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ABSTRACT

Empirical studies have shown that real-life queueing systems, such as contact centers, exhibit non-Markovian
and nonstationary behaviors. Consequently, analyzing their performance poses significant challenges. In
this paper, we propose a simulation-based autoregressive deep learning algorithm (SADLA) for predicting
service levels in non-Markovian, nonstationary queueing systems. Our method leverages modern recurrent
neural networks, which are trained on synthetic data to capture the intrinsic spatio-temporal characteristics of
queueing systems. Our findings demonstrate that SADLA achieves high prediction accuracy while reducing
computational complexity by six orders of magnitude compared to traditional simulation methods. The
implications of our research extend beyond accurate queue performance analysis; by embracing the learning
capabilities of neural networks, our approach contributes to the advancement of the overall performance
and resilience of real-life service systems.

1 INTRODUCTION

In general, queueing models can be broadly classified into two main categories: Markovian queues,
characterized by Poisson arrivals and exponential service times, and non-Markovian queues, which involve
nonexponential distributions. Recent empirical studies (Brown et al. 2005; Shi et al. 2014) have confirmed
the practical realism of non-Markovian models, despite their analytical complexity. Emerging research
emphasizes that it is important to incorporate these non-Markovian features in the analysis of such models
because they can have high impacts on both the steady states (Aras et al. 2018; Whitt 2006a) and transient
performance (Liu and Whitt 2012; Liu et al. 2016) of the queueing system. Moreover, real life services
systems are rarely stationary; they follow the natural daily cycles of human patterns (e.g. high demand
during daytime and conversely low demand during after-hours).

1.1 Challenges of Non-Markovian Nonstationary Queues

In non-Markovian nonstationary (NMNS) queues, one needs to capture both (i) stochastic variability,
arising from complex probabilistic structures, and (ii) time variability, stemming from nonstationary model
parameters like arrival rates. The former alone poses significant complexities and challenges, often
defying analytic solutions because, unlike their Markovian counterparts, the system states now cannot be
adequately represented by simple birth-and-death processes. For instance, to fully understand a multi-server
G/GI /n+ GI queue with nonexponential service and abandonment times, it is necessary to track not only
the total number of customers but also the elapsed waiting times of waiting customers and service times of
those being served (Whitt 2006b; Liu and Whitt 2014b). Furthermore, describing queueing performance
in nonstationary queues requires capturing transient dynamics over time, adding further complexity. After
all, the performance analysis goes beyond computing steady-state distributions which do not exist; the
transient performance, such as waiting time at a given time ¢, heavily depends on preceding values at s < t.
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To tackle the complexities of NMNS models, researchers commonly turn to approximation methods
rooted in large-scale limits. One prominent approach is the fluid limit, which serves as a first-order
approximation for these systems (Liu and Whitt 2012; Whitt 2006a; Liu and Whitt 2011; Liu and Whitt
2014a). The essence of a fluid model lies in capturing the temporal dynamics of the system while disregarding
its stochastic variability. These limits are established through the functional law of large numbers (FLLN),
necessitating a significant scaling up of the system’s demand and service capacity. In essence, a fluid
model conceptualizes all customers as infinitesimal units of fluid, allowing deterministic functions at the
system level to represent their collective behavior. The computation of fluid models for non-Markovian
queues often involves numerically solving systems of differential equations. However, fluid approximations
degrade when the system size is not too large, and its deterministic nature prohibits it from capturing
distributional information of the queueing system (e.g., the probability that the waiting is above a target).
Diffusion limits (Liu and Whitt 2014b; Liu 2018; Liu et al. 2022; He 2020) offer stochastic refinements
for the deterministic fluid models but are challenging to develop and implement, particularly for queueing
systems with nonexponential service times (Aras et al. 2018; Liu et al. 2016).

Computer simulation methods have been widely used in practice for modeling NMNS queueing systems
(Ma and Whitt 2016). However, they also come with certain disadvantages. First, simulating non-Markovian
queueing systems requires detailed discrete-event simulations to track all event clocks (convenient methods
for Markovian models such as uniformization do not apply), so it can be computationally intensive and
requires significant computational resources and time, particularly for systems with large numbers of
customers or complex interactions (e.g. multi-skill transfers and priority queues). Second, like any
modeling approach, simulation methods rely on assumptions about system parameters, input distributions,
and operational characteristics. Errors in these settings can introduce bias or inaccuracies into the simulation
results. Last, exploring the effects of different system parameters or configurations may be more challenging
with simulation methods because conducting sensitivity analyses or exploring a wide range of scenarios
can be time-consuming and may require extensive computational resources.

