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ABSTRACT

This paper explores the optimization of Job Shop Scheduling Problem (JSSP), by employing a Deep
Reinforcement Learning (DRL) approach that learns optimal scheduling policies through continuous inter-
action with a job shop setting simulated within a discrete event simulation (DES) environment. The study
involves computational experiments to train and evaluate the DRL agent across benchmark JSSP instances.
We compare our DRL-based scheduling solutions against generated by widely used priority dispatching
rules, assessing the impact of the learned policies on performance metrics including the total time to
complete all jobs (makespan) and efficiency in using machines (machine utilization). Our results indicate
improvements in scheduling efficiency, showcasing the DRL algorithm’s ability to adapt and optimize
in complex scheduling scenarios. This paper underscores the potential of integrating DRL with DES to
create a powerful toolset for modern manufacturing challenges, enabling businesses to maintain competitive
advantage through improved operational agility.

1 INTRODUCTION

The modern manufacturing landscape requires not only efficiency but also a significant degree of adaptability
and responsiveness to remain competitive in the face of quickly changing market conditions. To address
these evolving requirements, a shift towards exploring and understanding the Job Shop Scheduling Problem
(JSSP) becomes imperative. This real-world problem has developed over decades, highlighting the need
for adaptive and dynamic scheduling solutions (Xiong et al. 2022). Presently, the primary goal is to devise
scheduling systems that are both flexible and capable of swiftly responding to unpredictable market dynamics
and production demands. The complexities of the JSSP have been thoroughly explored by both academic
researchers and industry professionals, who recognize its essential role in enhancing operational agility,
minimizing downtime, and ultimately, contributing to greater cost efficiency. As the industry progresses,
there emerges a growing demand for systems that are not only adaptable to changing scenarios but also
supportive of real-time decision-making. This need for innovative approaches propels the advancement
of dynamic and adaptive job shop scheduling solutions tailored to address the modern manufacturing
challenges efficiently.

The classic JSSP is a widely recognized combinatorial optimization problem and it involves optimizing
the allocation of resources to tasks over time. Specifically, the JSSP requires determining the optimal
schedule for processing a set number of given jobs on a set number of machines simultaneously while
adhering to specific constraints (sequence-dependent setup times, machine availability, and job priorities
etc.) and objectives (minimize the makespan, tardiness, maximum lateness etc.). Due to its combinatorial
nature and NP-hard computational complexity, JSSP is a well-established problem in operations research
(OR) and computer science literature. Traditional methods such as heuristic approaches, mathematical
programming and meta-heuristic methods have been used to solve this problem. However, as the landscape
of real-world operations becomes increasingly dynamic and susceptible to uncertainties, these traditional
methods experience limitations in addressing the challenges presented by the dynamic optimization of the
JSSP. In essence, this requirement necessitates a novel perspective that can harness the power of cutting-edge
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technologies (Manne 1960). Recently, significant progress in artificial intelligence and machine learning
(ML), particularly in reinforcement learning (RL) has delivered promising outcomes in various combinatorial
optimization problems.

Real-world combinatorial optimization problems, including the JSSP, are characterized by vast state
spaces that render the problem computationally challenging. To tackle the intricate complexities of JSSP,
we present a Deep Reinforcement Learning (DRL)-based approach to dynamically adjust scheduling in
response to evolving conditions. We also developed a discrete event simulation (DES) that closely mirrors
the dynamics of a job shop scheduling setting. Our research objective is to enhance adaptive scheduling and
operational flexibility. Such improvements hold the promise of not only reducing costs and inefficiencies
but also significantly increasing the responsiveness and robustness of manufacturing operations.

