
Proceedings of the 2024 Winter Simulation Conference
H. Lam, E. Azar, D. Batur, S. Gao, W. Xie, S. R. Hunter, and M. D. Rossetti, eds.

SIMULATION OPTIMIZATION WITH NON-STATIONARY STREAMING INPUT DATA

Songhao Wang1, Haowei Wang2, Jianglin Xia1, and Xiuqin Xu3

1College of Business, Southern University of Science and Technology, Shenzhen, Guangdong, CHINA
2Rice-Rick Digitalization PTE. Ltd., SINGAPORE

3McKinsey & Company, SINGAPORE

ABSTRACT

Simulation optimization has become an emerging tool to design and analysis of real-world systems.
In stochastic simulation, input distribution is a main driving force to account for system randomness.
Most existing works on input modeling focus on stationary input distributions. In reality, however, input
distributions could experience sudden disruptive changes due to external factors. In this work, we consider
input modeling through non-stationary streaming input data, where the input data arrive sequentially across
different decision stages. Both the parameters of the input distributions and the disruptive change points are
unknown. We use a Markov Switching Model to estimate the non-stationary input distributions, and design
a metamodel-based approach to solve the following optimization problem. The proposed metamodel and
optimization algorithm can utilize the simulation results from all the past stages. A numerical study on an
inventory system shows that our algorithm can solve the problem more efficiently compared to common
approaches.

1 INTRODUCTION

The stochastic simulation model is a powerful tool for the analysis of complex systems, and simulation
optimization refers to the procedures to find the best system designs through simulation models. Running
a simulation model typically requires an input distribution as a driving force to account for the randomness
in the system inputs. For instance, in an inventory model, the decision-makers search for the optimal
policy to maximize the profits. Here, the distributions for the customer demands and the lead times are
relevant input distributions. The simulation model generates sample demands and lead times to mimic the
operations of the inventory systems.

However, the underlying true input distributions are difficult to know in reality. In practice, they can be
estimated from a set of real-world input data (the random realizations of the unknown input distributions).
Most of the works in simulation input modeling assume that only a fixed set of input data is provided
before the decision-making process. Recently, there has been a growing interest in simulation problems
with streaming input data, where additional input data become available during different decision-making
stages (Liu et al. 2024; Wu et al. 2024; Song and Shanbhag 2019). In this setting, it would be ideal if
the input distribution, as well as the simulation model, could be adapted to the new data. Such streaming
input data can help facilitate the construction of more accurate and up-to-date simulation models (Wu et al.
2024). The online simulation optimization with streaming data is applicable when acquiring new data is
efficient. For example, in an inventory problem, daily demand and lead time data can be easily collected
during the sales season.

The common assumption on the streaming input data is that the input data are independent and
identically distributed (i.i.d.). It can be expected that with additional data, the input modeling estimation
will be gradually improved. In this context, Liu et al. (2024) and Wu et al. (2024) adopt Bayesian
framework to update the input model parameters while Song and Shanbhag (2019) estimate the parameters
through maximum likelihood estimator (MLE). Wu et al. (2024) additionally consider a setting when the
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input distributions are endogenous (decision-dependent). Hence, the upcoming input data depend on the
current decision and are no longer identically distributed.

In this work, we focus on a different scenario in which the streaming input data are non-stationary,
i.e., the input distribution can change at certain time points due to external factors. Non-stationary input
models arise when the systems experience exogenous disruptive events. For example, the natural disasters
(Sydnor et al. 2017; Carvalho et al. 2021) and Covid-19 pandemic (Ivanov and Dolgui 2021) could
bring disruptive changes, such as the change of distribution of customer demands, to the supply chain
systems. As systems become increasingly complex, such as in the case of extensive international supply
chains with numerous diverse and interconnected subsystems, they become susceptible to instability and
encounter subtle disruptions that pose challenges for decision-makers to anticipate and address. It is of
great importance to study systems’ performance under these changes to prevent them from large losses or
even breakdowns. In the work, we assume that input data are no longer stationary and there exist different
regimes for the data. The distributions of input data from different regimes belong to the same parametric
family but with different parameters. Both the distribution parameters and the change points are unknown
and need to be inferred from input data. The non-stationary streaming input data could be treated as a
set of time series data that exhibit regime switching over time. Figure 1 illustrates the regime-switching
dynamics. Two switchings occur at time points t1 and t2, respectively, among the three regimes. The data
points within every regime are generated from a stationary normal distribution whose mean is indicated
as the straight line and variance is 1. Once the regimes of any two data points are given, the observations
become conditionally independent.

t1 t2
t

switching

switching

Regime Switching Process
Regime 1
Regime 2
Regime 3

Figure 1: Illustration of Regime Switching.

