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ABSTRACT

We apply a recent variant of “efficient global optimization” (EGO). EGO is closely related to Bayesian
optimization (BO): both EGO and BO treat the simulation model as a black box, and use a Kriging metamodel
or Gaussian process. The recent variant of EGO combines (i) EGO for unconstrained optimization, and (ii)
the Karush-Kuhn-Tucker optimality conditions for constrained optimization. EGO sequentially searches
for the global optimum. We apply this variant and a benchmark EGO variant to an (s,S) inventory
model. We aim to minimize the mean inventory costs—excluding disservice costs—while satisfying a
prespecified threshold for the 90%-quantile of the disservice level. Our numerical results imply that the
mean inventory costs increase by 2.5% if management is risk-averse instead of risk-neutral—using the
mean value. Comparing the two EGO variants shows that these variants do not give significantly different
results, for this application.

1 INTRODUCTION

In this paper we apply Kleijnen et al. (2023)’s KKT-EGO algorithm that combines the popular efficient
global optimization (EGO) algorithm and the Karush-Kuhn-Tucker (KKT) conditions. Angün and Kleijnen
(2023) extends the KKT-EGO algorithm to cope with stochastic simulation with heterogenous aleatory
noise. The latter publication assumes risk-neutral decision makers, who use expected values of the multiple
simulation outputs—be it the goal output or the constrained outputs. In the current study, we assume
risk-averse decision makers. We model this risk attitude through quantiles that characterize the tail of the
probability density function (PDF) of the simulated outputs. Quantiles are also used to quantify value-at-risk
in financial portfolio management.

EGO is closely related to Bayesian optimization (BO) and machine learning (ML), especially active
learning. The KKT conditions are well-known (first-order necessary) optimality conditions in mathematical
programming, but these conditions are not used in other EGO algorithms. EGO, BO, and ML use a Kriging or
Gaussian process (GP) metamodel (approximation, emulator, surrogate) for the input/output (I/O) function
of the underlying simulation model. EGO algorithms for optimization with output constraints are not
guaranteed to converge to the global optima. We compare KKT-EGO with a benchmark EGO algorithm
related to Carpio et al. (2018) and Gardner et al. (2014). EGO is a rapidly evolving field; see the many
references in Baker et al. (2022), Garnett (2023), Wang and Yang (2023), Wang et al. (2023).

We apply Angün and Kleijnen (2023)’s KKT-EGO to the (s,S) inventory model that was originally
defined in Bashyam and Fu (1998). We let w1 denote disservice level per period; i.e., the percentage of
total accumulated demand that is not satisfied from stock on-hand. The 90%-quantile of w1—denoted by
q0.90(w1)—implies that the probability is at least 90% that this percentage does not exceed q0.90(w1). We
assume that the managers are risk-neutral regarding the relevant inventory cost—denoted by w0—which
excludes the hard-to-quantify cost of out-of-stock, so we use a service-level constraint. Altogether, our
goal is to minimize E(w0) (expected value or mean of w0), while satisfying the constraint q0.90(w1)≤ c1;
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e.g., c1 = 0.10. Our formulation with quantile constraints also covers probabilistic or chance constraints
(see (4)). Obviously, this model has aleatory uncertainty, but no epistemic uncertainty; these two types of
uncertainty are detailed in Kleijnen (2015). We shall present more details of this model, in Section 4.

Obviously, risk-aversion implies that E(w0) increases when satisfying (say) q0.90(w1)≤ 0.10 instead of
E(w1)≤ 0.10. However, it is not obvious how much E(w0) increases; i.e., how much s and S change, and
how much they affect E(w0). We shall see that—in our example—E(w0) increases by 2.5% if management
is risk-averse (modeled by q0.90(w1)) instead of risk-neutral (modeled by E(w1)).

We also compare numerical results of KKT-EGO and the benchmark, regarding efficiency (convergence
speed) and effectiveness (closeness to the true optimal solution). This comparison suggests that these variants
do not give significantly different results, for this application (however, Angün and Kleijnen (2023) compares
KKT-EGO and three competing algorithms including Carpio et al. (2018)’s, in three examples, and finds
that KKT-EGO is relatively efficient and effective).

We organize the rest of this paper as follows. Section 2 reviews recent literature. Section 3 details the
mathematical formulation of our inventory problem, and its solution via the KKT-EGO algorithm. Section
4 gives numerical results for the simulation optimization of our (s,S) model with a constraint for either
E(w1) or q0.90(w1), applying KKT-EGO and the benchmark. Section 5 summarizes our conclusions and
possible future research topics.