In this paper, we contribute to the performance analysis of NMNS queueing systems having non-
Markovian probability structure, nonstationary arrival process, and time-varying staffing level. We propose
a simulation-based autoregressive deep learning algorithm (SADLA) for predicting desired transient system
dynamics as a function of time (e.g., the mean queue length E[Q(¢)] and the probability the waiting time
violates a target P(W(r) > 7)). Our ideas are inspired by the recent successes of deep learning in in spaces
where no precise analytic methods exist today, such as natural language processing (Gregor et al. 2015;
Graves and Jaitly 2014). Specifically, we draw inspirations from the idea of recurrent neural networks
(RNNS5s) and their applications in sequentially dependent information. Starting from the most recent observed
system state, the use of RNNs allows SADLA to autoregressively predict any length of future horizons
where the input system parameters can be estimated. This, combined with its low computational complexity,
SADLA is ideal for near real-time application in practical NMNS queueing systems.

1.2 A Motivating Example

We first give a quick illustration of the performance of SADLA. We consider a multi-server M, /Hy /n; + E»
model, having a nonhomogeneous Poisson arrival process with non-stationary arrival rate A (¢) (top panels
of Figure 1), non-stationary number of servers n(t) (second panels of Figure 1), service times following a
hyperexponential (H,) distribution with mean 1/u = 1, and abandonment times following an Erlang-2 (E;)
distribution with mean 1/6 = 1. Specifically, the probability density functions (PDFs) for the abandonment
and service times are:

falx) = 40%xe20% and g(x) = pure ™M + (1 — p) e ™,

where p =0.5(1 —/0.6), u; =2p, and pp =2(1 —p).
In Figure 1 we graph the transient trajectories of common performance metrics including: the mean
queue length, mean number of busy servers, mean waiting time, and tail probability of delay (TPoD),
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Figure 1: Performance comparison in an M;/H,/n, + E; example: (i) SADLA (intermittent lines), (ii)
ground truth (solid lines), and (iii) fluid model (dotted lines), in high-scale (left panels) and low-scale (right
panels) settings. Fluid model is unable to compute the tail probability of delay (bottom plots).

i.e., the probability the waiting time violates a designated target 7 > 0: P(W(¢) > 7) (with 7 =1 here).
We consider two different system scales: a high-scale case with higher arrival rate and staffing level (left
panels), and a low-scale case with lower arrival and staffing level (right panels). We compare our method’s
predictions (intermittent lines) to the fluid approximation, and the crude Monte-Carlo (MC) simulations
(hereby referred to as the “ground truth”). We note the limitation of the fluid model to accurately capture the
performance of the low-scale system, and to compute performance metrics beyond their “averaged-value”
such as the TPoD, a widely used service-level function in today’s service systems (Liu et al. 2022); see
right-hand panel and bottom plots in Figure 1 respectively. We conduct additional numerical experiments
in Section 3 to further evaluate the performance of SADLA. Also, we provide in-depth discussions on
additional advantages of our method beyond its accuracy in Section 4.

1.3 Summary of Contributions

We summarize the main contributions of this paper:
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i)  SADLA is able to autoregressively predict non-Markovian nonstationary systems’ transient per-
formance functions (e.g., waiting time and queue length) in a step-wise lookahead manner, taking
advantage of the intrinsic characteristics of the system spatio-temporal dynamics. This step-wise
lookahead property of our method enables applications of real-time memoryless predictions: while
the queueing system at hand can be non-Markovian that requires detailed past information, our
method depends only on the most recent snapshot state of the system’s state. The snapshot state
representation and the autoregressive feature of our method can stimulate future research beyond
the scope of performance analysis, such as real-time optimization for the staffing function.

ii)  We confirm the effectiveness of our method by conducting comprehensive numerical experiments
with non-Markovian systems with time-varying arrivals and staffing. Besides the mean waiting
time, SADLA is able to compute other service-level metrics predominantly considered in service
systems, such as the number of busy servers, mean queue length, and TPoD. Our results show that
SADLA yields high-fidelity solutions that outperform the heavy-traffic fluid approximations, while
it is six orders of magnitude computationally more efficient than Monte-Carlo simulations.

1.4 Related Literature

This research is related to three bodies of literature.

NMNS queues. Non-Markovian queueing systems pose greater challenges compared to Markovian
counterparts. Mandelbaum et al. (1998) laid the groundwork for transient performance analysis in
Markovian queueing networks, yet analyzing non-Markovian models remains notably complex. Whitt
(2006b) introduced a groundbreaking fluid G/G/n+ G model to address queues with nonexponential
service and abandonment times, pioneering a new research direction. This model’s scope has expanded in
subsequent works: Liu and Whitt (2012) incorporated time-varying arrivals and staffing levels, Aras et al.
(2017) extended it to infinite-server queues, and Liu and Whitt (2011), Liu and Whitt (2014a) explored
network structures and queues with transitory arrivals. Refinements to these fluid models have been pursued
through stochastic FCLT limits, including time-varying OU processes (Liu and Whitt 2014b), patience-time
scaled diffusion approximation (He 2020), and Gaussian approximations for stationary overloaded queues
(Liu et al. 2016; Aras et al. 2018). In contrast to existing literature relying on heavy-traffic limits for
non-Markovian models, this paper introduces a novel data-driven deep learning approach.

