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ABSTRACT 

This paper introduces Curriculum Interleaved Online Behavior Cloning (IOBC) as an approach to train 
agents for military operations, addressing not only the challenges posed by complex and dynamic combat 
scenarios but also how military doctrines and strategies are transferred to these agents. It highlights the 
limitations of traditional reinforcement learning (RL) methods and proposes interleaved online behavior 
cloning in combination with curriculum learning as a solution to enhance RL agent training. By leveraging 

rule-based agents for guidance during training, IOBC accelerates learning and improves the RL agent's 
performance, particularly in early stages of training and complex scenarios. The study conducted 
experiments using ReLeGSim, a reinforcement learning-focused simulation environment, demonstrating 
the effectiveness of our method in enhancing agent performance and scalability. Results indicate that IOBC 
significantly outperforms RL agents without guidance, providing a stable foundation for learning in 
challenging environments. These findings underscore the potential of IOBC in real-world military 

applications. 

 INTRODUCTION 

The effectiveness of autonomous systems in military scenarios hinges on their ability to quickly adapt and 
make informed decisions amidst complex and uncertain conditions. Traditional decision-making 
approaches and reinforcement learning (RL) techniques often struggle with the details of dynamic combat 
environments. Training RL agents in our environment is time-consuming, taking up to three weeks, and 

agents tend to opt for straightforward solutions rather than optimal strategies requiring coordination. 
Interleaved Online Behavior Cloning (IOBC) offers a solution by providing a structured, iterative 

learning framework that accelerates the training of autonomous agents. This framework enhances military 
operational effectiveness by facilitating rapid skill acquisition through expert demonstrations at lower 
levels, gradually introducing more complex scenarios with reduced support. By incorporating basic military 
doctrines early on, IOBC prepares RL agents to handle battlefield uncertainties and improve their decision-

making processes over time. 
IOBC also allows for customized training protocols tailored to specific missions and environments, 

such as urban navigation or reconnaissance, addressing the unique challenges of each scenario. This 
adaptability is crucial in modern warfare, where conditions are constantly changing. IOBC integrates rules 
of engagement, ensuring agents are aware of their actions and encouraging better decision-making when 
deviations occur. 

 This paper outlines a reinforcement learning methodology using IOBC and curriculum learning, 
highlighting its benefits for researchers and practitioners. Key contributions include demonstrating that 
simple rule-based agents are enough to effectively initiate RL training, showing that IOBC enhances 
learning and performance. Its simplicity allows IOBC to be integrated into any RL optimization algorithm 
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as a regularizing loss term, providing a versatile tool for improving autonomous systems in complex 
environments. 

 RELATED WORK 

The integration of domain knowledge into RL agents with imitation learning (IL) approaches such as 
behavior cloning (BC), especially in complex environments where exploration is challenging, is a powerful 
technique to transfer domain knowledge to an autonomous agent when one has access to an expert policy 
to demonstrate desired actions given the current state. 

Online Imitation Learning uses expert policies to provide feedback to the learning agent during training. 
One form of online IL allows the RL agent to interactively query the expert for demonstration at each time 

step (Ross et al. 2011; Ross et al. 2014; Judah et al. 2014). Specifically, Ross et al. (2011) proposed an 
iterative IL algorithm called Dataset Aggregation (DAGGER) to reduce the problem of covariance shift 
during training. Their method iteratively aggregates data from the RL agent’s own state distribution, queries 
the expert policy for action demonstrations at each state, adds the new state-action pairs to the aggregated 
dataset the RL is trained on. 

In their work on learning from imperfect demonstrations, Gao et al. (2019) proposed the Normalized 

Actor-Critic (NAC) algorithm that uses the same objective to learn initially from noisy demonstrations 
before transitioning to learning from interactions with the environment. In comparison, IOBC is not 
restricted by a limited set of human demonstrations and uses expert guidance at every single environment 
step during the training phase. 

Goecks et at. (2020) proposed the Cycle-of-Learning (CoL) framework where they investigated the 
smooth transition from behavior cloning to reinforcement learning by combining BC and 1-step Q-learning 

losses with continued re-use of human demonstration data during training to avoid performance degradation 
during the transition phase. 

Context Online Imitation Learning, proposed by Hill et al. (2024) take advantage of existing policies 
in a strict subset of the state space by adding expert demonstrations to the RL agent’s observation. This 
approach allows the learning agent to take expert demonstrations into account without being directly 
encouraged to follow the actions of the expert’s policy. 