2 LITERATURE REVIEW

Quantiles are frequently used as risk measures for different types of problems such as our simulation
optimization problems and input uncertainty (or epistemic) problems discussed in Song et al. (2024).

Chang and Cuckler (2022) develops a simulation optimization method that minimizes a specific quantile
while satisfying an upper bound for the total cost which is assumed analytically available. That publication
applies its method to solve vehicle fleet sizing for an automated material handling system in a wafer fab in
Taiwan, minimizing a specific quantile of transport time of wafer lots; obviously, this fleet sizing implies
integer variables instead of continuous variables (Kriging assumes continuos variables). The method does
not use EGO. Chang and Lin (2023) includes a chance constraint in a simulation-optimization method for
system reliability via the allocation of redundant system components (obviously, the number of components
is an integer); that method does not use EGO.

Hu et al. (2024) considers a constrained optimization of a quantile with input constraints but without
output constraints; that publication does not estimate the quantiles and their derivatives through Kriging.
Wang et al. (2022) discusses some algorithms for unconstrained optimization of loss functions. These
algorithms should not require strict properties for the loss functions such as convexity, and should allow
computationally expensive simulations. Therefore that article uses metamodels; namely Kriging models.
Baker et al. (2022, Section 3.3.1) briefly discusses output quantiles, in a review of Kriging for analyzing
stochastic simulation. Kroetz et al. (2020) discusses ordinary Kriging (OK) and EGO in the context of
reliability analysis with risk.

3 PROBLEM FORMULATION

Section 3.1 discusses our quantile estimation. Focusing on these quantiles, Section 3.2 summarizes con-
strained optimization. Section 3.3 summarizes Kriging. Section 3.4 summarizes the KKT-EGO algorithm.

3.1 Quantile Estimation

Following Bashyam and Fu (1998, eq. 3), we define Yp as the amount of demand not satisfied from on-hand
stock in period p; we estimate the disservice level through the running average of P′ periods:

w1;P′ =
∑

P′
p=1Yp

∑
P′
p=1 Dp

with P′ = 1, ...,P = 30,000. (1)
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We let F(w1) denote the marginal cumulative density function (CDF) of w1;P′ ; serial correlations among
w1;P′ do affect the joint CDF, but not the marginal CDF in the steady state. The standard definition of the
(1−α)-quantile of w1 is then:

q1−α(w1) = F−1(1−α) = in f [w1 : F(w1)≥ 1−α]; (2)

see Alexopoulos et al. (2019, p. 1162) and Lolos et al. (2023), which give more references.
Whereas Bashyam and Fu (1998) uses E(w1;P′)with P′ ↑∞ and the estimator w1;P′ with P′ =P= 30,000,

we use q1−α(w1) and the estimator q̂1−α(w1)—computed as follows. We sort the P′ observations w1;P′ in
ascending order, so w1;(1) ≤ w1;(2) ≤ ... ≤ w1;(P′−1) ≤ w1;(P′); i.e., we use the order statistic w1;(⌈(1−α)P′⌉)
(where ⌈x⌉ denotes the ceiling function of the real number x). Then, combining P′ = 30,000 and α = 0.10
gives q̂1−α(w1) = w1;(27000). Alexopoulos et al. (2019) also uses this quantile estimator based on order
statistics, but focuses on confidence intervals (CIs) for quantiles based on a single replication, whereas
we use multiple replications—as we shall see in Section 3.3. Chen and Kim (2016) discusses alternative
estimators of quantiles and the related value-at-risk and conditional value-at-risk.

3.2 Optimization with a Constrained Quantile

We wish to solve the following constrained optimization problem for a specific (s,S) simulation model
with the goal output E(w0) and the constrained output q0.90(w1). We let c1 denote the upper threshold for
q0.90(w1), and x = (x1,x2)

′ denote the k = 2 control or decision variables x1 = s and x2 = Q with Q = S− s.
The problem has the box constraints l ≤ x ≤ u with l = (l1, l2)′ and u = (u1,u2)

′, which determine the
experimental area. Altogether, this gives

min
x

{E[w0(x)]: q1−α [w1(x)]≤ c1, l ≤ x ≤ u}. (3)

This problem formulation also covers chance constraints:

Prob[w1(x)≤ c1]≥ 1−α ⇐⇒ q1−α [w1(x)]≤ c1. (4)

However, a practical simulation model is a black box; i.e., E[w0(x)] and q1−α [w1(x)] in (3) are unknown
I/O functions. Like many authors, we estimate these functions through Kriging metamodels, which give
explicit approximations of the implicit I/O functions defined by the underlying simulation model. For our
problem defined in (3) we use specific Kriging models, as follows.