We adopt the Markov Switching Model (MSM) to model the regime-switching dynamics. It builds a
hidden Markov chain to model the regimes of each data point. Different regimes can switch to each other
according to a transition matrix. MSM has been a popular model for non-stationary time series since the
seminal work of Hamilton (1989). It has been increasingly applied in areas including biology (Albert 1991),
engineering (Thyer and Kuczera 2000; Zucchini and Guttorp 1991), finance and marketing (Pagan and
Schwert 1990; Ang and Bekaert 2002; Hamilton and Raj 2002). We refer to Bhar and Hamori (2004) and
Frühwirth-Schnatter (2006) for detailed introductions to MSM. At the beginning of each time stage, a new
set of input data arrives, which is then incorporated into the existing data stream from the previous stage.
We then apply MSM to estimate the distribution parameters and the transition matrix, based on which,
we could derive the predictive distribution of the input data in the next time stage. It can be shown that
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the predictive distribution is a mixture of several stationary input distributions, corresponding to different
regimes.

Given this predictive input distribution from the MSM, we aim to find the optimal solution based on
simulation models for the forthcoming time stage. Essentially, we are addressing an online simulation
optimization problem with streaming data to deliver optimal decisions across multiple time stages. There
are two major goals we aim to achieve. The first is to enhance input data modeling using streaming
non-stationary data, a goal accomplished through the utilization of the MSM. Another goal is to reuse the
simulation results from previous time stages, especially when the simulation experiments are expensive
and the simulation budget for each stage is limited. However, the input distributions are non-stationary
and the model estimations can be different across different stages. The simulation outputs obtained under
heterogeneous input distributions, although valuable, cannot be straightforwardly aggregated. Wu et al.
(2024) design a moving average aggregation approach that discards the previous simulation outputs gradually
to maintain an unbiased estimator for ranking and selection problems. In this work, we propose a Gaussian
process (GP) metamodel-based approach, a well-accepted approach for expensive simulation optimization
problems (Meng et al. 2022; Shahriari et al. 2015), to fully reuse the previous simulation outputs. We
construct a GP model for the simulation outputs with respect to both the decision parameters and the input
distribution parameters. The model is expected to learn the relationship based on all the simulation outputs
from previous stages. To guide the search for the optimum of the upcoming stage, we further design an
aggregated Expected Improvement (EI) searching criterion. Similar approaches have been used in Wang
et al. (2020) but for a different setting: they work on optimization with input uncertainty based on fixed-size
input data from a stationary distribution. A numerical experiment on an inventory problem shows that our
approaches provide better estimation for the optimal solutions across different time stages compared to
commonly used approaches which do not consider the non-stationarity of the input distribution.

The remainder of this paper is organized as follows. Section 2 introduces the MSM model, the basics of
the GP model and GP-based optimization algorithm. Section 3 provides the problem formulation considered
in this work. Section 4 presents the GP model and the optimization algorithm. Section 5 shows a numerical
example and Section 6 concludes the paper.

2 BACKGROUND AND BASICS

In this section, we will review the background and basics of MSM, GP model and GP-based optimization
algorithms.

2.1 Markov Switching Model with Two Regimes

The two key issues in using MSM is the parameter estimation and the prediction.

2.1.1 Model Parameters Estimation

We take a frequentist perspective to estimate the parameters through MLE. Denote the parameters collectively
as ϑ = (λ1,λ2, p,q). After stage t, we observe ξ t .We further denote St as the collection of all the hidden
indicators {S1,S2, ...,St}. The MLE P(ξ t |ϑ) can be derived as:

P(ξ t |ϑ) = ∑
St∈S

P(ξ t ,St |ϑ) = ∑
St∈S

P(ξ t |St ,ϑ)P(St |ϑ), (1)

where S is the set of all possible sequences St . It basically consists of every sequence of length t where
the first position is 1 and all other positions are 1 or 2. In (1), P(ξ t |St ,ϑ) can be easily computed as:

