
Proceedings of the 2024 Winter Simulation Conference
H. Lam, E. Azar, D. Batur, S. Gao, W. Xie, S. R. Hunter, and M. D. Rossetti, eds.

DEEP REINFORCEMENT LEARNING FOR SETUP AND TARDINESS MINIMIZATION IN
PARALLEL MACHINE SCHEDULING

SoHyun Nam1, Jiwon Baek1, Young-In Cho1, and Jong Hun Woo1,2

1Dept. of Naval Architecture and Ocean Engineering, Seoul National University, Seoul, KOREA
2Research Institute of Marine Systems Engineering, Seoul National University, Seoul, KOREA

ABSTRACT

This paper introduces a novel deep reinforcement learning algorithm for the identical parallel machine
scheduling problem, with a focus on minimizing setup time and tardiness. In modern manufacturing
environments, accommodating diverse consumer demands has emerged as a primary challenge, shifting
focus towards small-batch, multi-product production schemes. However, traditional optimization techniques
pose challenges due to the inherent complexity of production environments and uncertainties. Recently,
reinforcement learning has emerged as a promising alternative for scheduling in such dynamic environments.
We formulate the scheduling problem as a Markov decision process, with states designed to capture the
key performance indicators related to setup and tardiness. The algorithm’s actions correspond to selecting
one heuristic rules among SSPT, ATCS, MDD, or COVERT. During the learning phase, we employ the
Proximal Policy Optimization (PPO) algorithm. Experimental results on a custom dataset demonstrate
superior performance compared to individual applications of existing heuristics.

1 INTRODUCTION

The current manufacturing environment is undergoing rapid changes. Consumer needs have shifted from mass
production to small-batch production of multiple varieties, leading to increased complexity in production
environments. Additionally, environmental concerns have emerged as major issues, and the previous strategy
of mass production and stockpiling inventory is found no longer sustainable. Under these circumstances,
modern flexible manufacturing systems (FMS) have emerged. FMS aims to enable the production of various
types of products on a single type of equipment with minimal setup changes, even when facing various
product specification changes. However, the increased diversity of products often poses additional challenges
compared to traditional mass production systems. Fortunately, advancements in computing technology have
facilitated the tracking and optimization of production and logistics facilities, enabling the management and
control of production events at the level of individual products.

Scheduling can contribute to achieving the ultimate goal of modern manufacturing system, by reducing
waste, waiting times, and inefficiencies in inventory and logistics, and maximizing the advantages of flexible
manufacturing systems. Owing to these potential contributions, scheduling has gained an enormous interest
and has been studied for decades. Mokotoff (2001) classified Scheduling problem-solving methodologies
into three categories: exact methods, where the entire solution space is explored to prove that no better
solution exists; enumerative methods, where the computational complexity is bounded by an exponential
function of the input size; and approximation algorithms, which offer suboptimal approximated solutions
within the limitation of polynomial computational resources.

One of the most basic types of scheduling problems is the Parallel Machine Scheduling Problem (PMSP),
where there are n jobs and m machines, and each job requires specified processing time to be completed.
This paper aims to solve the Identical Parallel Machine Scheduling Problem (IPMSP), where each job
has the same processing time on each machine. IPMSP represents a fundamental case in manufacturing
environments, where multiple machines are placed in a single workstation to avoid bottlenecks and increase

2583979-8-3315-3420-2/24/$31.00 ©2024



Nam, Baek, Cho, and Woo

efficiency. Scheduling in IPMSP can be interpreted in two ways: as a routing problem, determining the
assignment of jobs to machines, or as a sequencing problem, deciding the order in which jobs are processed
on each machine. It is noteworthy that the Identical Parallel Machine Scheduling Problem is NP-complete.

The most popular objective function in PMSP is the makespan, which means the time when all jobs
are completed. In real-world manufacturing systems, however, considering other objective functions is
often required. This study focuses on setup time and tardiness as objective functions. Minimizing setup
time is crucial to maximize the advantage of having different jobs processed on the same machine in
flexible manufacturing systems. Moreover, in project industries where various components assemble into a
larger product through multiple consecutive assembly processes, timeliness is crucial due to tight assembly
schedules and strict due dates, since delays can significantly impact overall progress. This study develops a
robust scheduling algorithm by combining discrete event simulation environment and reinforcement learning
algorithm to dynamically react to changes in setup and tardiness at each decision time step.