Integrating machine learning into queueing theory.  Machine learning techniques are increasingly
applied to model and analyze queueing systems, though the literature in this area is still relatively small.
Recent studies have explored the use of online learning and reinforcement learning methodologies to support
real-time decision-making in queueing systems. These include pricing strategies (Jia et al. 2024), capacity
sizing (Chen et al. 2023; Chen et al. 2024), and control policies like routing (Liu et al. 2019; Shah
et al. 2020) and scheduling (Dai and Gluzman 2021; Krishnasamy et al. 2021). This paper aligns more
closely with recent research employing neural networks to study queueing systems. Baron et al. (2022)
utilized quasi-birth-death queues to train a neural network to estimate steady-state probabilities in the M/G/1
queue. Ata et al. (2024) applied neural networks to solve Hamilton-Jacobian-Bell equations in queueing
control problems. Rusek et al. (2020) used neural networks to investigate deterministic telecommunication
queueing networks. Differentiating from prior work, this paper introduces a deep learning approach for
NMNS queues. The goal is to characterize transient performance in a step-wise lookahead manner, drawing
inspiration from RNNs.

Recurrent neural networks. The focus of research on RNNs revolves around their capability to
model sequential data by retaining hidden states that effectively capture temporal dependencies. Recent
advancements in this field explore sophisticated architectures such as Long Short-Term Memory (LSTM)
networks and Gated Recurrent Units (GRUs). These architectures aim to address the vanishing gradient
problem, where the impact of past observations diminishes with each recurrence. By doing so, they enhance
the network’s ability to learn long-term dependencies. The versatility of RNNs is evident across various
domains, including natural language processing, time series prediction, and generative tasks. They excel
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in encapsulating intricate sequential patterns (Karpathy et al. 2015; Chung et al. 2015). More recently,
transformer architectures (Vaswani et al. 2017) have emerged as a modern and robust alternative. Unlike
RNNs, transformers do not require maintaining a hidden state, enabling higher training parallelism and the
ability to learn complex spatial relationships beyond temporal order. Distinguishing itself from previous
literature, this paper introduces an RNN applied to transient queueing performance analysis. Notably, it
utilizes only snapshot state information of the system, differing from the sequential processing characteristic
of traditional RNNs.

2 METHODOLOGY

We consider the G,/GI/n, + GI NMNS queueing model having a NMNS arrival process (the G;) with
rate A(z), time-varying staffing level (i.e., number of servers) n(t) (the n,), independent and identically
distributed (1.1.D.) service times following a general distribution G (the first GI), and customer abandonment
according to I.I.D. random variables following a general distribution F (the +GI). Our goal is to characterize
the transient dynamics by computing the time-indexed trajectory of queueing performance metric, denoted
by Sy, for ¢ € [0,T]. Examples of S, include the mean waiting time, mean queue length, and TPoD.

The transient analysis is complex and challenging because the dynamics at time ¢ is determined by
several factors such as the previous system state (because existing customers will carry over at future times)
and present model inputs such as arrival rate and staffing level. Our proposed deep learning method, called
SADLA, can recursively predict the next-step state S; in a discrete time setting using (i) present state .S;,
and (i) next-step model input ;1 (e.g., A(t + 1) and n(z)). Specifically, the heart of SADLA is in form of

Sit1=F(Si,B,41), t=0,1,2,..., (1)

where the function .% is trained using deep learning models, which will be introduced later. Comparing to
conventional queueing theory methodologies where one needs to carefully transform arrival rate and staffing
level to designated queueing performance, SADLA leans to give solutions via an end-to-end approach
because it directly focus on the desired system metrics. As illustrated in Figure 2, SADLA follows three
steps: (i) identifying proper bases of nonstationary model parameters within the parameter space, (ii) using
these parameter bases to generate sufficient system trajectories via computer simulations, and (iii) using
the simulation results as training data to construct our neural network prediction model. We next elaborate
on these steps in details.

- Offline training T1r Online inference =
) 4 N\ .
Simulate . Time ¢
Sample e Train Neural
problem space Networks
system System state
J | J
st—l
Arrival Wait time

sl \a

Queue size Abandonment
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Figure 2: The pipeline of our method.