P(ξ t |St ,ϑ) = P(ξ1|λ1)
t

∏
i=2

P(ξi|Si,ξ
i−1,ϑ) = P̃(ξ1|λ1)

t

∏
i=2

P̃(ξi|λSi).
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The second equality holds as ξ t becomes independent given the indicators St . The distribution P̃(ξ |λSi) is
often called the emission distribution in MSM. In (1), P(St |ϑ) can be computed as follows:

P(St |ϑ) = P(St |A) =
t

∏
i=2

P(Si|Si−1,A) =
t

∏
i=2

ASi−1,Si =
2

∏
j=1

2

∏
k=1

AN jk(St)
j,k ,

where A j,k is the j,k-th entry of the transition matrix A and N jk(St) counts the numbers of transitions from
j to k in St :

N jk(St) = #{Si−1 = j,Si = k}, ∀ j,k ∈ {1,2}.

2.1.2 Prediction of P(ξt+1|ξ t) for a Two-Regime MSM

Given the model parameters, the predictive distribution P(ξt+1|ξ t) can be derived as:

P(ξt+1|ξ t ,ϑ) =
2

∑
l=1

P(ξt+1|ξ t ,St+1 = l,ϑ)P(St+1 = l|ξ t ,ϑ)

=
2

∑
l=1

P(ξt+1|St+1 = l,ϑ)P(St+1 = l|ξ t ,ϑ)

=
2

∑
l=1

P̃(ξt+1|λl)

[
2

∑
k=1

P(St+1 = l|St = k,ξ t ,ϑ)P(St = k|ξ t ,ϑ)

]

=
2

∑
l=1

P̃(ξt+1|λl)

[
2

∑
k=1

Ak,lP(St = k|ξ t ,ϑ)

]
,

(2)

where

P(St = k|ξ t ,ϑ) =
P(ξt |St = k,ξ t−1,ϑ)P(St = k|ξ t−1,ϑ)

∑
2
j=1 P(ξt |St = j,ξ t−1,ϑ)P(St = j|ξ t−1,ϑ)

=
P̃(ξt |λk)P(St = k|ξ t−1,ϑ)

∑
2
j=1 P̃(ξt |λ j)P(St = j|ξ t−1,ϑ)

.

Notice that,

P(St = k|ξ t−1,ϑ) =
2

∑
i=1

P(St = k|St−1 = i,ϑ)P(St−1 = i|ξ t−1,ϑ) =
2

∑
i=1

Ai,kP(St−1 = i|ξ t−1,ϑ).

Therefore, to evaluate P(ξt+1|ξ t ,ϑ), we need to compute P(Si|ξ i−1,ϑ) and P(Si|ξ i,ϑ) for all i = 2, ..., t.
This can be done recursively starting from the following initial condition:

P(S1 = 1|ξ 1,ϑ) = 1, P(S1 = 0|ξ 1,ϑ) = 0.

Computing P(St |ξ t ,ϑ) is known as the filtering problem in MSM (see details for general settings in
Frühwirth-Schnatter (2006)).

2.2 Basics of Stochastic GP Model and GP-Based Algorithms

In a stochastic GP model, the simulation output is modeled as:

Y (x) = Z(x)+ ε(x) = ν(x)T
β +η(x)+ ε(x),
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where Z(x) is the noise-free value of the simulation output and ε(x) is the stochastic simulation noise with
mean zero and variance σ2

ε (x). The response Z(x) is decomposed into a mean value ν(x)T
β and a second-

order stationary GP, η(x). In the mean function, ν(x) is a known regressor, reflecting our knowledge in the
trend of the response, and β is the coefficient of the regressor that should be estimated from data. Without
loss of generality, we assume ν(x) = 0 for zero mean when no additional information is available. The
GP η(x) has the following covariance structure: c(x1,x2) := cov(η(x1),η(x2)) = σ2

z corr(x1,x2), where
σ2

z = var(η(x)) is the process variance. We model the spatial correlation with the Gaussian correlation

function: corr(x1,x2) = exp
{

∑
d
j=1 θ j(x1, j −x2, j)

2
}
, where xi, j is the jth coordinate of xi and θ is the

lengthscale parameter. This is a common choice in the GP modeling that provides reasonably good accuracy
in many applications. See Williams and Rasmussen (2006) for details in the GP modeling.