3.3 Stochastic Kriging

Like most publications on EGO, we apply univariate Kriging instead of multivariate Kriging or co-Kriging;
i.e., we ignore the correlations between different types of simulation outputs (in our case study, the correlation
between w0(x) and w1(x); obviously, q̂(1−α)[w1(x)] depends on w1(x)). Because the (s,S) simulation is
stochastic, we apply SK. We use the formulas for the SK predictor ŷ and its variance s2(ŷ) that are
derived in Ankenman et al. (2010). These formulas assume mi > 1 replications for the old simulated input
combination xi (i = 1, ...,n where n is initialized via (10)). By definition, these replications have a common
fixed simulation-runlength P = 30,000, and they use non-overlapping streams of pseudorandom numbers
(PRN), so they give mi identically and independently distributed (IID) outputs w0;r(xi) and q̂(1−α);r[w1(xi)]
with r = 1, ...,mi. We find it convenient to denote these two outputs by o0;r = w0;r and o1;r = q̂1−α;r(w1).
Then, these mi replications give the averages

oh(xi) =
∑

mi
r=1 oh;r(xi)

mi
with h = 0,1, i = 1, ...,n (5)

and the unbiased estimators of the heterogeneous variances

s2[oh(xi)] =
∑

mi
r=1[oh;r(xi)−oh(xi)]

2

(mi −1)
; s2[oh(xi)] =

s2[o(xi)]

mi
. (6)
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SK assumes that the so-called intrinsic noise—caused by the PRN—has a Gaussian (or normal) distribution
with zero mean and heterogeneous variances. We apply SK to w0(xi) and q̂1−α [w1(xi)], which are averages
of mi IID observations w0;r(xi) and q̂(1−α);r[w1(xi)] so we assume that the central limit theorem applies;
i.e., we assume that w0(xi) and q̂1−α [w1(xi)] are normally distributed. We denote the intrinsic noise by
eh;r(xi)—or briefly ei;h;r—and its average by eh(xi)—or ei;h. Let ΣΣΣe;h denote the covariance matrix of ei;h.
Like most authors on SK, we do not apply common random numbers so ΣΣΣe;h is an n×n diagonal matrix
(say) Σ̂ΣΣe;h with the main-diagonal elements s2[oh(xi)] defined in (6).

Besides intrinsic noise, SK considers extrinsic noise which models how the SK outputs—of a given
type h—at two points x and x′ are more correlated, the “closer” x and x′ are. This assumption is realistic if
the simulation output functions are smooth. This noise implies that a SK model is a stationary GP with a
covariance matrix that is determined by the correlation function or kernel. We select the anisotropic Gaussian
(or squared exponential) kernel with the so–called length-scale hyperparameters θθθ h = (θh;1, ...,θh;k)

′ where
θh; j ≥ 0:

ρ(θθθ h,x,x′) =
k

∏
j=1

exp[−θh; j(x j − x′j)
2], (7)

which implies that the correlation between oh(x) and oh(x′) decreases exponentially, as x and x′ are farther
apart. This kernel is most popular in simulation, but we may replace it by another kernel; e.g., the quite
popular Matérn class of kernels.

Like most authors on SK, we assume a constant mean (say) µh = E(yh). The usual symbol for Var(yh) is
τ2

h , so the correlation matrix Rh = (ρi;i′;h) equals τ
−2
h ΣΣΣM;h with the covariance matrix ΣΣΣM;h = (Cov(yh;i,yh;i′))

where yh;i = yh(xi) and i′ = 1, ...,n. The correlations between the Kriging outputs of type h at the
new point x∗ and the n old points are ρρρh(x∗) = τ

−2
h σσσM;h(x∗) with the n-dimensional covariance vector

σσσM;h(x∗) = (σh;∗) = (Cov(yh;∗,yh;i)) with yh;∗ = yh(x∗). Finally, 1n denotes the n-dimensional vector with
all elements equal to 1. We use the maximum likelihood estimators (MLEs) for the hyperparameters (except
Σ̂ΣΣe;h), and let the symbol̂denote these MLEs. Using these symbols, the SK predictors are

ŷh(x∗) = µ̂h + σ̂σσM;h(x∗)′(Σ̂ΣΣM;h + Σ̂ΣΣe;h)
−1(oh − µ̂h1n), (8)

and their estimated standard deviations are

s2[ŷh(x∗)] = τ̂
2
h − τ̂

4
h ρρρ

′
h(x∗)[τ̂

2
h Rh + Σ̂ΣΣe;h]