Let Z be the space of all nonstationary parameters. We assume & is finite and large enough to
contain all possible values of these parameters. For the example of the arrival rate and number of servers,
PB = [A,A] X [n,7] for some A,n >0, and A,7 < . Using the & basis, we are able to generate temporal
trajectories of these parameters for computer simulation. We use a time series composition using additive
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Gaussian processes (Bilancia et al. 2021), giving us a training data sampling method which we use
to generate our simulated training data. The motivation for this trajectory data generation approach is
that historical data of actual queueing systems can be used to extract the Gaussian process parameters’
distributions, leading to synthetic data that resemble the actual system.

Next, we use the generated system parameter trajectories in Monte-Carlo simulation for generating
the training data. For each simulation scenario, we begin with an empty system and obtain the simulated
results of desired performance metrics (e.g., mean waiting time) over a set of N independent simulation
paths. We operate in a finite time interval [0,T] (e.g., T = 17 in Figure 1), and discretize time with step
size At. The total number of simulated trajectories depends on the complexity and dimensionality of the
system (e.g. total number of parameters of %). In section 3 we provide quantitative studies on the total
number of training data reauired for successfullv fitting a two-parameter aueueing svstem. A(z) and n(t).

Time t Time t+1

System state
St+1

System state
Se—1

System state
St

Output Output

System parameters f3, System parameters 8,1

Figure 3: The feedforward topology of time-indexed RNNs.

The heart of our deep learning method builds on an autoregressive prediction procedure .% (see equation
(1)), where the prediction at ¢ + 1 draws from that at ¢. This sequential temporal dependency of the training
information motivates us to leverage the recurrent neural network (RNN) architecture that will be trained to
autoregressively predict the desired future performance metrics. To train our neural networks, we use the
simulated trajectories from the above step, extracting as input features the system parameters f3,, | at time
t+1 and the system state S; at time ¢, and the system state S,;; as the predicted (output) labels. Figure 3
provides a schematic illustration of our recursive method, formed as an unrolled (unfolded) computational
graph into a full network.

To accurately learn how a complex queueing system behaves, it is important to find the proper way
to represent its state S;. On the one hand, this representation should give us sufficient information to
describe the system’s dynamics. For example, in NMNS models, we usually need to keep track additional
information beyond the queue length, such as customers’ ages in queue and in service (see (Whitt 2006a)).
On the other hand, the increased dimensionality of the state representation will lead to higher model scales
and efforts for training our neural networks. RNNs have the capability to encode and store an internal state
representation, given a sufficiently long past context window something that allows them to reconstruct
this internal representation.

We experiment with different permutations of performance metrics as model features to find the most
expressive combination that can most effectively represents the system’s internal state. In our experiments,
the most parsimonious system representation is S, = (E[W (¢)],E[Q(¢)], E[B(¢)]), which tracks the mean
number of waiting customers, mean waiting time and server occupancy (i.e., fraction of busy servers) at
t. Such a state representation captures information from both sides of the queue: When the system is
overloaded (underloaded), (E[W (¢)],E[Q(¢)]) (E[W (¢)], E[B(t)])) is the predominant feature that describes
the system’s congestion level. While a one-sided descriptor might suffice in a large-scale model - where a
positive waiting time implies occupancy close to 100% and a positive fraction of idle servers indicates O
waiting time, small-scale systems require both descriptors to jointly determine waiting time. As depicted
in the right-hand panel of Figure 1, the occupancy is not close to 100% even when the waiting time is
strictly positive.
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We construct two neural networks for the learning of two types of performance metrics in a queueing
system: (i) queue-related features such as the numbers of waiting customers and busy servers; and (ii)
wait-time related state. Let S; = (S,Q,S}}V), where StQ and S)” represent queue related and wait-time related
metrics. For example, if S, = (E[Q(¢)], E[B(t)],E[W (t)],P(W () > 7)), then S = (E[Q()],E[B()]) and
SV = (E[W(t)],P(W(t) > t)). Such a separation follows the distinct nature of these two types: The
former are discrete counts that represent the population-level information of the system, while the latter
are continuous quantities that characterize the individual customer-level experience. Nevertheless, queue
contents and waiting times are often related via Little’s law; see Kim and Whitt (2013). Below we specify
the updating procedure for the two state representations:

SzQ+1 :SIQ"‘}\Q(SnﬁzH),

Sty =Y, SV B),  t=0,12,..., )
where .Z€ and .ZW denote the two neural networks.
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Figure 4: The architecture of the neural networks.

In Figure 4, we give an illustration for our two tandem neural networks’ architecture as defined in
(2), alongside with their corresponding inputs and outputs. We provide a high-level overview of the
designed neural network architecture that consists of alternating linear layers with bias, Tanh and Softplus

non-linearities. The .7 ¢ network is designed to predict the ASgrl difference over the previous state, which

is finally added to the S,Q. In that sense, the .# < network is trained to predict a discretized ordinary first
derivative of S, conditional to the network’s inputs. This is a manifestation that the S state tends to
evolve towards its long-term equilibrium steady state, and generally in a smooth way. For example, if B is

kept stationary for a long time, the system will gradually evolve its S towards the equilibrium state Sg.