Wang et al. (2019) improved reinforcement learning methods by incorporating rule-based trajectory 
constraints, resulting in better performance of autonomous vehicles. Liu et al. (2023) transferred prior 
knowledge of an existing rule-based control policy by adding a behavior cloning term to regularize their 
online policy. 

Closest to our work is the work of Zhao et al. (2022) formulates online IL as a sequence of supervised 
learning problems to encourage the RL agent to perform expert-like actions under its own state distribution. 

In their work they propose an adaptive weighting scheme of the behavior cloning loss that is based on the 
agent’s performance and overall training stability. 

 METHODS 

3.1 The Simulation Environment “ReLeGSim” 

ReLeGSim (Reinforcement Learning focused Generic AI Training Simulation, shown in Figure 1) is a 
rasterized simulation environment for reinforcement learning to develop self-optimizing strategies of the 

players in the game. Arbitrary players are supposed to reach a defined goal by performing a sequence of 
actions like moves, requests for support, and interactions with each other. ReLeGSim can be used to model 
a broad-range of civil and military scenarios such as an ISR mission or a joint battalion ground combat 
scenario. ReLeGSim allows to define flexibly actors (e.g., single-agent Btl, Multi-Agent UAS) for the 
game-like environment, to give them corresponding properties and possible actions. For this purpose, the 
simulation can be extended by appropriate application-specific simulation models (such as a sensor) using 

the Python programming language. 
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The simulation was last shown at the NATO MSG-207 symposium (Möbius et al. 2023) and uses the 

"Gymnasium"-API for the connection to reinforcement learning applications. The architecture supports 
single-agent, multi-agent and hierarchical reinforcement learning.  

In ReLeGSim, learning agents encounter a series of challenging problems. ReLeGSim represents a 

dynamic multi-agent environment where agents must consider the interactions of numerous entities. Due 
to a partially observed map, actors face the problem of imperfect information. Actors perceive the state 
space exclusively through raw image and vector features which adds to the difficulty of learning and 
navigating the environment. The selection and control of many different units comes with a large action 
space. Furthermore, the environment requires actors to plan over long-term time horizons with hundreds of 
steps with the difficulty of delayed credit assignment. 

In more detail, one actor takes on the role of the attacker, aiming to capture a specific target area from 
the defender, who must hold it throughout the episode. Both players have access to various groups of 
soldiers with unique capabilities, consisting of companies, platoons and individual units. To succeed, 
players must understand their opponent's perspective, know their unit's abilities, and effectively navigate 
the terrain. The visualization of the state-value estimated by the AI-Model allows the user to understand 
the AI’s behavior better. For example, a low value will explain defensive actions to avoid huge negative 

reward. 
As part of the MLOps-Architecture (Figure 2), the scenario generator allows for the automatic creation 

of 3D terrain, based on real-world data, such as vector, elevation, and satellite information. This information 
is embedded into a rasterized map with specific field types (e.g., water, forests, hills, agriculture or roads) 
and is then used for AI training within ReLeGSim. The simulation framework aims to provide a platform 
for training different AI models through reinforcement learning, but it also supports human vs. AI 

gameplay. Therefore, it is possible to benchmark, test, evaluate, and analyze the capabilities of the trained 
agents. The toolchain also includes automated testing for trained AI agents with various metrics and 
complex analysis based on customer needs. 

Figure 1: ReLeGSim Expert-UI. 
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3.2 ReLeGSim AI Architecture 

The authors of ReLeGSim (Doll et al. 2021) drew inspiration from DeepMind's AlphaStar (Vinyals et al. 
2019), a leading model in complex RL problems, to develop an innovative architecture (Figure 3). 
Influenced by military tactics, the design utilizes scalar data (e.g., troop numbers and ammunition) and 

visual maps for scenario observation. To understand the terrain, the AI receives a visual map with a lot of 
terrain information and entity encodings. A spatial encoder with convolutional layers was developed to 
incorporate this rich data into the AI.  

The model architecture reduced to the minimum via an autoencoder setup, reducing parameters and 
producing a pre-trained model. A language input can take an objective or task into consideration. In a 
hierarchical setup, the given task is defined by a superior agent. Encoded values from visual, task, and 

scalar data are input to a core network, an LSTM component, to handle long-term planning. 
The action head was initially implemented as a multi-discrete action space based on the AlphaStar 

implementation. Due to the exploding action space, the action head was replaced by a language model 
based on the latest research to predict action commands in natural language, as it will be described in the 
next section. 
 