The primary research questions addressed in this study are: To what extent can a DRL agent learn adaptive
scheduling strategies through trial-and-error interactions with the DES of JSSP? Does DES representation
enable the exploration of various JSSP scenarios, creating a rich training environment for the DRL agent?
This paper makes several scientific contributions to the field of sequential decision-making and simulation
modeling. Firstly, we introduce an approach that integrates DRL with DES for the JSSP. This contribution is
significant for advancing our understanding of dynamic scheduling processes and offering a transformative
solution to JSSP instances. Secondly, we develop a specialized algorithm within the DRL framework that
learns Priority Dispatching Rules (PDRs). This aspect of our work addresses the challenge of operational
inefficiency in job shops. Additionally, the design and implementation of the DES provides a depiction of
the job shop scheduling process. This aspect of our research is important in creating a detailed and realistic
training environment for the DRL agent, thereby enabling it to encounter and learn from a variety of JSSP
scenarios. The simulation model not only facilitates a deeper understanding of the dynamics in job shop
scheduling but also significantly enhances the agent’s ability to devise robust scheduling policies that can
readily adapt to varying conditions.

The remainder of the paper is organized as follows. Section 2 presents the background information
regarding the JSSP and DRL, and provides a summary of our literature review. Section 3 is dedicated to
outlining the methodology, including the detailed problem definition, development of our DES environment
and the DRL framework. Section 4 provides the details of the DRL agent training process and experimental
results. Finally, Section 5 concludes the paper and highlights future work directions.

2 BACKGROUND AND RELATED WORK

2.1 Job Shop Scheduling Problem

The JSSP seeks to determine an optimal scheduling of a set of jobs to be processed on a limited number of
machines, with the primary aim of optimizing one or more objectives such as minimizing the total time to
complete all jobs (makespan), minimizing delays beyond due dates (tardiness), or maximizing efficiency
in using machines (machine utilization), the promptness of job completion (on-time delivery rates). The
significance of JSSP lies in its direct applicability to real-world manufacturing scenarios where efficient
utilization of resources directly impacts operational costs, delivery times, and overall productivity. Formally,
the JSSP can be defined as follows: Given a set of n jobs {J1,J2, ...,Jn} that need to be processed on a set of
m machines {M1,M2, ...,Mm}, each job Ji consists of an ordered sequence of operations {Oi1,Oi2, ...,Oim},
with each operation Oi j requiring processing on machine M j for a specified duration pi j. The goal is to
find a schedule, i.e., a sequence of job operations on each machine, that optimizes the given objective(s),
subject to the constraints that each machine is capable of handling a single operation at a time, each job
operation needs to be completed before the next one in the job sequence can begin, and once an operation
starts on a machine, it must run to completion without interruption.

The JSSP have extensively researched and these research efforts have evolved from deep mathematical
analysis to using simpler rules-based heuristic methods and more complex meta-heuristic strategies. Initially,
solving JSSP started with mathematical methods like linear programming, focusing on finding the most
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effective job sequences under various limitations (Dantzig and Wolfe 1960). However, as the problems grew
in size, these exact mathematical solutions became impractical because they required too much computing
power for larger job shop setups. This limitation led to a shift towards heuristic approaches. Heuristic
methods, such as applying PDRs like First In, First Out (FIFO) or Shortest Processing Time (SPT), aimed to
find good solutions more simply and quickly, making them more applicable to real-world scenarios despite
their inability to guarantee the optimal solution (Holthaus and Rajendran 1997). The approach to solving
JSSP further advanced with the introduction of meta-heuristic algorithms like Genetic Algorithms and
Simulated Annealing. These algorithms are designed to look through possible solutions more thoroughly
than the simpler heuristics, attempting to find a balance between exploring new solutions (exploration) and
making the most of known good solutions (exploitation) (Cheng, Gen, and Tsujimura 1996). Most recently,
the integration of ML, particularly DRL, has begun to provide more dynamic and intelligent scheduling
solutions, reflecting an increased capacity to tackle the JSSP more effectively and adaptively (Zhang et al.
2020).