ZW on the other hand is trained to map its inputs S, B ;41 and StQJr | (the output of .7 9) to the updated
SYYH state. This network represents a learned Little’s Law function. This mapping design is justified by

the fact that the differences between StQ+l and S,VYH pairs are expected to be small. In other words, we do
not expect to have two very different waiting time samples when all other system state is equal. These
differences predominately exist in fast evolving 8, |, such as sudden additions of another server that will

cause a sudden drop of the waiting time.
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3 NUMERICAL EXPERIMENTS

In this section we conduct a comprehensive set of numerical studies to evaluate the performance of
SADLA. In Section 3.1, we describe the detailed settings of our numerical experiments and in Section 3.2
we describe how we train our neural networks. In Section 3.3, we apply our method to compute commonly
used service-level metrics of an M;/GI/n, + GI base example where we treat the fluid approximation as
a performance benchmark. In Section 3.4 we treat a more challenging case where the system alternates
between underloading and overloading.

3.1 Experiment Setting

Our model’s training data are generated via computer simulations. We evaluate our method in demand and
supply patterns of an G,/GI/n, + GI system that resemble real-life service centers such as contact center
queues. Our demand patterns are motivated by realistic settings having two peaks during a day (e.g., the
call center arrivals of an Israeli call center (Brown et al. 2005)). Specifically, the time-varying arrival rate
in our base example (as presented in Section 1) is constructed using a basis function B; defined below:

B = —S B where A=Y M) and H(0) = ——exp(—LEZHT) )
k max Fi(r) ‘ T RN ANGT: 2 o )
te

The parametric equation (3) is an additive composition of k parametric Gaussian processes, rescaled so
that B () < C. In our experiments, we assume prior knowledge of the bounds of the arrival rate A (¢) < 100
and the number of servers n(¢) < 100. In addition, we assume that both demand and supply trajectories can
decompose to k = 10 Gaussian bases. Under the above assumption, we generate random trajectories of A (r)
and staffing level n(t), where the parametric Gaussian components parameters ¢, it and ¢ are drawn from
predefined distributions. Specifically, for each Gaussian component i we draw ¢; ~ U(0.4,3) x U(10,100)
and o; ~ U(0.4,3), where U(a,b) denotes a uniform distribution over the interval (a,b). For composing
the A () trajectories we use ; ~ U(4,14) and for n(r) we use w; ~ U(2,16).

We then treat these trajectories as our data generation simulation scenarios. For each simulation scenario,
we begin with an initially empty queueing system and obtain the Monte-Carlo estimated trajectories of the
selected service-level statistics through Ny = 5,000 independent simulation paths. We operate in a finite
time interval [0,T] (e.g., T = 17 in Figure 1), and discretize time with step size At = 0.05 time units.

3.2 Training Hyperparameters

We train the two networks of Figure 4 separately using simulation data. Separating the training process for
the two tandem neural networks helps improve the model’s overall explainability; this allows us to easily
examine and measure their fitness, accuracy and limitations, and to fine-tune their hyperparameters for
improved overall performance. The total number of simulation scenarios used in training and validation is
4000, split into a 80-20 ratio, producing 10° training samples. For training the .#" network we tune its
hyperparameters to 10000 batch size, 5000 neurons width, 107 learning rate and 50 epochs. For the .7 ¢
network we use smaller width of 2000 and 5 x 10~ learning rate.

This hyperparameter tuning can seem peculiar when compared with other popular deep learning
applications such as computer vision. This specific tuning is due to the following two main factors: on
the one hand, the training dataset comes from Monte-Carlo simulations that are inherently noisy due to
the involved stochasticity. This noise level could be mitigated by significantly increasing the number of
simulated paths, something that reduces the data variance. Nevertheless, this comes with a significant
increase of the computational cost. On the other hand, the size of involved training data are relatively small
compared to other popular deep learning applications such as computer vision, something that would lead
to fast overfitting of our networks, since each epoch would contain a very small number of total gradient
calculations on noisy data. Our proposed hyperparameter tuning (very large batch sizes with very small
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learning rates in combination with smooth non-linearities) allows our networks to mitigate both the inherent
noise in the data and overfitting on the relatively small training dataset, while producing smooth outputs.