−1
ρρρh(x∗)+ δ̂

2
h [1

′
n(τ̂

2
h Rh + Σ̂ΣΣe;h)

−11n]
−1

with δ̂h = 1−1′n(τ̂
2
h Rh + Σ̂ΣΣe;h)

−1
ρρρh(x∗)τ̂

2
h . (9)

We compute (8) and (9) using MATLAB functions for SK (developed by Gonzalez—see Acknowledgment).
To compute θ̂θθ h in (7), we must select a search area; we select the lower bound 0.001 and Gonzalez’s upper
bound 31/2, for each θh; j.

We let n0 denote the initial or pilot number of simulated points. To select this n0, we follow Angün
and Kleijnen (2023):

n0 = (k+1)(k+2)/2 if k ≤ 6; else n0 = 5k. (10)

Our (s,S) example has k = 2, so (10) gives n0 = 6. Like most authors on Kriging, we use Latin hypercube
sampling (LHS) to select a space-filling design with l ≤ x ≤ u (see (3)). We use LHS with midpoints, so
the n0 points projected onto the k axes are equidistant, which gives better θ̂θθ h. LHS with midpoints is an
option in MATLAB’s function lhsdesign.

Furthermore, we let m0 denote the initial number of replications for point i with i = 1, ...,n0. We start
with m0 = 2, which is the smallest value of m0 that enables the computation of s(oh) (defined in (6)).
Because our (s,S) model has a large simulation-runlength P, we expect a small s(oh) so m0 = 2 might
suffice.
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We validate the SK models that are estimated from the initial n0 points with mi replications per point.
We apply the popular leave-one-out cross-validation (LOO-CV), which means that we delete xi (with
i = 1, ...,n0) and its oh(xi) and s2[oh(xi)], and use the remaining simulation I/O data to compute ŷ−i;h and
s2(ŷ−i;h), etc. We select a prespecified error rate (say) αCV; our numerical experiment uses αCV = 0.20. We
use the Bonferroni inequality, accounting for two outputs (namely, w0(xi) and q̂1−α [w1(xi)]) at n0 points,
so a two-sided CI uses αCV/(2× 2× n0). So, we use the 1− (αCV/(4n0))-quantile z1−[αCV/(4n0)] of the
standard normal distribution. Altogether, we reject the SK models if

max
i;h

[
|oi;h − ŷ−i;h|√

s2(oi;h)+ s2(ŷ−i;h)

]
> z1−[αCV/(4n0)]. (11)

If (11) holds, then we add a single replication to those points that require additional replications according
to the following procedure.

We apply Law (2005, p. 505)’s sequential procedure for estimating E(oh) with prespecified relative
error γ (with 0 < γ < 1) and prespecified confidence level 1−αm; our experiment uses γ = 0.10 and
αm = 0.10:

m̂h = min
[

r ≥ m :
tr−1;1−αm/2sh(r)/

√
r

|oh(r)|
≤ γ

1+ γ

]
. (12)

Obviously, sh/oh in (12) is the coefficient of variation of output h. If oh(r) ≈ 0, then (12) gives m̂h so high
that we replace γ/(1+ γ) by the absolute error β and oh(r) by the constant 1. Indeed, our (s,S) model
tends to give q̂1−α [w1(x)] ≈ 0 if x lies far away inside the feasible area so w1;r(x) ≈ 0; we then specify
β = 0.01.

Because the simulation model gives multiple types of output oh, we apply (12) such that this equation
holds for all these outputs, at xi. So, the desired number of replications at xi is

m̂(xi) = max
h

[m̂h(xi)]. (13)

Our replication rule stops adding replications for xi, as soon as m(xi)≥ m̂(xi) holds.
After the initial stage, we also apply this replication rule to the point that a next iteration selects as the

new point to be simulated; see the next section.

3.4 The KKT-EGO Algorithm

To solve our problem defined in (3), we apply Angün and Kleijnen (2023)’s KKT-EGO algorithm. EGO is
a popular method that was originally developed for unconstrained optimization in deterministic simulation;
see Jones et al. (1998). Because EGO methods (and other simulation-optimization methods) treat the
simulation model as a black box, it is unknown whether the problem has multiple optima. Therefore, EGO
balances global search and local search—or exploration of the whole experimental area versus exploitation
of a local promising area.