The remainder of this paper proceeds as follows: relevant literature review will be conducted in Section
2, and the IPMSP problem will be described in Section 3. In Section 4, the proposed reinforcement learning
framework will be introduced, with the detailed descriptions of the elements such as the Markov Decision
Process(MDP) and learning agent that constitute the algorithm. Comprehensive experimental results and
framework evaluation will follow in Section 5. Finally, conclusions will be drawn in Section 6.

2 LITERATURE SURVEY

The PMSP is a combinatorial optimization challenge that has garnered significant attention from researchers
over several decades. Classical PMSP primarily is aimed at minimizing the maximum completion time of
jobs, known as makespan. However, recent research has expanded to multi-objective optimization considering
objectives such as tardiness, earliness, and cost. Moreover, to better simulate real production environments,
studies have begun to incorporate various constraints such as job preemption, machine breakdowns, and
jobs with assigned release and due dates simultaneously.

Schutten and Leussink (1996) conducted research on minimizing lateness under situations with different
release and due dates using branch and bound algorithms. Mokotoff (2004) proposed a linear programming-
based exact algorithm that relaxes the problem into a partial linear description from the problem’s topological
structure, obtaining an integer solution to minimize makespan. Additionally, Sun and Wang (2003) developed
a dynamic programming algorithm and proposed two heuristics to minimize total weighted earliness and
tardiness. These researches attempted to find an exact solution to the PMSP. However, Hiraishi et al. (2002)
demonstrated that while PMSP instances with exact due dates for all jobs can be solved in polynomial
time, the problem becomes NP-hard even without setup if due date tolerance exists. Due to the inherent
difficulty of these problems, several approximation algorithms have been studied. Lee (2018) developed
an effective dispatching heuristic and used an iterated greedy-based metaheuristic to improve solutions
obtained, minimizing total tardiness. The aforementioned studies focused on IPMSP, where job processing
times are independent of machines. The Unrelated Parallel Machine Scheduling Problem (UPMSP) is
an extension of PMSP where job processing times on each machine are not identical and has also been
extensively studied. Kim et al. (2002) used simulated annealing to minimize maximum tardiness in UPMSP
with sequence-dependent setup times. Chen and Chen (2009) applied a hybrid metaheuristic, combining
variable neighborhood descent and tabu search, to minimize the weighted number of tardy jobs in UPMSP.

In recent years, there has been recognition of the need for planning in dynamic environments where new
jobs are continuously released. The emergence of Reinforcement Learning (RL) has enabled approximation
algorithms to address such challenges. Yuan et al. (2013) attempted Q-learning to minimize lateness and the
ratio of tardy jobs. Li et al. (2023) utilized RNN and PPO algorithms to minimize total tardiness in IPMSP
problems with due dates and family setups by designing an efficient RNN-based two-stage learning process.

Moreover, research combining unrelated machine scheduling problems with reinforcement learning has
also seen considerable progress. Zhang et al. (2012) attempted off-policy function approximation-based RL
to minimize weighted tardiness, representing scheduling problems as semi-MDPs and training RL agents to

2584



Nam, Baek, Cho, and Woo

select actions among various dispatching heuristics. Paeng et al. (2021) studied DQN algorithms to minimize
total tardiness in UPMSP problems with sequence-dependent family setups, considering sequence-dependent
setup times between different types of jobs as a key constraint. Julaiti et al. (2022) developed a DDPG
approach to minimize weighted tardiness, considering setup due to job type changes and stochastic machine
breakdowns and improving learning efficiency through a sampling approach. One industrial application is
found in Nam et al. (2023), where Deep Reinforcement Learning(DRL) was implemented to optimize the
input sequence of steel bars in shipyard. The welding line for steel section bars was modeled as parallel
machine shop, and both the setup time and tardiness were considered.

To the best of our knowledge, it can be concluded that there is a lack of research of general IPMSP
with multiple objectives and the implementation of reinforcement learning simultaneously. Therefore, based
on the previous research of Nam et al. (2023), we aim to suggest a generalized methodology for IPMSP
with sequence dependent family setup time and tardiness objectives. The main contributions of this paper
can be summarized as follows:

• Two objective functions, setup and minimizing tardiness are considered.
• A new feature representation to achieve multi-objective optimization is proposed.
• A dynamic manufacturing environment with release and due dates is implemented using discrete

event simulation for learning.