3.3 Effectiveness and Efficiency

Supplementing Figure 1, we next give quantitative measurements for our base example. In Table 1, we
calculate the scaled time-averaged mean absolute error (STAMAE), defined as

YL Ve
TZ;:]}’t

for a service-level predictor §, (with y, its ground truth value) over the entire predictive horizon of 7. We
do so under two scenarios: high scale and low scale. Except for the TPoD which is beyond the capability
of the fluid approximation, SADLA is able to outperform the fluid method by achieving a lower STAMAE,
especially under the low scale example. It is evident that the solution accuracy degrades when the system
scale is small, while SADLA is much more robust to the system scale; SADLA is a scale free method.

Table 1: Scaled time-averaged mean absolute error comparison between our method and fluid model.

High scale Low scale
SADLA Fluid SADLA Fluid
Queue length 0.008 0.035 0.025 0.304

No. busy servers 0.002 0.031 0.028  0.520
Mean waiting time ~ 0.025  0.043  0.057  0.203
Tail prob. of delay 0.049 NA 0.078 NA

Next, we evaluate its computational cost. We benchmark SADLA’s running time with that of the crude
Monte-Carlo simulations. To avoid unfairness due to the parallelism difference between CPUs and GPUs,
in this comparison we evaluate SADLA on a CPU with the same specifications with the ones used for
simulation. SADLA’s average inference runtime is 0.35 seconds on a single CPU versus 900 seconds on a
high performance computing system with 72 CPUs for simulation, six orders of magnitude computationally
faster. For completeness, SADLA’s offline training runtime for the experiments presented in this paper is
approximately 15 minutes, while generating the simulated training data takes approximately 2 days.

3.4 Alternating Between Underloading and Overloading

Fluid models intend to characterize the system dyanmics in separate underloaded and overloaded intervals,
so its solution accuracy often degrade as the system is transitioning between the two states (Liu and Whitt
2012). We next test SADLA’s performance in such settings. We consider our base example with a sinusoidal
arrival rate A(¢) =4sin(mt(12—1/T)) + 10sin(wz/T) and staffing function n(t) = [4+4sin(zz/T)], with
T =17. In Figure 5 we plot the SADLA performance curves and again benchmark with their corresponding
fluid approximations.

Because fluid approximations are deterministic functions, they ideally assume that either positive waiting
times and all servers are busy, or zero waiting time and some servers are idle. As illustrated in Figure
5, fluid approximations significantly underestimate the waiting time and overestimate the number of busy
servers. In contrast, SADLA provides much more accurate predictions for all performance metrics.

4 CONCLUDING REMARKS

Motivated by the need for tools to analyze the practical NMNS queueing systems, we develop a new deep
learning method, called SADLA which can be used to compute the time-indexed transient trajectories of
common service-level metrics such as the mean queue length, mean waiting time, and TPoD. Inspired by
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Figure 5: Performance comparison in an underloading and overloading alternating example: (i) SADLA
(intermittent lines), (ii) ground truth (solid lines), and (iii) fluid model (dotted lines).

the ideas of recurrent neural networks, SADLA “predicts” the desired system state using the model input
at the present step and predicted state at the previous time step. Our results confirm the effectiveness of
SADLA and demonstrate that its advantages over the fluid approximations, the state-of-the-art analysis
tool for NMNS models, especially in smaller scale systems. In addition, SADLA can be used to compute
performance metrics that draw from distributional information beyond their means, such as the TPoD
P(W(t) > 7), the probability the waiting time exceeds a desired delay target T > 0, which is beyond the
capability of the fluid approximations.

Limitations and future directions.  First, SADLA aims to learn the transient performance for
theoretic queueing models using their precise model information such as the arrival rate and service
distributions; it is a simulation-based method which relies on a simulator of the theoretic model to generate
the required training data. An interesting next step is to generalize our deep learning framework for real-
world queueing models which can be trained and tuned by real data (e.g., via trace simulation) insteaded of
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synthetic data. Second, as an initial attempt of integrating deep learning into queueing theory, the present
version of SADLA emphasizes only treats the single-class non-Markovian nonstationary model. We plan to
extend our methodology to more practical queues having multiple customer classes and network structures.
This generalization requires carefully identifying the state representations. For example, in order to predict
the performance at ¢ of some station i in a feedforward network, besides its state information at t — 1, we
may also need the state information of station i — 1 (i.e., its upstream station). We are particularly interested
in using more modern deep learning architectures such as attention transformers for learning the dynamics
of more complex queueing systems. Next, the snapshot feature of SADLA’s state representation enables
it for real-time applications, where SADLA’s nearly instantaneous performance prediction can serve as
building blocks for solving optimal staffing problems subject to designated service-level constraints. For
example, if the predicted TPoD will violate some target, the practitioner can quickly adjust the staffing
function in order to meet the desired target. Finally, another interesting future direction is to integrate other
advanced deep learning techniques into SADLA for exploring generalization capabilities, such as transfer
learning for fine tuning a pre-trained foundational model to specific queue characteristics.