EGO is sequential; i.e., it selects a new point (say) x∗ to be simulated next—given the n old (already
simulated) combinations xi with i = 1, ...,n; in the initial stage, n = n0, and in the next stages n is updated
one-by-one. To select this x∗, EGO uses a Kriging model to estimate the acquisition function or infill
criterion; the most popular criterion is the expected improvement (EI):

EI(x∗) = E[max (w0; min − ŷ(x∗),0)] with w0; min = min
1≤i≤n

[w0(xi)]. (14)

EGO tries to select x∗ that maximizes EI(x∗). Therefore, Jones et al. (1998) derives the following estimator
where Φ and φ denote the CDF and the PDF of the standard normal variable z:

ÊI0(x∗) = (w0; min − ŷ0(x∗))Φ

(
w0; min − ŷ0(x∗)

s[ŷ0(x∗)]

)
+ s[ŷ0(x∗)]φ

(
w0; min − ŷ0(x∗)

s[ŷ0(x∗)]

)
.
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If s[ŷ0(x∗)] is high, then maximizing ÊI0(x∗) stimulates exploration instead of exploitation.
For random simulation-optimization without output constraints, Angün and Kleijnen (2023) uses the

estimated modified EI (MEI) which uses ŷ0; min instead of the unknown w0; min and the prediction error
sOK of OK:

M̂EI0(x) = (ŷ0; min − ŷ0(x))Φ

(
ŷ0; min − ŷ0(x)

sOK[ŷ0(x)]

)
+ sOK[ŷ0(x)]φ

(
ŷ0; min − ŷ0(x)

sOK[ŷ0(x)]

)
with ŷ0; min = min

1≤i≤n
[ŷ0(xi)]. (15)

In random simulation-optimization with constrained outputs, Angün and Kleijnen (2023) controls the
probability of selecting an infeasible solution; i.e., accept x as a feasible point—with a prespecified αinfe—if

ŷ1(x)+ z(1−αinfe)s[ŷ1(x)]≤ c1. (16)

We assume that as n increases, s[ŷ1(x)] tends to decrease and ŷ1(x) converges to q1−α [w1(x)] so q1−α [w1(x)]≤
c1 in (3) holds. In our experiment we select αinfe = 1%, so z(1−αinfe) = 2.3263.

KKT-EGO penalizes M̂EI(x) if the KKT conditions do not hold at this x. In our problem defined in
(3), these conditions imply the following two conditions where ∇0(x) and ∇1(x) denote the gradient of
E[w0(x)] and q1−α [w1(x)]: (i) x lies on the boundary of the feasible area (so the constraint is active or
binding): q1−α [w1(x)] = c1; (ii) −∇0(x) and ∇1(x) point into the same direction: −∇0(x) = λ (x)∇1(x) with
λ (x)≥ 0 where λ denotes the Lagrange multiplier. Obviously, (ii) implies that E[w0(x)] and q1−α [w1(x)]
are differentiable; the differentiability of q1−α [w1(x)] implies that its CDF F(w1) has no jumps or kinks.
However, the black-box simulation model implies (i) an unknown boundary, and (ii) unknown gradients.
KKT-EGO solves these two problems as follows.

Sub (i): KKT-EGO infers that the output constraint is binding at x if the following two-sided CI with
prespecified αBC (where we let BC stand for “binding constraint”) holds:

|ŷ1(x)− c1|
s[ŷ1(x)]

≤ z1−αBC/2. (17)

In our experiment we select αBC = 20%, so z1−αBC/2 = 1.2816. Because in our (s,S) simulation, the input
bounds l and u in (3) are rather arbitrary, we assume that the input constraints are not binding when
searching for x. Formulas for problems with multiple binding output or input constraints are derived in
Angün and Kleijnen (2023).

Sub (ii): KKT-EGO estimates ∇h via ŷ(x), which gives ∇̂h(x) = ∇[ŷh(x)] = (∂ [ŷh(x)]/∂x j)
′. We let

ch;i denote component i of ch = (Σ̂ΣΣM;h + Σ̂ΣΣe;h)
−1(oh − µ̂h1n). Then, the kernel (7) gives

∂ [ŷh(x)]
∂x j

=−2τ̂
2
h θ̂h; j{Σ

n
i=1ch;i(x∗; j − xi; j)exp[Σk

j′=1 − θ̂h; j′(x∗; j′ − xi; j′)
2]}. (18)

Letting˜denote least squares (LS) estimators, we obtain the following LS estimator of λ (x):

λ̃ (x) = [∇̂1(x)′∇̂1(x)]−1
∇̂1(x)′[−∇̂0(x)].