Figure 2: MLOps-Toolchain for ReLeGSim. 
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3.3 AI Decision Space 

The issue of complex decision-making capabilities of AI comes with huge action spaces in RL, which 

presents a significant challenge as RL applications become more complex and realistic. Small, fixed-action 
spaces have limitations in terms of expressiveness, exploration, and efficiency. Researchers are continually 
developing new techniques and algorithms to mitigate the impact of exploding action spaces, such as 
function approximation, discretization, and hierarchical RL. These approaches enable RL agents to tackle 
increasingly complex tasks and navigate the challenges of large action spaces more effectively. As RL 
continues to advance, addressing the issue of exploding action spaces will remain a critical research area to 

enable the successful application of RL in real-world scenarios. The approach of employing natural 
language to establish communication with AI, as showed in Möbius et al. (2022), coupled with the 
developments in the formulation of doctrines using natural language (Möbius et al. 2023), set a precedent 
for the realization of a versatile AI capability within a multifaceted operational environment. ReLeGSim 
incorporates a natural language interface between the AI and the agents in the simulation with a complex 
parsing and execution of given commands. These commands can be on different hierarchical levels and 

control various agents. 
Initial trials showed that a large space of unused vocabulary is disadvantageous and results in slow 

training. Therefore, we use a small, but effective vocabulary which is inspired by the Battle-Management-
Language (BML). The full vocabulary for an environment with a resolution of 64x64 pixels contains the 
following tokens: 

Figure 3: AI Architecture used in ReLeGSim. 
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0, … ,63, x, y, left, right, attack, move, observe, scan, hide, recharge, drop, 

own_entity, enemy_entity, artillery, attack_helicopter, close_air_support, mines, 

<colon> 

 

The used tokens can be masked depending on the current simulation state. For example, the token 
enemy_entity is masked if no enemy is visible to the agent. The token <colon> splits the resulting output 
text sequence into multiple actions, additionally the token can be used to pad the sentence. The reduction 
of tokens and the optimization were done manually and corresponded directly to the execution of the 

resulting behavior in the simulation. To tokenize the actions, we use one-hot encoding, as this allows us to 
use masked stochastic sampling over the given actions and can be easily integrated into any given RL 
framework through a multi-discrete representation. 

3.4 Curriculum-Based Scenario Creation 

In our simulation framework we follow a curriculum learning approach (Narvekar et al. 2020), where we 

employ incremental levels of difficulty across various scenarios to effectively train, validate, and operate 
our agents. The training scenarios are designed to incrementally increase in complexity, providing a gradual 
learning curve for agents. Validation scenarios serve as test levels to ensure the competency of trained 
agents. Operations scenarios, on the other hand, present highly complex situations involving joint 
operations and numerous units, which are too challenging for rule-based agents to handle efficiently. Other 
than human operators only reinforcement learning agents demonstrate successful performance in these 

scenarios. Moreover, the model architecture and size play a crucial role in shaping the capabilities of our 
agents. Illustrating the practical application of our framework, we showcase IOBC for single-agent battalion 

Figure 4: Architecture of the autoregressive NLP action head. 
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commander scenarios focusing on strategic decision-making of a single commanding officer. This use-case 
offers a wide range of scenarios with unique challenges and objectives, thereby providing a comprehensive 
platform for testing and refining agent capabilities. 

3.5 Interleaved Online Behavior Cloning 

Instead of learning only from environmental feedback (rewards), the RL agent is guided by the actions of 
one or more rule-based agents that are active in a subset of levels. Our rule-based agents follow military 
tactics and doctrines to perform actions at each time step during the episode rollout. Rule-based agents are 
only used for scenarios up to a certain level of complexity where it can be ensured, that the scripted behavior 
represents a good expert strategy with a high probability of success (e.g., attacking from opposite site in a 

2 vs. 1 scenario).  
 At each time step, the rule-based agent provides an action during the episode rollout considering the 
current state of the environment. The presence of these state-action tuples allows us to formulate the 
learning process as a supervised learning problem enabling the RL agent to learn useful actions during the 
initial training period. Besides a strong learning signal during the early training stage, IOBC comes with 
further benefits: As IOBC is an online method, it allows us to train agents with memory components (state 

of LSTM) for effectively modeling long-term dependencies right from the start of training. Furthermore, 
IOBC allows to train the actor and the critic at the same time and overcomes the problem of untrained critics 
after actor pre-training that often results in forgetting good initial policies.  
 We implement IOBC with a rule-based agent that runs during the reinforcement learning training as a 
background process and is synchronized with the learning agent. The rule-based agent’s generated actions 
are added to the training batch and used later for the loss computation. As the actions of our rule-based 

agents are cheap to compute, the impact on the total training time is negligible. 