3 PROBLEM DESCRIPTION

3.1 Assumptions

The formulation of the Identical Parallel Machine Scheduling Problem (IPMSP) with distinct job release
dates and due dates is as follows:

• n independent jobs J = {J1,J2, · · · ,Jn} are processed across m machines M = {m1,m2, · · · ,mm}.
• Each machine can process only one job at a time, and once a job has started, it cannot be interrupted.
• Each job is completed once it is processed on a single machine.
• All jobs have different release dates and due dates.
• Each job, denoted as Ji, has a processing time of pi, which remains consistent regardless of the

machine it is executed on.
• Each job Ji is assigned a feature θ j within l different features, and a setup is required for a machine

to switch between jobs of different features.
• The setup time is determined by the difference between job features in consecutive order.
• The objective is to minimize both setup time and total tardiness.

3.2 Objectives

In practical scenarios, setup time may be either fixed or determined based on the similarity between different
products. In this problem, the setup time σp,q between any two consecutive jobs of job feature θp and θq is
defined as the difference in their feature values, generating the following equation (1):

Setup time σp,q = |θp−θq| (1)

The tardiness of a job Ji is defined as the difference between the completion time Ci and the predetermined
due date di, only if the completion time exceeds the due date as shown in (2).

Tardiness Ti = max((Ci−di),0) (2)

Considering the weighted sum, the objective of the proposed problem can be described as (3).

minimize
n

∑
i=1

wt ×max((Ci−di),0)+ws×|θJi−θJi−1 | (3)

2585



Nam, Baek, Cho, and Woo

3.3 Notations

Indices
i Index of jobs
j Index of job features
k Index of machines
Variables
Ji ith job in the set of jobs J = {J1,J2, · · · ,Jn}
θ j jth feature of the set of job features F = {θ1,θ2, · · · ,θl}
θJi Feature value of job Ji

mk kth machine in the set of machines M = {m1,m2, · · · ,mm}
Ci Completion time of job Ji

di Due date of job Ji

Nq Number of jobs waiting in queue
p̄i Average processing time of job Ji

σp,q Setup time required for machine converting from job feature θp to θq

σ(Ji,J j) Setup time required when machine mk converting from job Ji to job J j

Ti Tardiness of job Ji

Gi Tardiness level of job Ji, assigned among 4 values in G = {1,2,3,4}

4 METHODOLOGY

In the following section, the process of applying DRL to optimize the suggested problem will be presented.
To implement DRL, the first step is to define the Markov Decision Process (MDP). Subsequently, it is
crucial to design the actions and rewards appropriately to achieve the objectives. Finally, an efficient learning
algorithm for training is necessary.

4.1 Markov Decision Process

The fundamental concept of RL is based on the idea that decisions made within an environment can be
modeled as a Markov Decision Process (MDP). At any arbitrary time step t, the state of the environment
can be represented as st . After the agent takes action at , the environment transitions to a new state st+1,
according to the transition function. The agent receives a reward rt depending on how desirable the state is.
The probability of the agent taking a specific action at at state st is represented by the probability distribution
π{at |st}. The objective of Reinforcement Learning, based on policy gradient methods, is to express the
degree of desirability of states as rewards in order to achieve the objective for a given problem, and to
identify an appropriate π{at |st} that maximizes this reward. Properly modeling states, actions, and rewards
is essential for optimization. In our research, the state, action, and reward representations are designed
based on the MDP formulations proposed in the earlier industrial application research by Nam et al. (2023).

4.1.1 Action

When scheduling n jobs across m machines, the solution space becomes excessively large due to the need
to determine both the job order and machine assignments. To efficiently reduce the action space, this paper
proposes selecting one of four priority rules for actions: Shortest Processing Time and Shortest Setup Time
(SSPT), Apparent Tardiness Cost with Setup (ATCS), Modified Due Date (MDD), and Cost OVER Time
(COVERT). When any machine becomes idle after completing a job, a calling event occurs, requesting the
next job to be processed, and one of the four actions is chosen.

2586



Nam, Baek, Cho, and Woo

SSPT is a priority rule that considers both the processing time and the setup time. It prioritizes jobs
with shorter average processing time p̄i and shorter setup time σ(Ji−1,Ji). For all jobs remaining in the
queue at time t(denoted as Q(t)), the job Ji is assigned to machine mk based on equation (4).