2.2 Deep Reinforcement Learning

RL is a sub-field of ML where an agent acquires decision-making skills by executing actions and evaluating
the results through a process of trial and error (Sutton and Barto 2018). The core idea of RL is for an agent
to take actions within a defined space, receive feedback in the form of rewards or penalties, and use this
feedback to learn optimal behavior or decision-making strategies over time. A fundamental algorithm in
traditional RL is Q-learning, which enables an agent to learn the value of taking certain actions in specific
states, thereby guiding the development of optimal policies over time without requiring a model of the
environment. It serves as a key method upon which many RL strategies are built upon (Watkins and Dayan
1992). This field has seen substantial growth with the advent of deep learning, leading to the inception of
DRL. DRL combines the decision-making framework of traditional RL with the powerful feature extraction
capabilities of deep neural networks (DNNs) (Arulkumaran et al. 2017). This convergence enables agents
to learn optimal strategies in environments characterized by high-dimensional state spaces, which were
previously infeasible with classic RL approaches alone. DRL algorithms can be broadly classified into
value-based and policy-based. Value-based DRL, such as Deep Q-Learning, focuses on estimating the
expected total reward for each action in a given state. On the other hand, policy-based DRL algorithms
aim to learn and optimize the policy directly (Sutton, Singh, and McAllester 2000).

DRL has demonstrated remarkable success across various domains. In gaming, agents trained via DRL
have achieved human-level performance in complex games like Go and various Atari games, showcasing
their strategic depth and decision-making abilities (Mnih et al. 2013). In robotics, DRL has been used
to teach robots to perform tasks such as walking, grasping, and cooperative manipulation with precision
and adaptability (Gu et al. 2017). Also, in autonomous vehicles, it contributes to developing sophisticated
decision-making algorithms that help navigate complex and dynamic road environments safely (Kiran et al.
2021). These successes underscore the versatility and potential of DRL in tackling problems that require
nuanced understanding and interaction with complex environments.

In 2013, the DeepMind team revolutionized DRL with the introduction of Deep Q-Learning, employing
Deep Q-Networks (DQNs) that use a Convolutional Neural Network (CNN) trained through Q-Learning
(Mnih et al. 2013). This method involves interpreting game states as inputs and calculating the quality
(Q-values) of potential actions, updating the network via replay memory, and a combination of immediate
rewards and anticipated future rewards. Also, the introduction of a secondary, periodically updated Target
network enhances stability by mitigating positive feedback loops that could lead to sub-optimal learning,
while a ε-greedy exploration strategy balances between random actions and those suggested by the Q-network
to ensure continual learning progress (Mnih et al. 2015).
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2.3 Integrated Studies

The integration of DRL with DES models has seen an encouraging trend in recent years across various
domains of optimization problems. The fusion of DRL’s adaptive learning capabilities with the dynamic
representation power of DES offers a potent combination for tackling complex decision-making problems
by addressing the challenge of real-world uncertainties and reducing the need for extensive real-life trials,
thus making the DRL agent training process more efficient and cost-effective (Belsare, Badilla, and
Dehghanimohammadabadi 2022). Notable studies have demonstrated this synergy in industrial scheduling
problems by utilizing the potential of DRL to learn optimal policies from the rich DES environments
mirroring the complexity and variability of real-world systems. (Zhang and Dietterich 1995) present the
pioneering application of RL for production scheduling, illustrating their capability to swiftly generate high-
quality solutions with the aim of future advancements minimizing domain-specific engineering requirements,
thereby paving the way for cost-effective scheduling solutions.

Subsequent studies have explored the integration of DRL with DES and other technological advancements
to address specific scheduling problems. (Waschneck et al. 2018) propose the use of DQN agents for
the autonomous optimization of multiple production targets within a semiconductor production scheduling
framework. Utilizing a MATLAB factory simulation as a DES tool, this study highlights the versatility of
DRL by comparing its performance against standard PDR heuristics and showcasing efficiency improvements
across various industrial settings. (Han and Yang 2020) introduce a tailored DRL approach that employs
disjunctive graph dispatching alongside CNNs to address the limitations of traditional solution methods
in complex production environments. The proposed approach, which includes the use of the dueling
double DQN with prioritized replay, demonstrates its efficacy through static computational experiments on
several JSSP instances, showing superior performance especially in dynamic environments with variable
processing times. (Lang et al. 2020) demonstrates the efficacy of DQN in deriving high-quality, real-time
scheduling solutions for a flexible job shop with integrated process planning, underscoring DQN’s low
training requirements and its agents’ capacity to generalize solutions to new problems.