This λ̃ (x) gives the following LS model with the explained (dependent) variable −∇̃0(x) and the explanatory
(independent) variable ∇̂1(x):

−∇̃0(x) = λ̃ (x)∇̂1(x).

To quantify how well the KKT conditions hold, we compute the angle between ∇̂0(x) and ∇̃0(x), which
is measured by the following formula where • denotes the inner product of two vectors and ||.|| denotes
the l2-norm:

c̃os(x) =
∇̂0(x)• ∇̃0(x)]

||∇̂0(x)]||× ||∇̃0(x)||
. (19)
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Ideally, ∇̂0(x) and ∇̃0(x) point into exactly the same direction so their angle is zero and c̃os(x) = 1. If
λ̃ (x)< 0 (so, ∇̂0(x) and ∇̃0(x) point into opposite directions), then c̃os(x)< 0. (This c̃os(x) is related to
R2 with 0 ≤ R2 ≤ 1, which is a popular measure for fit in multiple regression, and is related to the Pearson
correlation coefficient ρ with −1 ≤ ρ ≤ 1 in simple regression; perfect fit implies R2 = 1 and in case of a
single binding constraint ρ = 1.)

Sub (i) and (ii): Altogether, KKT-EGO searches for x̂o that maximizes the acquisition function

aKKT(x) = M̂EI(x)× c̃os(x): ŷ1(x)+ z(1−αBC)s[ŷ1(x)]≤ c1 (20)

where M̂EI(x) equals M̂EI0(x) in (15) provided ŷ0; min is limited to x satisfying (16), and the search is
limited to the estimated feasible area defined by the one-sided CI in (20). The factor M̂EI(x) in (20) drives
the search for x̂o to the binding constraint, and the factor c̃os(x) drives that search along that constraint to
the point where the KKT conditions hold.

To find this x̂o, KKT-EGO uses MATLAB’s function for finding the minimum of a constrained problem—
called fmincon. Because fmincon is a local optimizer, we use nfmincon > 1 starting points; in our experiment
we select nfmincon = 20. To sample these nfmincon points in the experimental area l ≤ x ≤ u, we apply LHS
without midpoints. For further details on the use of fmincon in KKT-EGO we refer to Angün and Kleijnen
(2023).

After finding x̂o, KKT-EGO obtains simulation replications for x̂o—applying Law’s procedure defined
in (13). Next, KKT-EGO accepts x̂o as feasible if x = x̂o satisfies the feasibility constraint (16). If KKT-EGO
accepts this x̂o as feasible, then x̂xxo may give a better (lower) solution ŷ0; min; KKT-EGO then uses this
x̂o to update the estimated optimal input (say) x̂min. KKT-EGO terminates when it satisfies a prespecified
stopping criterion; in our experiment, we (rather arbitrarily) stop the search after 95 iterations.

An obvious alternative for KKT-EGO uses the estimator of the probability of feasibility (PF) (also see
(17)):

P̂F(xxx) = Φ

(
ch′ − ŷ1(x)

s[ŷ1(x)]

)
.

Our (s,S) example has a single constraint; otherwise P̂F(x) would depend on all constraints including
nonbinding constraints, so P̂F(x) would decrease as the number of constraints increases, and P̂F(x) would
treat all constraints as statistically independent. So, our example (with its single constraint) favors this
alternative EGO method. Altogether, this alternative—which we call PF-EGO—uses the acquisition function

aPF(x) = M̂EI(x)× P̂F(x). (21)

PF-EGO is related to EGO in Carpio et al. (2018) and BO in Gardner et al. (2014). We shall return to
PF-EGO, in the next section.

4 NUMERICAL EXAMPLE: A SPECIFIC (s,S) MODEL

The (s,S) model implies that a new order is placed as soon as the inventory position—defined as on-hand
stock minus backorders plus outstanding orders—decreases below the reorder level s, and the size of
this order is such that the inventory position increases to the order-up-to level S. Like Bashyam and Fu
(1998), we assume that the inventory is monitored per period p with p = 1,2, ...,P, where P terminates the
simulation run. To find the optimal s and S when orders may cross in time, we need to apply simulation.

For our numerical experiment, we use a PC with multiple cores and parallel software that enable 12
restarts of KKT-EGO such that each restart samples its own initial design. Such parallel computing implies
that the restarts do not increase wall-clock time. Within each of these restarts, we use 20 non-parallel
restarts of fmincon.