Ji = argmin { p̄i +σ(Ji−1,Ji)},∀Ji ∈ Q(t) (4)

The ATCS is an adaptation of the Apparent Tardiness Cost (ATC) rule initially proposed by Lee and
Pinedo (1997) for minimizing total weighted tardiness. The rule integrates the goal of reducing setup
times alongside with the goal of minimizing tardiness. This rule grants higher priority to jobs with shorter
processing times, reduced slack time, and shorter setup times. Selection of job Ji for machine mk after
processing job J j follows the equation (5). The parameters, k1 and k2 are calculated by the method proposed
by Lee and Pinedo (1997).

Ji = argmax { 1
p̄i
× exp

(
−max(di− p̄i− t,0)

k1 p̄

)
exp

(
−

σ(J j,Ji)

k2σ̄

)
,∀Ji ∈ Q(t)

p̄ =
1

Nq

Nq

∑
i=1

p̄i,

σ̄ =
1

Nq

Nq

∑
i=1

σ(J j,Ji)

(5)

The MDD rule is a combination of the Earliest Due Date (EDD) rule and the Shortest Remaining
Processing Time (SRPT) rule. This rule determines the modified due date by selecting the larger value
between the original due date and the expected completion time if the job were to start immediately. Then
it selects the job that minimizes this modified due date, as illustrated in equation (6).

Ji = argmin (max(di, t + p̄i)) ,∀Ji ∈ Q(t) (6)

The COVERT rule is a priority rule that considers both the processing time and the associated cost. In
the COVERT rule, jobs are ranked according to a cost-to-time ratio, where the cost represents the importance
or urgency associated with each job. The rule aims to select the job that maximizes the value of cost divided
by processing time, thereby prioritizing jobs based on their value or importance relative to their processing
time. In practice, it is calculated as shown in equation (7), with the assumption that a smaller ratio of slack
time to the processing time of the job indicates a better schedule. Tardy jobs are given the highest priority
to ensure they are assigned to machines first. The parameter k was selected after a case study in which the
candidates varied in the range of (0.1,20).

Ji = argmax
(

1
p̄i

max
(

1− max(di− p̄i− t,0)
kp̄i

,0
)
,0
)
,∀Ji ∈ Q(t) (7)

4.1.2 State

The state serves as an numerical interpretation of the current environment, enabling the agent to utilize it
for decision-making while representing how desirable the current state is. To ensure efficient convergence
of the algorithm, it is recommended to leverage domain knowledge and represent states as combinations
of relevant features. A concatenation of S1, S2, S3, and S4, which represent various features related to the
objectives of setup and tardiness. Detailed descriptions and mathematical formulations are as follows:

S1 = {S1,1, · · · ,S1,m} is a vector of size m, where S1,k represents the proportion of jobs in the current
queue that can be processed on machine mk without any additional setup changes. It is calculated as the
ratio of the number of jobs with the same job feature of formerly processed job on machine mk (denoted as
N1,k) to the total number of jobs in the queue N1,q, as illustrated in equation (8).

2587



Nam, Baek, Cho, and Woo

S1,k =

{N1,k
N1,q

on initial state where there are no jobs in the queue

1 otherwise
(8)

S2 and S3 refer to the number of jobs corresponding to a specific tardiness level. These values are based
on the tightness metric proposed by Zhang et al. (2012). S2 focuses on jobs in the queue with same job
feature as the calling machine mk, while S3 focuses on jobs in the queue with the different job features.
The jobs in the queue are divided into two categories, one having the same setup feature as the formerly
processed job on mk, and the other having a different setup feature from the former job on mk. The number
of jobs in the queue that belongs to each category are denoted as N2,k and N3,k, respectively.

N2,k : # of jobs having the job feature same as the former job on mk

N3,k : # of jobs having job features different from the former job on mk
(9)

Then, each category splits the jobs into four levels according to the tardiness level g∈ {Gl|l = 1,2,3,4}=
{G1,G2,G3,G4}, thereby generating total 8 values in the form of N j,k,l( j = 2 or 3). The criteria for division
is the maximum and minimum estimated processing time of the jobs considering the variance factor δpt ,
and thus calculated according to equation (10). The mathematical formulation of the classification process
is demonstrated in equation (11). G1 refers to the level where the remaining time until the due date from
the current time t exceeds the maximum processing time, and G2 corresponds to cases where the remaining
time until the due date is less than the maximum processing time but greater than the minimum processing
time. G3 indicates situations where the remaining time is equal to or less than the minimum processing
time, meaning that even if the job starts immediately, it is unavoidable to be tardy. G4 denotes jobs that
have already passed their due dates at the current time point.