In a recent review, (Panzer and Bender 2022) assess DRL’s performance across various domains
including process control and maintenance. This study acknowledges DRL’s ability to surpass conventional
algorithms by managing uncertainties more adeptly, though it also calls for further research to enhance the
practical application and optimization of DRL in production systems. (Hammami et al. 2022) address JSSP
with real-time job arrivals using Proximal Policy Optimization Actor-Critic and Graph Neural Networks
(GNNs). This study highlights the continuous adaptability and potential for efficiency gains through real-
time algorithmic adjustments, albeit noting the extended training required for optimal policy convergence.
(Devanga, Badilla, and Dehghanimohammadabadi 2022) illustrate the effective combination of DRL and
DES to address complex scheduling problems within industrial settings, utilizing Simio DES software and
Python. Their methodology underscores the potential of embedding AI-driven operations in simulation
environments, thereby advancing decision-making capabilities.

2.4 Literature Review Summary

Despite these successes, existing research efforts reveal gaps. One common limitation is the difficulty in
accurately reflecting the dynamics of real-world manufacturing environments in the optimization process.
Moreover, many studies focus on isolated aspects of the scheduling problem, such as sequencing or timing,
without a comprehensive approach that captures the entire spectrum of operational decisions, including
machine allocation and job prioritization. Additionally, there’s a notable scarcity in research that addresses
the dynamic nature of manufacturing systems.

Our research aims to bridge these gaps by proposing an approach that leverages DRL with a DES
for JSSP. By creating a DES environment that represents the dynamics and complexities of real-world
manufacturing processes, the DRL agent is trained to identify and adapt to patterns, leading to more robust
and adaptive scheduling solutions. Unlike existing studies, our approach encapsulate both assignment and
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sequencing decisions, providing a holistic optimization strategy that can dynamically adjust to changes
and disruptions. The hypothesis underpinning this research is that the combination of DRL and DES holds
the potential to improve the efficiency of JSSP. This improvement comes from the DRL agent’s ability
to learn complex, nuanced strategies for resource allocation and task prioritization that are beyond the
scope of traditional heuristics. Moreover, the DES provides a safe and scalable environment for the agent
to explore a wide range of scheduling scenarios, including those involving uncertainties and operational
changes, thereby enhancing the adaptiveness of scheduling solutions.

3 METHODOLOGY

3.1 Discrete Event Simulation Environment

The creation of a simulation environment is one of the important steps for solving JSSP with DRL.
The simulation environment acts as a virtual sandbox where a DRL agent can safely explore and learn,
encountering a variety of scheduling scenarios reflective of real-world complexities. Recently there has
been a growing interest on creating simulated environments that integrate DES with RL experimentation
modules/tools, aiming to supply DRL agents with dynamic contexts for mastering adaptive scheduling
techniques while serving as platforms for both training and assessing their adaptability and problem-
solving capabilities under varied operational conditions. (Lang et al. 2021) introduce a methodology that
transforms the complex challenges of production scheduling into RL-compatible models using DES with
OpenAI Gym interface, facilitating the development, deployment, and refinement of RL algorithms for job
allocation and sequencing; this allows RL agents to engage directly with complex simulations, simplifying
intricate scheduling tasks into manageable decisions. While their framework demonstrates the potential
for customizing DES for DRL training and offers insights into RL agents’ learning processes, it raises
limitations about compatibility with DES tools not supporting Python, the primary language for OpenAI
Gym and many ML libraries.

We designed and developed a DES, tailored for the JSSP using SimPy Python library. This simulation
model aims to mimic real-world manufacturing environments, where jobs with varying operations need to
be allocated to specific machines with the goal of optimizing key performance indicators (KPIs). Also, it
has an OpenAI Gym-like interface which enables the application of DRL algorithms to learn and propose
optimal scheduling policies. The simulation begins with reading the job information from an Excel file,
which contains the specifics of each job that needs to be scheduled, including process order and duration
on different machines. This setup allows for a customizable and realistic simulation scenario reflective
of actual job shop operations. The core of the simulation is the "Factory" module, which models the job
shop environment. This environment includes a set of machines and a queue of jobs awaiting processing
according to certain PDRs, namely FIFO, SPT, Last In First Out (LIFO), Longest Processing Time (LPT),
Least Total Work Remaining (LTWR), Most Total Work Remaining (MTWR), Shortest Total Processing
Time (STPT), Longest Total Processing Time (LTPT), defined in the "Action Space" module.