In our specific (s,S) discrete-event simulation, demand D is exponentially distributed with mean 100,
and lead time L is integer-valued Poisson distributed with mean 6. Orders are received at the beginning of
each period p; demand for this period is subtracted, and an order review is carried out.
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To quantify the consequences of risk aversion, we compare the results of an (s,S) simulation model
with (i) a constraint for the expected disservice level, and (ii) a quantile constraint. In Section 1 we have
already mentioned that risk-aversion—modeled through a “high” quantile such as q0.90;1—implies that s
and S change. Now we add that s and S may increase, so we should explore an experimental area with
higher maximum values for s and S. Therefore we now keep the same minimum value for s as Angün
and Kleijnen (2023) uses; namely, smin = 600. For the maximum of s we select smax = 2,400 (instead of
1,200). Furthermore, besides x1 = s we define x2 = Q = S− s. To select the bounds for Q, we use the
economic order quantity (EOQ), which equals 85. We vary Q between EOQ/8 = 10.625 and 8×EOQ =
680. So, we use the box constraints 600 ≤ s ≤ 2,400 and 10.625 ≤ Q ≤ 680.

Table 1: Initial design for s and Q with S = s + Q in restart 1 of macroreplication 1, with its average outputs
w0 and q̂0.90;1 and their estimated standard deviations s; * denotes q̂0.90;1(xi) significantly higher than c1
= 0.1; number of replications m.

s Q S = s+Q w0 s(w0) q̂0.90;1 s(q̂0.90;1) m
1950 66.4 2016.4 1423.3 0.9682 0.0014 0.0002 14
1650 624.2 2274.2 1412.1 1.2475 0.0044 0.0005 14
2250 178.0 2428.0 1787.3 0.9550 0.0000 0.0000 3
1350 289.5 1639.5 943.0 1.7477 0.0277 0.0015 4
750 401.1 1151.1 483.8 0.7007 0.2970* 0.0058 3
1050 512.7 1562.7 777.4 5.0430 0.0890 0.0046 3

As we discussed in Section 3.3, we initially select n0 = 6 and m0 = 2. Table 1 displays results for restart
1 of macroreplication 1. Its columns 1 and 2 display an example of X6×2, which denotes the initial design
matrix with n0 = 6 combinations of k = 2 inputs. This X6×2 is selected through LHS-with-midpoints for
s and Q (so S = s+Q in column 3), so n0 = 6 and 600 ≤ s ≤ 2,400 implies that the smallest midpoint
for s is 750 (see cell (5,1)). Columns 4 and 5 display w0 and s(w0), computed from m replications per
(s,S) combination. Likewise, columns 6 and 7 display q̂0.90;1 and s(q̂0.90;1), which determine a one-sided
CI such that the symbol * denotes a q̂0.90;1-value that is significantly higher than c1 = 0.10. Actually,
αinfe = 1% implies that q̂0.90;1 is significantly higher than c1, in combination 5, which has the lowest s and
S. This combination also gives the lowest w0 (low s and S implies low average inventory). The other five
combinations give low q̂0.90;1-values, so they are points inside the feasible area. The last column displays
m, which depends on sh/oh; e.g., the combinations 1 and 6 give s1/o1 equal to 0.0002 / 0.0014 = 0.14
and 0.0046 / 0.0890 = 0.05 so m equals 14 and 3, respectively. Combination 3 gives q̂0.90;1 = 0.0000, so
we use the absolute error β = 0.01 instead of γ . The smallest m is 3 and the highest m is 14 (obviously,
estimating the 90% quantile requires more simulation observations than estimating the mean).

After this initial design—or iteration 0—each iteration of KKT-EGO estimates x̂xxo = (ŝo, Ŝo) and the
corresponding outputs w0 and q̂0.90;1. Furthermore, we decide to obtain 10 macroreplications, which sample
different X6×2. We note that all n0 points require m > m0 = 2 because s(q̂0.90;1) is relatively high.