Maximum estimated processing time ri,max = (1+δpt)× p̄i

Minimum estimated processing time ri,min = (1−δpt)× p̄i
(10)

Tardiness level of job Ji = G(Ji) =


G1 if (di− t) ∈ (ri,max,+∞)

G2 if (di− t) ∈ (ri,min,ri,max]

G3 if (di− t) ∈ (0,ri,min]

G4 if (di− t) ∈ (−∞,0]

(11)

Let N j,k,l( j = 2 or 3) be the number of jobs with the tardiness level g and setup status k. The state
feature S2,k,l and S3,k,l is calculated by equation (12).

N2,k,l = # of jobs with the same setup status as the former job on mk & tardiness level Gl

N3,k,l = # of jobs with different setup statuses from the former job on mk & tardiness level Gl

S j,k,l =
N j,k,l

N j,k,l
(Gl ∈ {G1,G2,G3,G4})

(12)

S4 is a vector of size m, each element S4,k representing the progress ratio of the job on machine mk. It
refers to the remaining processing time compared to the total processing time of the job currently being
processed on the machine mk, normalized to a value between 0 and 1, as in equation (13).

S4,k =


(ts)i− pi− t

p̄i
If mk is working job Ji, where (ts)i = starting time of job Ji

0 If mk is idle
(13)

The number of features is thus given as 2m+8. The state features are concatenated into a 1-dimensional
vector and given as input for the reinforcement learning agent.

2588



Nam, Baek, Cho, and Woo

4.1.3 Reward

In reinforcement learning, the reward serves as a direct and immediate reinforcement for the agent’s actions,
acting as a proxy for indirectly estimating the desirability of a state and providing strong incentives for the
agent to take good actions. In this study, the reward was designed based on the formulation of Nam et al.
(2023) to achieve multi-objective optimization of minimizing both tardiness and setup time. Since each
action involves deciding which job to process on an idle machine, the reward is intended to be the sum
of the tardiness reward rt and the setup time reward rs, calculated as in equation (14). To prevent from
a single objective disproportionately affecting the overall reward, rt and rs are appropriately scaled. The
tardiness reward is transformed according to an exponential equation, where 1 indicates not being tardy,
and values close to 0 indicate increasing tardiness. The setup time reward indicates how much setup time is
incurred by selecting a particular job compared to the possible maximum setup time case, where 0 indicates
having no setup time while -1 represents having maximum setup time.

Tardiness reward for job Ji : rt,i = exp{−(Ci−di)}

Setup time reward for job Ji : rs,i =
σ(Ji−1,Ji)

maxσ(Ji,J j)
, ∀J j ∈ J = {J1,J2, · · · ,Jn}

Weighted reward ri = 0.6× rt,i +0.4× rs,i

(14)

4.1.4 State Transition

To effectively capture the essential features of a flexible manufacturing system, this study employed Discrete
Event Simulation (DES) using the open-source Python library SimPy. Figure 1 illustrates the overall learning
process. Whenever a job is completed processing on the machine, a calling event occurs and the agent
receives st as input. The deep neural network of the agent generates a probability distribution for selecting
each action. When one of the four priority rules is chosen, the state transition through the next state occurs
automatically according to the internal logic of the DES environment.

Figure 1: Overview of the learning process.

2589



Nam, Baek, Cho, and Woo

In the illustrated example, the calling event occurs after Job 2 completes processing on M2. Job 7
is assigned the highest priority rank in the queue by the selected action, and thus assigned to M2. The
next timestep is determined by the earliest occurrence of another machine becoming idle, as calculated
by the internal logic of the DES environment. State st+1 and reward rt are provided to the agent through
forwarding to the next step. Throughout this process, a set of {st ,at ,rt ,st+1} accumulates as experience.
Finally, the agent computes the loss function using sampled experience sets and the learning progresses
through AdaHessian optimizer.

4.2 Learning Algorithm

For the learning algorithm, the Proximal Policy Optimization (PPO) learning algorithm proposed by Schulman
et al. (2017) was adopted. The PPO algorithm was selected for showing its effectiveness in many scheduling
problem researches, including the work of Li et al. (2023), Cho et al. (2022), and Oh et al. (2022).