During the simulation, multiple runs (replicates) are conducted to gather statistical significance in the
outcomes. In each run, the simulation environment is reset, and a DRL agent interacts with this environment
by choosing actions depending on the current state of the job shop. The environment then progresses to a new
state, providing the agent with rewards based on the efficiency of the chosen action. This iterative process
continues until the completion of all jobs. Upon the conclusion of each run, performance metrics, namely
total rewards, makespan and average machine utilization are calculated and recorded. This simulation
setting not only enables the analysis of job shop scheduling policies but also facilitates the training of
DRL agents in an environment that accurately reflects the complexities and uncertainties of real-world
manufacturing processes. The use of a familiar OpenAI Gym interface ensures that the simulation can be
easily integrated with existing DRL algorithms, making it a valuable tool for both research and practical
applications in optimizing the JSSP.
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3.2 Deep Reinforcement Learning Framework

The application of DRL to the JSSP involves formulating the problem as a sequential decision-making
problem under uncertainty. Therefore, we framed the problem as a Markov Decision Process (MDP). This
formulation is essential for addressing the dynamic nature of the problem where an agent can learn to
make scheduling decisions through interactions with the environment. An MDP fundamentally serves as
a mathematical framework for making decisions in a sequence where results are partially influenced by
chance and partially under the control of a decision-maker. The MDP framework for the JSSP is defined
by the tuple M = (S,A,R,T,γ,H), where:

• S is the state space representing the current configuration of the job shop, including information
about the jobs, their respective stages of completion, and the status of each machine. Each state
s ∈ S encapsulates the necessary details to make informed scheduling decisions, namely, the queue
of pending operations and the operational status of machines.

• A is the action space that consists of all possible scheduling actions an agent can take at any given
state. In the context of JSSP, an action a ∈ A represents the selection of a specific job to be assigned
to a particular machine next, based on the PDRs defined in the DES.

• R : S×A× S → R is the reward function that assigns a numerical reward to transitions between
states as a result of an action. R is designed to encourage the reduction of the makespan and
improvement in machine utilization. The agent receives a positive reward for actions that lead to
a decrease in the overall completion time of all jobs and increase the utilization of machines.

• T : S×A → S represents the transition function which defines the probabilistic outcome of taking
action a in state s, resulting in transitioning to a new state s′. Since the scenarios are stochastic, it
provides probabilities for reaching various subsequent states.

• γ ∈ [0,1] is the discount factor which establishes the current value of future rewards. A lower value
of γ makes the agent prioritize immediate rewards over distant future rewards, while a higher γ

encourages the agent to consider long-term benefits.
• H specifies the horizon of the decision process and represents the maximum length of each episode.

The MDP framework for the JSSP, as defined above, provides a structured approach for applying DRL
algorithms to learn optimal or near-optimal scheduling policies. By iteratively interacting with the job
shop environment modeled as an MDP, the DRL agent explores the state-action space and accumulate
experience, which guides the development of a strategy that maximizes the cumulative rewards - essentially
learning to efficiently schedule jobs with the aim of improving KPIs within the manufacturing process.

3.3 Double Deep Q-Network Algorithm

At the core of the DQN algorithm lies the capability of DNNs to serve as universal function approximators.
This feature enables the DQN to effectively estimate the Q-function, which is essential for mapping a
given state to the Q-values of all possible actions from that state. The learning process of a DQN involves
initializing Q-value estimates and refining these estimates over time through interaction with the environment
and adherence to an ε-greedy policy. The architecture of DQN comprises two key components: the Q
network, which learns to predict the optimal state-action values, and the Target network, which assists in
stabilizing the learning updates. Additionally, the DQN utilizes an Experience Replay mechanism, which
facilitates the collection and utilization of past experience data for training the Q network, thereby enhancing
the efficiency and effectiveness of the learning process.