At a new input point x0, the GP model can provide a prediction of Z(x0) with a predictive variance to
evaluate the uncertainty in the prediction:

Ẑ(x0) = c(x0)
T R−1Y ,

ŝ2(x0) := var(Ẑ(x0)) = σ
2
z − c(x0)

T R−1c(x0),

where Y = (ȳ(x1), ..., ȳ(xn))
T is the observations vector at all the past design points x1, ...,xn. Due to

the noise, the stochastic GP model is built with more than one observation at any single design point
(suppose r replications) with ȳ denoting the sample mean: ȳ(xi) =

1
r ∑

r
j=1 y(xi,ξ j), i = 1, ..,n. c(x0) is the

n×1 covariance vector of x0 with existing design points whose i-th entry is c(x0,xi), R = Rz +Rε is the
covariance matrix of the design points, where Rz is the n×n covariance matrix for the spatial process whose
(i, j)-th entry is c(xi,x j) and Rε is the n×n diagonal covariance matrix for the noises whose i-th diagonal
entry is var(ε(xi)). When used in practice, Rε is estimated through sample variance from the simulation
results. The parameters θ and σ2

z can be obtained by maximum likelihood estimation (Ankenman et al.
2010).

The optimization approach based on the GP model is referred to as Bayesian optimization (BO) in the
literature. It adopts the GP prediction to guide the search. As the GP model summarizes the information from
all the previous results, this search is expected to find the optimal solutions efficiently and is widely used
in scenarios with expensive experiments. The key ingredient for BO is an acquisition function constructed
from the GP model. It generally evaluates the utility in running experiments at a design point. Thus,
the design point that should be tried in the next iteration is the maximizer of the acquisition function.
Commonly used acquisition functions include the expected improvement (EI) function, upper confidence
bound (UCB) and knowledge gradient (KG). Readers could refer to Shahriari et al. (2015) for introductions
to different types of acquisition functions. In addition to selecting the next sample point, we need to decide
the number of simulation replications to run at this point. We take the simple way to run an equal number of
replications in this work. More delicate approaches can be used to adaptively improve the model fitting or
the optimizer identification. See Jalali et al. (2017) for numerical comparisons among different replication
allocation strategies.

3 PROBLEM FORMULATION

Denote the decision variable as x, a stochastic simulation optimization problem can be formulated as:

min
x∈X

g(x,λS) := Eξ∼P̃(ξ |λS)
[y(x,ξ )],

where X is the design space assumed to be compact, ξ represents the simulation input, P̃ is the input
distribution parameterized by λS, and y is the simulation output. The subscript of λ , S, indicates the regime
of the current input distribution. In this work, we assume there are two different regimes: S ∈ {1,2}, i.e.,
the current input distribution can switch to another one due to external factors. As aforementioned, the
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input distribution in each regime is assumed to be from a parametric family. For ease of exposition, we
assume that at the beginning of decision stage t, we receive only one new input data point. Nonetheless,
our approach can easily extend to situations with more than two possible regimes and a varying number
of input data points received in each stage.

We denote all the input data that have been received before the end of stage t as ξ t := {ξ1,ξ2, ...,ξt}.
We further define a hidden indicator variable Si for i ∈ {1, ..., t}. It takes the value 1 or 2, indicating which
regime ξi is from. In the MSM, {Si : i = 1, · · · , t} forms a Markov chain with the following transition
matrix:

A :=
[

p 1− p
1−q q

]
.

By default, we set S1 = 1 to start from the first regime. When q = 1, the model can be used to describe a
situation where the input distribution will not revert back if a switching happens. We admit flexibility in
non-zero value of 1−q so that the two regimes communicate.

Given ξ t at stage t and the simulator, we first estimate the model parameters (λ1, λ2, p, q) through
MLE and predict the distribution for ξt+1: P(ξt+1|ξ t) (see (2)). Then, we aim to solve the following online
optimization problem via simulation:

min
x∈X

Eξ∼P(ξt+1|ξ t)[y(x,ξ )]. (3)

The metamodel-based algorithm to solve (3) is provided in Section 4.

4 THE GP-BASED ALGORITHM

The proposed metamodel and algorithm will be presented in Section 4.1 and Section 4.2.