REFERENCES

Aras, A. K., X. Chen, and Y. Liu. 2018. “Many-Server Gaussian Limits for Non-Markovian Queues with Customer Abandonment”.
Queueing Systems 89(1):81-125.

Aras, A. K., Y. Liu, and W. Whitt. 2017. “Heavy-Traffic Limit for Initial Content Process”. Stochastic Systems 7(1):95-142.

Ata, B., J. M. Harrison, and N. Si. 2024. “Drift control of high-dimensional RBM: A computational method based on neural
networks”. arXiv preprint arXiv:2309.11651.

Baron, O., D. Krass, E. Sherzer, and A. Senderovich. 2022. “Can Machines Solve General Queueing Problems?”. In 2022
Winter Simulation Conference (WSC), 2830-2841 https://doi.org/10.1109/WSC57314.2022.10015451.

Bilancia, M., F. Manca, and G. Sansaro. 2021. A Time Series Decomposition Algorithm Based on Gaussian Processes, 577-592.
Springer International Publishing.

Brown, L., N. Gans, A. Mandelbaum, A. Sakov, H. Shen, S. Zeltyn et al. 2005. “Statistical analysis of a telephone call center:
A queueing science perspective”. J. Amer. Statist. Assoc. 100:36-50.

Chen, X., Y. Liu, and G. Hong. 2023. “An Online Learning Approach to Dynamic Pricing and Capacity Sizing in Service
Systems”. Oper. Res.. forthcoming.

Chen, X., Y. Liu, and G. Hong. 2024. “Online learning and optimization for queues with unknown demand curve and service
distribution”. arXiv preprint arXiv:2303.03399.

Chung, J., C. Gulcehre, K. Cho, and Y. Bengio. 2015. “Gated feedback recurrent neural networks”. In Proceedings of the 32nd
International Conference on International Conference on Machine Learning, Volume 37, 2067-2075.

Dai, J. G. and M. Gluzman. 2021. “Queueing network controls via deep reinforcement learning”. Stochastic Systems 12(1):30-67.

Graves, A. and N. Jaitly. 2014. “Towards End-To-End Speech Recognition with Recurrent Neural Networks”. In Proceedings
of the 31st International Conference on Machine Learning, edited by E. P. Xing and T. Jebara, Volume 32 of Proceedings
of Machine Learning Research, 1764-1772: PMLR.

Gregor, K., I. Danihelka, A. Graves, D. Rezende and D. Wierstra. 2015. “DRAW: A Recurrent Neural Network For Image
Generation”. In Proceedings of the 32nd International Conference on Machine Learning, edited by F. Bach and D. Blei,
Volume 37 of Proceedings of Machine Learning Research, 1462-1471: PMLR.

He, S. 2020. “Diffusion Approximation for Efficiency-Driven Queues When Customers Are Patient”. Operations Re-
search 68(4):1265-1284.

Jia, H., C. Shi, and S. Shen. 2024. “Online Learning and pricing for Service Systems with Reusable Resources”. Oper:
Res. 72(3):1203-1241.

Karpathy, A., J. Johnson, and L. Fei-Fei. 2015. “Visualizing and understanding recurrent networks”. arXiv preprint
arXiv:1506.02078.

Kim, S.-H. and W. Whitt. 2013. “Estimating waiting times with the time-varying little’s law”. Probability in the Engineering
and Informational Sciences 27(4):471-506.

Krishnasamy, S., R. Sen, R. Johari, and S. Shakkottai. 2021. “Learning unknown service rates in queues: A multiarmed bandit
approach”. Operations Research 69(1):315-330.

Liu, B., Q. Xie, and E. Modiano. 2019. “Reinforcement Learning for Optimal Control of Queueing Systems”. In 57th Annual
Allerton Conference on Communication, Control, and Computing (Allerton), 663-670.

Liu, Y. 2018. “Staffing to Stabilize the Tail Probability of Delay in Service Systems with Time-Varying Demand”. Operations
Research 66:514-534.

2665


https://doi.org/10.1109/WSC57314.2022.10015451

Garyfallos, Liu, Barlet-Ros, and Cabellos-Aparicio

Liu, Y., X. Sun, and K. Hovey. 2022. “Scheduling to Differentiate Service in a Multiclass Service System”. Operations
Research 70(1):527-544.

Liu, Y. and W. Whitt. 2011. “A Network of Time-Varying Many-Server Fluid Queues with Customer Abandonment”. Operations
Research 59(4):835-846.

Liu, Y. and W. Whitt. 2012. “The G;/GI/s; + GI many-server fluid queue”. Queueing Systems 71(4):405-444.