Building on the foundation laid by DQN, the Double Deep Q-Network (DDQN) algorithm introduces
an improvement designed to address the challenge of overestimation of action values encountered in DQN.
By employing two networks, similar to DQN, DDQN differentiates itself through its update mechanism:
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Qnew(st ,at) = Q(st ,at)+α

[
rt+1 + γQ(st+1,argmax

a
Q(st+1,a;θt);θ

−
t )−Q(st ,at)

]
(1)

where (θt) represents the parameters of the current Q-network used for selecting the action, whereas
(θ−

t ) are the parameters of the Target network used for evaluating the action, making the DDQN’s update
mechanism more reliable and less prone to overestimations. This adjustment enables the DDQN to offer
a more balanced and accurate evaluation of the action values.

We implemented the DDQN algorithm for learning PDRs and serving as a dispatcher during the
inference phase due to its refined ability to evaluate actions more precisely. This precision is critical in job
shop environments, where decisions immediately influence operational efficiency and overall performance.
The DDQN’s approach to minimizing overestimation of Q-values leads to a more stable and reliable learning
trajectory, a crucial factor in navigating the complexities of job scheduling. Also, our implementation of
the DDQN relies on the effective use of Experience Replay memory, which plays a pivotal role in the
learning process. Our implementation of the Experience Replay memory consists of two fundamental
components: the "Transition" and "Replay Memory" modules. The Transition module captures and records
the experience at each time step, consisting of the current state, action taken, reward received, and the
subsequent state, forming the basic data unit for training. The Replay Memory module aggregates and
manages a collection of such experiences, allowing the algorithm to sample from this diverse pool of past
experiences to train the network. This mechanism not only enriches the learning process by providing a
varied set of experiences but also significantly enhances the efficiency of training by breaking the correlation
between consecutive training samples, thereby fostering a more robust and effective learning environment.

The initial steps of the DDQN algorithm involve setting up a replay buffer for storing experience
tuples, the Q-network with randomly initialized weights, and the Target network, initially a clone of the
Q-network. The algorithm then enters a loop over episodes, within which it operates on a step-by-step basis
for each time step within an episode. For each step, the algorithm opts between exploring the environment
via random actions—facilitated by an ε-greedy policy—and exploiting the knowledge acquired so far to
choose actions based on the max Q-value as predicted by the Q-network. After executing the selected
action, the outcome (reward and next state) is observed and stored as a transition in the replay buffer.
The algorithm periodically samples from this buffer to break the correlation between consecutive training
samples, which helps in stabilizing the learning process. A key distinction of DDQN is evident in its
strategy for updating the Q-values. It decouples the action selection from the evaluation stage during the
computation of the target Q-value. Specifically, the action that maximizes the Q-value for the next state is
selected using the current Q-network, but its value is evaluated using the Target network. The algorithm
implements periodic updates to the Target network by copying the weights from the current Q-network,
ensuring the target values are stable yet gradually adapt to the learned values. The algorithm proceeds
iteratively improving the policy until a specified performance threshold is reached or the maximum number
of episodes is exhausted (see Algorithm 1) .

Overall, our methodology involves a cycle of RL where the DRL agent iteratively interacts with the
DES environment, mirroring manufacturing processes to optimize JSSP. Through this cycle, the agent
learns optimal scheduling strategies by making decisions, receiving feedback in the form of rewards, and
updating its policy to maximize efficiency and productivity in a simulated real-world setting (Figure 1).

4 COMPUTATIONAL EXPERIMENTS AND RESULTS

The study conducted computational experiments on five small to medium size generated JSSP instances in
varying scales, including 6×6, 10×10, 15×15, 20×20, and 30×20 configurations, where the first figure
denotes the number of jobs and the second figure the number of machines. The experiments were executed
within a Python programming environment, leveraging PyTorch for its deep learning functionalities. This
setup ran on a workstation running a Windows operating system, which was powered by an Intel(R)
Core(TM) i5-1035G4 CPU and 16 GB of RAM.
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Algorithm 1 Double Deep Q-Network (DDQN) Algorithm
1: Initialize replay buffer D to capacity N
2: Initialize action-value function Q with random weights θ