4.1 The Proposed GP Model

Denote the estimated model parameters after receiving the t-th input data point as: ϑ̂ t = (λ̂ t
1, λ̂

t
2, p̂t , q̂t). From

(2), we see that the input distribution for the next stage is a mixture of two stationary distributions: P̃(λ̂ t
1)

and P̃(λ̂ t
2). For short, P̃(λ̂ t

i ) represents P̃(ξ |λ̂ t
i ), wt

1 and wt
2 represent the weights for the two components

in the mixture in (2), respectively. Therefore, the input distribution P(ξt+1|ξ t) can be represented as:

P(ξt+1|ξ t) = wt
1P̃(λ̂ t

1)+wt
2P̃(λ̂ t

2),

where the weights wt
i = P(St+1 = i|ξ t ,ϑ), i = 1,2. Thus, the objective function in (3) is:

Eξ∼P(ξt+1|ξ t)[y(x,ξ )] = wt
1E

ξ∼P̃(λ̂ t
1)
[y(x,ξ )]+wt

2E
ξ∼P̃(λ̂ t

2)
[y(x,ξ )] = wt

1g(x, λ̂ t
1)+wt

2g(x, λ̂ t
2). (4)

To find the optimal design point for the next stage, our simulation experiments will be run under the input
distribution P̃(λ̂ t

1) or P̃(λ̂ t
2). As the estimated parameters generally have different values across different

decision stages, the simulation results from previous stages cannot be directly used to fit the GP model
which only captures the relation between x and Y . Also, the estimated parameter values between successive
stages usually are close in terms of values, and thus the simulation results in the former stage can carry
information that helps infer the simulation results in the later stage. Given a limited simulation budget,
it would be extremely valuable if previous simulation results could be used for the following inference.
Therefore, we propose to fit a universal GP model of Y with respect to both the decision vector x and the
input parameter λ . Specifically, we propose to construct a stochastic GP model for the simulation output
y(x,ξ ),ξ ∼ P(λ ):

Y (x,λ ) = Z(x,λ )+ ε(x,λ ) = ν(x,λ )T
β +η(x,λ )+ ε(x,λ ).
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For the second-order stationary GP, η(x,λ ), we use a mixed covariance structure: c((x1,λ1),(x2,λ2)) :=
cov(η(x1,λ2),η(x2,λ2)) = σ2

z corr(x1,x2)corr(λ1,λ2), with corr(x1,x2) = exp
{

∑
d
j=1 θ x

j (x1, j −x2, j)
2
}

and

corr(λ1,λ2) = exp
{

∑
d
j=1 θ λ

j (λ1, j −λ2, j)
2
}
. The posterior distribution for Z(x,λ ) can be used to estimate

the surface of g(x,λ ) and it can be derived as follows:

Ẑ(x,λ ) = c(x,λ )T R−1Y ,

var(Ẑ(x,λ )) = σ
2
z − c(x,λ )TR−1c(x,λ ),

cov(Ẑ(x,λ ), Ẑ(x′,λ ′)) = c((x,λ ),(x′,λ ′))− c(x,λ )T R−1c(x′,λ ′),

whereY =(ȳ(x1,λ1), ..., ȳ(xn,λn))
T is the observations vector at all the past design points (x1,λ1), ...,(xn,λn).

4.2 Aggregated Expected Improvement (EI) Acquisition Function

Based on the above GP, we can proceed to model the surface of the objective in (4) with a weighted average
of two sliced GP models as follows:

Ft(x) := wt
1Z(x, λ̂ t

1)+wt
2Z(x, λ̂ t

2)∼ GP(µt ,σ
2
t ),

where µt is the predictive mean and σt is the predictive standard deviation. We have

µt(x) = wt
1Ẑ(x, λ̂ t

1)+wt
2Ẑ(x, λ̂ t

2) (5)

σ
2
t (x) = (wt

1)
2var(Ẑ(x, λ̂ t

1))+(wt
2)

2var(Ẑ(x, λ̂ t
2))+wt

1wt
2cov(Ẑ(x, λ̂ t

1), Ẑ(x, λ̂
t
2)). (6)

The EGO algorithm (Jones et al. 1998) is one of the most popular GP-based optimization algorithms.
It focuses on selecting the next point that can best improve the estimated optimal objective function value.
It takes into consideration both the mean and the variance of the estimation and thus achieves a balance
between exploration and exploitation. The EGO uses the expected improvement (EI) as the acquisition
function, which is defined as