3.6 Online Behavior Cloning Loss 

In IOBC a rule-based agent’s guiding policy 𝜋𝑅𝐵  produces state-action pairs (𝑠𝑡 , 𝑎𝑡) at each time step 
during the episode rollout, providing the learning agent with a set of demonstrations of the form 

(𝑠, 𝜋𝑅𝐵(𝑠)), where 𝜋𝑅𝐵(𝑠) is the action 𝑎𝑅𝐵 the guide policy takes in state 𝑠. The RL-agent’s goal is to 
learn a policy 𝜋𝑅𝐿 that imitates 𝜋𝑅𝐵. We transfer the guiding policy to the RL agent by incorporating a 

regularization term into the Asynchronous Proximal Policy Optimization (APPO) objective function 𝐽(𝜃) 
as follows: 

𝐽(𝜃) = 𝐽𝐴𝑃𝑃𝑂(𝜃) + 𝛽 ⋅ 𝐽𝐼𝑂𝐵𝐶(𝜃), 
 

where 𝐽𝐴𝑃𝑃𝑂(𝜃) represents the original objective function, 𝐽𝐼𝑂𝐵𝐶(𝜃) is the IOBC regularization term, and 
𝛽 the weighting parameter for the IOBC objective. The regularization objective, defined as a log-likelihood 

objective, can be expressed as follows: 
 

𝐽𝑂𝐵𝐶(𝜃) =  𝔼𝑠~𝜌𝜋,𝑎~𝜋𝜃
[log(𝜋𝑅𝐿(𝑎|𝑠))], 

 
where 𝜌 represents the distribution of states experienced by policy 𝜋𝑅𝐿. 

3.7 Online Behavior Cloning Coefficient 

Imitating the actions of a rule-based agents provides a good source of learning signal at the early stages of 
training. However, the limited capabilities of hand-crafted rule-based agents provide a good learning signal 
only during the early stages of a curriculum learning setup with increasingly complex and more difficult 
levels. In rare and challenging scenarios our guiding policies quickly reach their performance limits and 
reinforcement learning has to take over. For this reason, a transition period from rule-based guidance to 
pure reinforcement learning is implemented, continually reducing the influence of the rule-based guidance 

during training and eventually disappearing completely. This also mitigates the risk of overfitting to the 
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behavior of rule-based agents, limiting the exploration capabilities of the RL agent. We use a linear decay 
schedule over 𝑁 episode steps where we reduce the loss coefficient 𝛽 to zero over 𝑁 episode steps. 

3.8 Experimental Setup 

We train our agents following an incremental learning strategy where they are confronted with randomly 
generated ground combat scenarios at a battalion level. Higher levels come with more complex scenarios 
and are sampled more often during training. To reach the next level, agents must achieve a win rate of 70% 
of the current highest level. Initially we expose the agent to the first 3 out of 12 levels. In level 1 and 2, we 
use a rule-based agent to guide combat units to move to a predefined position on the map. Level 3 adds 
complexity by introducing enemy units. For this level we use a rule-based agent that performs a flanking 

attack to eliminate enemy units. This training procedure steers the RL agent’s actions during the early stages 
of training and interleaves levels without guidance as the agent progresses to higher levels. 

3.9 Experiments 

In our experiments we compare baseline RL agents without rule-based guidance to training runs that use 
IOBC. For the training we use RLLib’s (Liang et al. 2018) implementation of the APPO algorithm 
(Schulman et al. 2017) with custom extensions for masked autoregressive action generation (Figure 4) and 

interleaved online behavior cloning. Unless stated otherwise, we use 𝛽 = 2 with 40 M decay steps during 
which the coefficient is reduced to zero. 

 RESULTS 

4.1 Optimizing Loss Coefficient Dynamics in Online Behavior Cloning 

The loss coefficient 𝛽, controlling the strength of guidance during training, has a significant impact on the 
final performance of our agents. Figure 5 shows the agent’s performance index (aggregated win rates over 

all levels) for 𝛽 = 2 with 100 M (red) and 300 M (green) decay steps. Simple rule-based agents can only 
provide high-signal actions during the early stages of training. Guidance of rule-based agents with 
inadequate actions can interfere with exploration and inhibits the RL agent from learning. 