The PPO algorithm belongs to the policy gradient family of algorithms, which takes state features and
directly outputs the probability of each action using a deep neural network. This network is optimized using
the surrogate loss function L. The expression for L is given in equation (15), where A is the advantage
providing a pure marginal reward gained from the agent’s action, regardless of the previous state.

Since it is impossible to directly compute the value function within the deep neural network, the
generalized advantage estimation Â was employed, as shown in equation (16) where T,δt ,γ, and λ indicate
the time horizon, the TD advantage estimate for time step t, the discount factor, and the exponential weight
discount, respectively. To prevent excessive parameter fluctuations during training, clipping is introduced
into the loss function, preventing abrupt updates beyond a certain threshold and thus ensuring a more stable
convergence. The pseudocode of the entire algorithm is presented below, including updates for both the
actor and critic.

L(θ) = Êt
[
min

(
rt(θ)Ât ,clip(rt(θ),1− ε,1+ ε) Ât

)]
(15)

Ât = δt +(γλ )δt+1 + · · ·+(γλ )T−t+1
δT−1 (16)

5 EXPERIMENTS

5.1 Problem Instances

The problem instances generated in this study represent a flexible manufacturing system consisting of 100
jobs and 5 machines. The processing time of each job follows a uniform distribution in the range of [10,
20], and the job type feature is assigned as a random integer ranging from 0 to 5. The interarrival time of
jobs in the DES environment was set as the mean processing time divided by the number of machines in
order to prevent the system explosion. The due date tightness τ , indicating that the job’s due date margin
with respect to its processing time, varied by problem instances. The processing time variability factor,
denoted as δpt , set to values between 0.2 and 0.5, allowed the job processing time to be stochastically
determined within a range of (1−δpt ,1+δpt). The parameters of the DES were selected arbitrarily, as the
objective of this study is to demonstrate the generalization ability of the suggested methodology through its
application to a mathematical exercise, rather than solving a specific industrial problem.

5.2 Network Structures

The actor and critic networks of the PPO agent utilized in this study consist of a DNN structure with a
total of 5 layers. The first layer accepts 2m+8 input nodes. The subsequent 3 hidden layers have 512,
512, and 256 nodes, respectively, employing the Rectified Linear Unit (ReLU) activation function. The
final layer comprises 4 nodes, each outputting the probability distribution for selecting one of the four
heuristics. Additionally, the hyperparameters for PPO were set to K = 1,α = 0.0001,ε = 0.2, and γ = 0.98,
determined through a grid search process during training to achieve optimal performance.

2590



Nam, Baek, Cho, and Woo

Algorithm 1 Pseudocode for Reinforcement Learning with PPO
1: Initialize weights θ of the actor network πθ and weights θv of the critic network Vθv

2: for episode = 1, . . . ,E do

[Data Sampling]
3: get initial state s0
4: repeat
5: calculate the probabilities πθold(·|st) for all actions
6: select an action at according to πθold(·|st)
7: execute action at in DES simulator and observe reward rt and next state st+1
8: put sample (st ,at ,rt ,st+1) into trajectory set D
9: t← t +1 and st ← st+1

10: until st+1 is terminal

[Policy Optimization]
11: for epoch = 1, . . . ,K do
12: calculate the generalized advantage estimates Âi for each sample in D

Âi = δi +(γλ )δi+1 + · · ·+(γλ )T−i+1
δT−1

where δi =

{
ri + γVθv(si+1)−Vθv(si) if si+1 is non-terminal
ri−Vθv(si) otherwise

13: calculate loss function Lp for the actor network

Lp =−
1
|D|

|D|

∑
i=1

min(ri(θ)Âi,clip(ri(θ),1− ε,1+ ε)Âi) where ri(θ) =
πθ (ai|si)

πθold(ai|si)

14: calculate loss function Lv for the critic network

Lv =
1
|D|

|D|

∑
i=1

δ
2
i

15: optimize θ , θv using Adam optimizer with loss function L = Lp +βLv and learning rate α