EI(x) = E[(T −Ft(x))+] = ∆Φ

(
∆

σt (x)

)
+σt (x)φ

(
∆

σt (x)

)
, (7)

where T is the approximated best current value for the surface to be optimized: ∆ = T − µt(x). We
propose to estimate T = min{µt(x1), · · · ,µt(xn)} where x1, · · · ,xn are previous evaluated points. µt(x) and
σ2

t (x) are the posterior mean and variance of the GP model respectively, see (5) and (6). Φ and φ are
the cdf and pdf of the standard normal random variable. The next point to be evaluated is selected with
xn+1 = argmaxx∈X EI(x). The first- and second-order derivatives of EI are easy to obtain, enabling the use
of continuous second-order optimization methods to optimize (7). We then proceed to evaluate at (xn+1, λ̂

t
1)

and (xn+1, λ̂
t
2) and then reconstruct the GP model in Section 4.1, based on which the subsequent point is

again selected using the EI acquisition function. The whole algorithm is described in Algorithm 1.

5 EXPERIMENTS

In this section, we will use a classic (s,S) inventory problem (Fu and Healy 1997) to evaluate the empirical
performance of the proposed algorithm under non-stationary input distributions.
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Algorithm 1 The switching Gaussian Process based optimization Algorithm
1: In decision stage t: given the real-world data ξ t = {ξ1,ξ2, · · · ,ξt}, estimate a Markov Switching Model

with parameters (λ̂ t
1, λ̂

t
2, p̂t , q̂t), and calculate the weights wt

1,w
t
2 in the predictive distribution P(ξt+1|ξ t)

2: GP model fitting: Denote the design points that have been simulated in the past t −
1 stages as {x1,x2, · · · ,xn}, where point xi is simulated in stage ti. Fit the GP model
with design vector {(x1, λ̂

t1
1 ), · · · ,(xn, λ̂

tn
1 ),(x1, λ̂

t1
2 ), · · · ,(xn, λ̂

tn
2 )} and the observation vector Ȳn =

[ȳ(x1, λ̂
t1
1 ), · · · , ȳ(xn, λ̂

tn
1 ), ȳ(x1, λ̂

t1
2 ), · · · , · · · , ȳ(xn, λ̂

tn
2 )]T .

3: Set i = 0
4: while i < specified # of optimization steps in each time stage do
5: Select design point to be evaluated xn+1 using the expected improvement acquisition function
6: Run simulation experiments at (xn+1, λ̂

t
1) and (xn+1, λ̂

t
2) with r replications and obtain the observed

output mean ȳ(xn+1, λ̂
t
1) and ȳ(xn+1, λ̂

t
2), set Ȳn+1 = [Ȳn, ȳ(xn+1, λ̂

t
1), ȳ(xn+1, λ̂

t
2)]

T ;
7: Update: update the stochastic GP model Z(x,λ ) based on Ȳn+1 and recalculate the stochastic GP

Ft(x);
8: return x̂∗t = argminx1,··· ,xn+1 µt(x)
9: Set t = t +1 and return to Step 1.

5.1 The Inventory Problem

In an (s,S) inventory problem, a company manages the inventory of a single product periodically. There
are two decision variables, the basic ordering level s and the order-up-to level S. For each period, such
as each week, the company will manage inventory positions using the following rule: not order any new
items if the inventory position is larger than s; otherwise, the company will order and keep the inventory
position to be S, i.e. order the quantity being the difference between S and the current position.

There are several hyperparameters about cost that need to be set in the inventory problem simulator.
We set the fixed ordering cost = 100, unit cost = 1, holding cost = 1, and back-order cost = 100. All
these hyperparameters used in this experiment are set the same as in Jalali et al. (2017).

5.2 Non-Stationary Demand Distributions

The majority of the works on the inventory problem (Wang et al. 2020; Jalali et al. 2017) focus on the
stationary setting that the customer demands ξ , are independently identically distributed across different
periods. However, in reality, the demand distributions are usually shifting due to external factors such as
economic status, weather conditions, etc. In this work, we consider a non-stationary setting. We assume
that the demand follows a Markov switching model with the emission distributions being exponential
distributions:

ξt |St=1 ∼ exp(λ = 1)

ξt |St=2 ∼ exp(λ = 1/20).