The following results show that the initial value of 𝛽 has a significant impact on the learning process of 
IOBC agents. We run two experiments with 𝛽 = 1 and 𝛽 = 4 and 20 M decay steps. Figure 6 shows that 
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Figure 5: Impact of guidance during training on the RL agent. Longer guidance can lead to worse results. 
Cumulative win rate as a function of environment steps shown for 𝛽 = 2 and 100 M (red) and 300 M 
(green) decay steps. 
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while high values boost the agent’s performance in the early stages of training (blue), lower values let the 
agent reach higher win rates later in training as they leave the agent more room for exploration (black). 
 

4.2 Single-Agent Battalion Commander Scenarios 

In all levels with expert guidance (1, 2, and 3) IOBC significantly outperforms pure RL training showing 
the strong effect of transferring domain specific knowledge with rule-based regularization on to the RL 

agent. Figure 7 shows that without guidance, the baseline RL-agent performs significantly worse during the 
early stages of training and is converging much later. 

 As the RL-agent is guided in the first 3 out of 12 levels, the rest of the evaluation focuses on the 
performance in the remaining levels. Win rates for levels without guidance by an expert policy, show that 
the agent learns good actions faster and that the IOBC agent reaches higher levels significantly earlier. 
Furthermore, we observe higher win rates of the IOBC agent in higher and more difficult levels. The overall 

performance on all levels shows a significant advantage of the integration of IOBC into the training process 
of autonomous agents. Especially during the early stages of training, results obtained with IOBC 
significantly outperform the baseline RL agent. 

Figure 6: While higher loss coefficients boost performance during the early stages of training (blue), lower 
values reach higher final win rates (black). 

Figure 7: RL-agents reaches near perfect win rates with IOBC (blue) and baseline without guidance (green) 
for levels 1, 2 and 3 (from left to right). The IOBC agent reaches high win rates in significantly fewer steps. 
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Training runs performed with IOBC clearly outperform the baseline RL agent without guidance (Figure 
8). Despite the only moderate win rate of only 45% of the rule-based flanking attacker, the provided 
guidance allows the RL agent to learn actions much faster (< 50% steps) compared to the pure RL baseline. 

Figure 9 shows the number of required environment steps to reach the respective level. Despite 
receiving help in only the first three levels, the IOBC agent receives higher levels earlier and performs 
significantly better compared to the RL agent. The highest level could be reached with IOBC in ~1/3 of 
steps. Figure 10 shows win rates for different levels with and without IOBC at the end of training. As to be 

expected, the win rates decrease for both agents in higher and thus more complex levels. Once again, it can 
be seen that agents trained with IOBC achieve higher win rates in all levels at the end of training. 

Figure 8: The IOBC agent (blue) outperforms the RL agent (green), reaches higher levels earlier, and 
achieves higher win rates. 
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Figure 9: Next level reached as a function of environment steps (in million). The IOBC agent reaches higher 
and more difficult levels earlier during training. 
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 DISCUSSION AND CONCLUSION 

We have shown, that by leveraging expert demonstrations alongside a traditional APPO learning algorithm 
in a subset of levels, enables agents to be trained more quickly. Our method enables agents to solve complex 
tasks significantly faster and achieve higher performance scores much earlier in the training process. Our 
method is simple to implement, can be integrated into any reinforcement learning algorithm, and shows 
strong results even for simple rule-based agents as guides. The strong initial learning signal makes IOBC 

particularly compelling for complex policies that involve memory components and autoregressive action 
generation. These policy elements can be challenging to train effectively when starting from a random 
policy and dealing with noisy gradients. To avoid poor generalization of the learning agent, the initial choice 
of the behavior cloning coefficient and reducing the influence of the rule-based guidance are key factors in 
training a successful agent that can effectively explore and adapt to novel situations. 
 An interesting direction of future work could be to leverage scenario-wise expert policies. With our 

method, the collective capabilities of the individual agents could then be distilled into a single agent, 
resulting in a more comprehensive and capable system. These domain experts could be pre-trained RL 
agents that were trained on a small subset of scenarios. Developing rule-based agents for complex 
environments can be highly challenging due to the difficulty in crafting comprehensive and effective rule 
sets. Future studies might address this by replacing rule-based agents with large language models (LLMs), 
which could allow distilling the rich knowledge representation of an LLM into a much smaller and more 

efficient policy for a reinforcement learning agent. 
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