Liu, Y. and W. Whitt. 2014a. “Algorithms for Time-Varying Networks of Many-Server Fluid Queues”. INFORMS J. on
Computing 26(1):59-73.

Liu, Y. and W. Whitt. 2014b. “Many-server heavy-traffic limits for queues with time-varying parameters”. Annals of Applied
Probability 24:378-421.

Liu, Y., W. Whitt, and Y. Yu. 2016. “Approximations for Heavily-Loaded G/GI /n+ GI Queues”. Naval Research Logistics 63:187—
217.

Ma, N. and W. Whitt. 2016. “Efficient simulation of non-Poisson non-stationary point processes to study queueing approximations”.
Statistics & Probability Letters 109:202-207.

Mandelbaum, A., W. A. Massey, and M. 1. Reiman. 1998. “Strong approximations for Markovian service networks”. Queueing
Systems 30(1/2):149-201.

Rusek, K., J. Suarez-Varela, P. Almasan, P. Barlet-Ros and A. Cabellos-Aparicio. 2020. “RouteNet: Leveraging Graph Neural
Networks for Network Modeling and Optimization in SDN”. IEEE Journal on Selected Areas in Communications 38(10):2260-
2270.

Shah, D., Q. Xie, and Z. Xu. 2020. “Stable Reinforcement Learning with Unbounded State Space”. In Proceedings of the
2nd Conference on Learning for Dynamics and Control, edited by A. M. Bayen, A. Jadbabaie, G. Pappas, P. A. Parrilo,
B. Recht, C. Tomlin, and M. Zeilinger, Volume 120 of Proceedings of Machine Learning Research, 581-581: PMLR.

Shi, P., M. Chou, J. G. Dai, D. Ding and J. Sim. 2014. “Models and insights for hospital inpatient operations: Time-dependent
ED boarding time”. Management Sci. 62(1):1-28.

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, et al. 2017. “Attention is All you Need”. In
Advances in Neural Information Processing Systems, edited by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Volume 30: Curran Associates, Inc.

Whitt, W. 2006a. “Fluid Models for Multiserver Queues with Abandonments”. Operations Research 54(1):37-54.

Whitt, W. 2006b. “A multi-class fluid model for a contact center with skill-based routing”. Aeu-international Journal of
Electronics and Communications 60:95-102.

AUTHOR BIOGRAPHIES

SPYROS GARYFALLOS received his Electrical Engineering and Computer Science diploma in 2004 (B.Sc. and M.Sc.) and
MBA in 2007 from National Technological University of Athens (NTUA), and his M.Sc in Data Science from UC Berkeley,
California in 2020. He is a Ph.D. candidate at the Computer Architecture Department of Universitat Politecnica de Catalunya in
the space of modeling time varying queueing systems using deep learning. His email address is spiros.garifallos @ gmail.com.

YUNAN LIU is an associate professor in the Department of Industrial and Systems Engineering at North Carolina State
University. He earned his PhD in Operations Research from Columbia University. His research interests include queueing
theory, stochastic modeling, simulation, applied probability, online learning, and optimal control, with applications to call
centers, healthcare, and transportation. His work was awarded first place in the INFORMS Junior Faculty Interest Group Paper
Competition in 2016. His email address is yliu48 @ncsu.edu. His website is https://yunanliu.wordpress.ncsu.edu/.

PERE BARLET-ROS (PhD 2008) is a Professor with the Computer Architecture Department of the UPC and Scientific Director
at the Barcelona Neural Networking Center (BNN-UPC). For the last 10 years, his research has focused on the development
of novel machine learning technologies for network management and optimization, traffic classification and network security,
which have been integrated in several open-source and commercial products. His email address is pere.barlet@upc.edu.

ALBERTO CABELLOS-APARICIO is a professor at the Computer Architecture Department, Universitat Politecnica de
Catalunya. He is the co-founder of the Barcelona Neural Networking and the NaNoNetworking Center in Catalunya. He
has been a visiting researcher at Cisco Systems and Agilent Technologies and a visiting professor at the Royal Institute of
Technology, the Massachusetts Institute of Technology and UC Berkeley. He has participated in several national (Cicyt), EU
(H2020), USA (NSF) and industrial projects. His email address is alberto.cabellos@upc.edu.

2666


mailto://spiros.garifallos@gmail.com
mailto://yliu48@ncsu.edu
https://yunanliu.wordpress.ncsu.edu/
mailto://pere.barlet@upc.edu
mailto://alberto.cabellos@upc.edu

	INTRODUCTION
	Challenges of Non-Markovian Nonstationary Queues
	A Motivating Example
	Summary of Contributions
	Related Literature

	Methodology
	Numerical Experiments
	Experiment Setting
	Training Hyperparameters
	Effectiveness and Efficiency
	Alternating Between Underloading and Overloading

	Concluding Remarks