The transition matrix is

A :=
[

0.7 0.3
0.2 0.8

]
.

Figure 2 displays the time series plot of the random demands for the above switching dynamics. The
distributions of the demands are significantly different in different regimes. Specifically, the demand
distribution of Regime 2 has a much larger mean value and variance compared to those of Regime 1.

The candidate decision space is {x = [s,S]|s ∈ [1,69],S ∈ [70,250]}. The demand distributions are
significantly different between different regimes, so are the optimal solutions and the optimal values: the
optimal solution for Regime 1 is (1,70) with the optimal cost being 38, while the optimal solution for
Regime 2 is (63.8,127.0) with the optimal cost being 147.
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Figure 2: The time series plot of the random demands with the regimes reflected as the color in the
background. The blue color corresponds to St = 1 and the red color corresponds to St = 2.

5.3 Comparison

Based on historical demand ξ1, · · · ,ξ100 over the initial 100 time stages, we estimate a 2-regime Markov
switching model with exponential emission for the demand. To start the GP-based optimization algorithm,
we select 20 initial design points x at the beginning of the 101th stage. We proceed to optimize the inventory
problem over an additional of 25 time stages. For each time stage t, we use the switching GP-based algorithm
with 15 iterations to estimate the optimal solution, denoted x̂∗t . Denote the true minimizer at period t as x∗St
and the corresponding optimal value as g(x∗St

,λSt ). The GAP value for time stage t is g(x̂t ,λSt )−g(x∗St
,λSt ).

We compare the proposed approach with the commonly used plug-in approach which uses the empirical
distributions of historical demands ξ t or a fitted parametric distribution (exponential distribution in our
case) to drive the simulation and the EGO algorithm (Jones et al. 1998) for optimization. We consider two
variations of the classic plug-in approaches which ignore the non-stationarity of the input data. The first
one uses all the available input data to obtain the empirical distribution / the fitted exponential distribution,
while the second one uses the historical data with a moving window of size 50: in stage t, it adopts the
input data ξt−49, ...,ξt to fit the input distribution. In total, we have four benchmark approaches: “hist",
“hist_window", “exp", and “exp_window". To ensure a fair comparison with the same evaluation budget,
the alternative algorithms start with 40 initial design points and for each time stage t, we use the classic
EGO algorithm with 30 iterations to estimate the optimal solution.

The experiments are repeated for 100 macroreplications. We plot the cumulative GAP of the five
approaches (∑t

i=101
[
g(x̂i,λSi)−g(x∗Si

,λSi)
]
) for the 25 time stages in Figure 3 for this online optimization

problem. It shows that the switching approach consistently outperforms the classic approaches with smaller
cumulative GAP values across different time stages. We can see that the plug-in approaches using fitted
exponential distributions (“exp" and “exp_window") perform the worst. Although the input data are from
exponential family, they are from two different exponential distribution. Hence, fitting the data with a
single exponential distribution will be inappropriate. Adopting non-parametric distributions will slightly
improve the input modeling. This can be verified through the performances of the “hist_window" and
“hist", which are very similar and better than those of “exp" and “exp_window". However, they are still
significantly worse than the proposed approach, which shows that using a moving window cannot remedy
the impact from non-stationarity of the input distribution.
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Figure 3: The line plot of cumulative GAP value over 100 macroreplications for the switching GP-based
algorithm and the classic hist/exp approaches with EGO. The shadow areas represent the 90% confidence
interval.

6 CONCLUSION

We study simulation optimization under non-stationary input distributions, where input data arrive contin-
uously in a streaming fashion. A Markov Switching model is proposed to model the non-stationary input
data and a GP model is constructed to aggregate the simulation outputs under different input distributions
across time stages, given a limited simulation budget at each time stage. The expected improvement
acquisition function is used to select the subsequent evaluation points. Numerical results show that our
proposed procedures achieved better performance, compared to commonly used approaches which ignore
the non-stationarity of the input data.

In summary, we address an online simulation optimization problem with streaming input data to deliver
optimal decisions across multiple decision stages. We have made some simple assumptions in this paper,
including a known and small number of regimes and a Markov structure of regime switching. In addition,
we have not included the estimation error of the model parameters in the current paper. Interesting future
research directions include thorough analysis of the input uncertainty and the asymptotic convergence of
our framework.
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