16: end for
17: empty the trajectory set D
18: end for

5.3 Result

After about 500 epochs of training, the reward converged to a certain level, and a comparison test was
conducted on 100 test instances. The overall performance of the RL agent compared to four other heuristics
is shown in Table 1 and Figure 2. RL demonstrated superior performance compared to other heuristic
methods. Although the fluctuation of the test instances resulted in RL showing slightly worse performance
than the ATCS heuristic in terms of mean tardiness, the overall tardiness level improved across the test
instances when considering the median value of mean tardiness. RL exhibited approximately a 5% reduction
in mean setup time compared to the next best performing heuristic, ATCS. After analyzing the stochastic
policy over a single problem instance, it was revealed that the probability of agent choosing SSPT and ATCS
significantly differed based on the number of tardy jobs currently occupying the queue. The stochastic
policy over the entire time horizon is illustrated in Figure 3. This suggests that the agent takes the current
status of tardiness into consideration when calculating the stochastic policy, preventing a single superior
heuristic from dominating the policy regardless of the state features.

2591



Nam, Baek, Cho, and Woo

Table 1: Performance comparison between RL agent and heuristic rules.

RL ATCS MDD SSPT COVERT

Tardiness T̄
Mean 16.71 15.79 22.95 18.99 20.88

Median 15.00 15.40 21.52 17.91 19.91

Setup σ̄
Mean 0.93 0.97 1.97 1.37 1.94

Median 0.92 0.96 1.95 1.35 1.95

Figure 2: Mean tardiness and setup of RL and heuristics after 100 instances.

Figure 3: Probability Difference between heuristics with respect to number of tardy jobs.

6 CONCLUSION

This study introduces a reinforcement learning framework based on discrete event simulation for the
identical parallel machine scheduling problem. Results comparing the proposed framework with four existing

2592



Nam, Baek, Cho, and Woo

heuristics demonstrate that the RL agent outperforms the others. The significance of this study lies in
training an RL agent for scheduling in dynamic manufacturing systems which can promptly respond at any
time when given the state features. Additionally, it is important to note that the proposed method effectively
trained an RL agent that considers both setup time and tardiness as simultaneous objectives in scheduling.
Lastly, by constructing a discrete event simulation model, this study enabled immediate tracking of KPIs
(key performance indicators) in the production environment, thereby facilitating the learning process and
allowing for easy expansion of the algorithm through the collection of state features for learning.

The result of this study is applicable to various types of problem instances and modified FMS
environments. By creating environments where parameters such as job and machine numbers, due date
tightness, and processing time variability factor are determined stochastically, a more realistic simulation of
FMS environments can be achieved. Given the stochastic characteristics as the state feature, it is expected
that the agent is able to proactively utilize the information for scheduling. Additionally, considering setup
time determined as a more complex function of job features presents a possible avenue for future research,
and the impact of such modified environments on scheduling algorithms needs to be evaluated further.

REFERENCES
Chen, C.-L., and C.-L. Chen. 2009. “Hybrid Metaheuristics for Unrelated Parallel Machine Scheduling with Sequence-Dependent

Setup Times”. The International Journal of Advanced Manufacturing Technology 43:161–169.
Cho, Y. I., S. H. Nam, K. Y. Cho, H. C. Yoon, and J. H. Woo. 2022. “Minimize Makespan of Permutation Flowshop Using

Pointer Network”. Journal of Computational Design and Engineering 9(1):51–67.
Hiraishi, K., E. Levner, and M. Vlach. 2002. “Scheduling of Parallel Identical Machines to Maximize the Weighted Number of

Just-in-Time Jobs”. Computers & Operations Research 29(7):841–848.
Julaiti, J., S.-C. Oh, D. Das, and S. Kumara. 2022. “Stochastic Parallel Machine Scheduling Using Reinforcement Learning”.

Journal of Advanced Manufacturing and Processing 4(4):e10119.
Kim, D.-W., K.-H. Kim, W. Jang, and F. F. Chen. 2002. “Unrelated Parallel Machine Scheduling with Setup Times Using

Simulated Annealing”. Robotics and Computer-Integrated Manufacturing 18(3-4):223–231.
Lee, C.-H. 2018. “A Dispatching Rule and a Random Iterated Greedy Metaheuristic for Identical Parallel Machine Scheduling

to Minimize Total Tardiness”. International Journal of Production Research 56(6):2292–2308.
Lee, Y. H., and M. Pinedo. 1997. “Scheduling Jobs on Parallel Machines with Sequence-Dependent Setup Times”. European