The true optimal (so,Qo) combination is unknown; see again Bashyam and Fu (1998). Therefore, we
use brute force; i.e., we obtain “enough” macroreplications for several (s,Q) combinations in the area 1150
≤ s ≤ 1215 and 20 ≤ Q ≤ 90; see Figure 2a that we discuss below (this area is much smaller than the
original experimental area 600 ≤ s ≤ 2,400 and 10 ≤ Q ≤ 680; see Table 1). For s we consider fourteen
values that lie five units apart (i.e., 1150, 1155, ..., 1210, 1215); for Q we consider fifteen values five units
apart (i.e., 20, ..., 90). So, we consider 14× 15 = 210 points. For each point we select the number of
replications via Law’s (12) with αm = 10% and γ = 1%. Altogether, we estimate that the "true" optimal
values are so = 1190 and Qo = 60, which give q0.10 = 0.0998 and w0 = 660.
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Figure 1: Convergence plots for KKT-EGO and PF-EGO with medians and IQRs estimated from ten
macroreplications

(a) (b)

Figure 2: (a) Final (ŝo, Q̂o) for KKT-EGO and PF-EGO in ten macroreplications; (b) Final (q̂0.90;1,w0) for
KKT-EGO and PF-EGO in ten macroreplications

Figure 1 displays the convergence plots for KKT-EGO and PF-EGO. The long horizontal line denotes
our brute force estimate of the true unknown optimal goal value, which is—with 90% confidence—within
1% of the true value. The plots display median goal values—estimated from ten macroreplications—at
selected total number of simulations required by the iterations of KKT-EGO and PF-EGO, respectively.
Vertical lines display estimated interquartile ranges (IQRs). Because these IQRs overlap for the two EGO
algorithms, we infer that these algorithms do not give significantly different results, for this (s,S) model.

Fig. 2a displays the final (ŝo, Q̂o) values—after 95 iterations—for the ten macroreplications, corre-
sponding with Fig. 1. The symbol “2” means that two values are so close that they coincide, given the
scale of the graph. We estimate the medians of these ten (ŝo, Q̂o) values; KKT-EGO gives the solid (blue)
lines, and PF-EGO gives the dashed (black) lines. Actually, our problem defined in (3) implies that we

3514



Angün and Kleijnen

(a) (b)

Figure 3: (a) Final (ŝo, Q̂o) for quantile constraint versus mean constraint, for KKT-EGO in ten macrorepli-
cations; (b) Disservice versus costs for the quantile constraint and the mean constraint

are more interested in E(w0) and the corresponding q0.90;1(w1) than in ŝo and Q̂o; so, we proceed to the
next graph.

Fig. 2b displays (q̂0.90;1,w0) for KKT-EGO and PF-EGO, corresponding with Fig. 2a. KT-EGO gives
an estimated median for q̂0.90;1 that is slightly smaller than the PF-EGO median and the “true” value; yet,
both median goal values are very close. Next we present the effects of a quantile constraint instead of the
mean constraint, focusing on KKT-EGO.

Fig. 3a displays the final (ŝo, Q̂o) for the q0.90;1 quantile constraint in problem (3)—blue squares—and
the E[w1(x)] constraint—red dots—for KKT-EGO. The two constraints give virtually the same estimated
median for Q̂o. If the constraint changes from q0.90[w1(x)]≤ 0.1 to E[w1(x)]≤ 0.1, then ŝo decreases.

Fig. 3b displays disservice versus costs for the quantile constraint and the mean constraint. KKT-EGO
gives disservice slightly smaller than c = 0.10%, as required by both constraints (KKT-EGO stays on the
“safe” side of the boundary; see αinfe = 1% in (16)). Obviously, costs increase for the risk-averse quantile
constraint (this increase may be prohibitive in supermarket inventory management with its small profit
margin).

5 CONCLUSIONS AND FUTURE RESEARCH

In this paper we explained how it is simple to apply Angün and Kleijnen (2023)’s KKT-EGO algorithm
to solve optimization problems with quantile constraints instead of mean constraints; i.e., the black-box
simulation has a quantile as one of its outputs, and KKT-EGO tries to ensure that this output satisfies
its prespecified threshold. To illustrate KKT-EGO for quantile constraints, we investigated an inventory
system that is controlled by an (s,S) model specified in Bashyam and Fu (1998). We defined risk-aversion
as the requirement that the 90% quantile—instead of the mean—of the disservice level remain below 0.10.
To estimate the values of the decision variables s and S that satisfy this service-level constraint while
minimizing the mean inventory costs, we applied KKT-EGO and a benchmark; namely, PF-EGO. Our
numerical results showed that the risk-averse requirement increases cost slightly. It is up to management
to decide whether this cost increase is acceptable.

In future research we may apply more alternative EGO algorithms, to more examples. Furthermore, we
may investigate how to incorporate uncertainty of the estimated gradients into KKT-EGO. Finally, we may
investigate epistemic uncertainty (besides aleatory uncertainty). This uncertainty is investigated in Parmar
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et al. (2022)—but not in the context of optimization. Both epistemic uncertainty and aleatory uncertainty
are investigated in Wauters (2024), in robust optimization.
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