes succeeding one after another. The general process is summarized in Figure A3. We model each  

 

Figure A3:Tree Expansion and models for Serial Composition. 
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individual process using DEVS Markov process designed in MS4 Me (Zeigler et al. 2013; Zeigler et al. 

2018) such that there is a discrete probability associated with success and with failure of the process 

simulated. We are also able to assign a temporal distribution for modeling the duration it takes each process. 

In the example modeled below, we choose to ascribe a normal distribution to each process with mean μ and 

standard deviation σ. In general, these parameters are different for each process. In the upper left portion of 

Figure A3 we show how the tree expands for each process. Each process expands based on its temporal 

duration centered on the mean. Shown, we branch out in each direction with 1σ although depending on the 

interest of the simulation this can be modified. The number of branches is a simulation parameter that can 

be chosen before execution and is related to the accuracy of the resulting distributions. The probability 

assigned to each branch is the probability of success weighted by the probability calculated from the normal 

distribution for a discrete interval of time. Increasing the number of branches (or ‘granules’) decreases the 

interval used for calculation. Equivalence between two nodes is determined by the total time it takes in the 

model to reach that point. This can only be done approximately by establishing a tolerance value. Two 

nodes merge if |𝑡1 − 𝑡2| < 𝜖 where 𝜖 is the tolerance. Of course the tolerance can have an impact on the 

accuracy of the simulation and its choice will depend on the requirements of the model. 

 

 Comparing the tree expansion execution times with a version of sampling shows the speed up that we 

can achieve. To compare equivalent simulation, we look at how long it takes to simulate the same number 

of distinct trajectories. Figure A4 shows that by sampling, the time to execute increases exponentially  

whereas tree expansion increases linearly. The linear expansion in this model is due to node merging at 

each level. The overall system state at each level in the tree (corresponding to each process in the model) 

only changes by an addition of time to the total model duration. Therefore, we observe lots of overlap 

between nodes with similar total duration. The total speed up at 250 distinct trajectories is on the order of 

104. 

 

Figure A4: Comparison of execution time between traditional sampling and paratemporal methods with 
merging. 

 

Approximating a continuous variable in a discrete manner will induce some error. As mentioned in the 

series model, the number of branches used in the tree decreases the width of time approximated. Figure A5 

shows how increasing the number of branches/granules decreases the observed error. The error is calculated 
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by the absolute difference between the expected duration (which is the sum of the means at each level) to 

the observed average duration.  

 

Figure A5: Decrease in error with increase in branches. 
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