Journal of Operational Research 100(3):464–474.
Li, F., S. Lang, B. Hong, and T. Reggelin. 2023. “A Two-Stage RNN-Based Deep Reinforcement Learning Approach for Solving

the Parallel Machine Scheduling Problem with Due Dates and Family Setups”. Journal of Intelligent Manufacturing:1–34.
Mokotoff, E. 2001. “Parallel Machine Scheduling Problems: A Survey”. Asia-Pacific Journal of Operational Research 18(2):193.
Mokotoff, E. 2004. “An Exact Algorithm for the Identical Parallel Machine Scheduling Problem”. European Journal of

Operational Research 152(3):758–769.
Nam, S.-H., Y.-I. Cho, and J. H. Woo. 2023. “Reinforcement Learning for Minimizing Tardiness and Set-Up Change in

Parallel Machine Scheduling Problems for Profile Shops in Shipyard”. Journal of the Society of Naval Architects of
Korea 60(3):202–211.

Oh, S. H., Y. I. Cho, and J. H. Woo. 2022. “Distributional Reinforcement Learning with the Independent Learners for Flexible
Job Shop Scheduling Problem with High Variability”. Journal of Computational Design and Engineering 9(4):1157–1174.

Paeng, B., I.-B. Park, and J. Park. 2021. “Deep Reinforcement Learning for Minimizing Tardiness in Parallel Machine Scheduling
with Sequence Dependent Family Setups”. IEEE Access 9:101390–101401.

Schulman, J., F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. 2017. “Proximal Policy Optimization Algorithms”. arXiv
Preprint arXiv:1707.06347.

Schutten, J. M., and R. Leussink. 1996. “Parallel Machine Scheduling with Release Dates, Due Dates and Family Setup Times”.
International Journal of Production Economics 46:119–125.

Sun, H., and G. Wang. 2003. “Parallel Machine Earliness and Tardiness Scheduling with Proportional Weights”. Computers &
Operations Research 30(5):801–808.

Yuan, B., L. Wang, and Z. Jiang. 2013. “Dynamic Parallel Machine Scheduling Using the Learning Agent”. In 2013 IEEE
International Conference on Industrial Engineering and Engineering Management, 1565–1569. IEEE.

Zhang, Z., L. Zheng, N. Li, W. Wang, S. Zhong, and K. Hu. 2012. “Minimizing Mean Weighted Tardiness in Unrelated Parallel
Machine Scheduling with Reinforcement Learning”. Computers & Operations Research 39(7):1315–1324.

2593



Nam, Baek, Cho, and Woo

AUTHOR BIOGRAPHIES
SOHYUN NAM earned Master from Department of Naval Architecture and Ocean Engineering at Seoul National University.
Her research interest is in Discrete Event Simulation and Reinforcement learning. Her email address is sohyon525@snu.ac.kr.

JIWON BAEK is a graduate school student in the Department of Naval Architecture and Ocean Engineering at Seoul National
University. She has a Bachelor of Engineering in Naval Architecture and Ocean Engineering. Her research interests include
DES simulation and production scheduling optimzation. Her email address is baekjiwon@snu.ac.kr.

YOUNG-IN CHO received his B.S. degree in Naval Architecture and Ocean Engineering (NAOE) from Seoul National
University (SNU) in 2020. He is currently working toward the Ph.D. degree in NAOE from SNU. His research interests include
production scheduling based on deep reinforcement learning. His email address is whduddlsi@snu.ac.kr.

JONG HUN WOO is a full professor in the Department of Naval Architecture and Ocean Engineering at Seoul National
University. He holds a Ph.D in Naval Architecture and Ocean Engineering from Seoul National University. His research interest
is in deep reinforcement learning, DES(discrete event simulation), APS(Advanced Planning and Scheduling) and other knowledge
related with industrial engineering. He has R&D experiences mainly in shipbuilding industry. His email address is j.woo@snu.ac.kr.

2594

mailto://sohyon525@snu.ac.kr
mailto://baekjiwon@snu.ac.kr
mailto://whduddlsi@snu.ac.kr
mailto://j.woo@snu.ac.kr

	INTRODUCTION
	Literature Survey
	Problem Description
	Assumptions
	Objectives
	Notations

	Methodology
	Markov Decision Process
	  Action
	  State
	  Reward
	  State Transition

	Learning Algorithm

	Experiments
	Problem Instances
	Network Structures
	Result

	Conclusion