3: Initialize target action-value function Q̂ with weights θ− = θ

4: Observe and preprocess initial state s0 to φ0 = φ(s0)
5: Initialize target update frequency C
6: for episode = 1,M do
7: Initialize sequence with preprocessed state φ1 = φ(s0)
8: for t = 1,T do
9: With probability ε select a random action at

10: otherwise select at = argmaxa Q(φ(st),a;θ) using the current Q network
11: Execute action at in emulator and observe reward rt and next state st+1
12: Preprocess st+1 to obtain φt+1 = φ(st+1)
13: Store transition (φt ,at ,rt ,φt+1) in D
14: Sample random minibatch of transitions (φ j,a j,r j,φ j+1) from D
15: if φ j+1 is terminal then
16: Set y j = r j

17: else
18: Set y j = r j + γQ̂(φ j+1,argmaxa Q(φ j+1,a;θ);θ−)
19: end if
20: Perform a gradient descent step on (y j −Q(φ j,a j;θ))2 with respect to the parameters θ

21: if t mod C == 0 then
22: Update the weights of the target network: θ− = θ

23: end if
24: end for
25: if mean reward over last N episodes ≥ specified threshold then
26: Break and report success
27: end if
28: end for

4.1 Training Process

The training process of the DRL agent, specifically utilizing the DDQN algorithm for optimizing JSSP,
involves a series of steps and iterations to learn effective PDRs. This process is both computationally intensive
and data-driven, relying heavily on interactions with the simulated DES environment to incrementally improve
decision-making capabilities. Initially, the training begins with the agent exploring the state-action space
quite broadly, primarily relying on random selections to gain diverse experiences. This exploration is
facilitated by an ε-greedy strategy, where the agent randomly chooses actions with probability ε but follows
the learned policy with probability 1− ε . The value of ε is gradually decayed over time, allowing the
agent to shift from exploration to exploitation of the learned policy. At this stage, the agent’s actions are
more likely to lead to sub-optimal scheduling decisions, but these experiences are crucial for learning the
dynamics of the job shop environment.

A significant challenge encountered during the training is balancing the exploration-exploitation trade-
off. Adequate exploration is necessary to prevent the agent from converging prematurely to a sub-optimal
policy, yet excessive exploration can hinder learning efficiency and prolong the training process. Another
challenge is ensuring the stability of learning, given the high dimensionality of the state space and the
variability inherent in the JSSP. The use of experience replay memory and the DDQN architecture, which
separates the evaluation of the state-action value from the selection of actions, helps to mitigate these
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Figure 1: DRL Algorithm and DES.

challenges by providing a more stable learning update mechanism. Throughout the training process,
the agent’s performance is continuously monitored by evaluating KPIs including makespan and machine
utilization. These evaluations provide insight into how well the learned scheduling policy generalizes to
unseen instances and identify stages where the agent’s performance plateaus or improves.

Towards the later stages of training, as the agent progressively refines its policy, key observations include a
noticeable improvement in scheduling efficiency, demonstrated by reduced makespan and increased machine
utilization. The agent learns to prioritize jobs and operations in a manner that aligns with the optimization
objectives, showcasing the capability of DRL approaches to navigate the complexities and constraints of
JSSP. However, continuous monitoring and adjustments are still required to address any overfitting to the
training instances and ensure that the agent maintains robust performance across a wide range of job shop
configurations.

We use fixed hyperparameters for training, setting the learning rate to 0.001, with a discount factor γ of
0.99 to ensure the agent values future rewards. For exploration, ε starts at 1.0 and is decayed exponentially
to a minimum of 0.01 over the first 5,000 iterations, balancing the initial broad exploration with later-stage
exploitation. The replay buffer size is set to 10,000 to ensure a diverse range of experiences is available
for the agent, aiding in the prevention of rapid forgetting and promoting stability in learning updates. The
batch size for sampling from the replay memory is configured at 64, the target network update frequency
is established at 100 steps.

4.2 Experimental Results

The evaluation of the DRL agent’s performance in JSSP instances was conducted focusing on two principal
KPIs: makespan and machine utilization. A reduction in makespan directly indicates an enhancement in
scheduling efficiency, suggesting that the system can process jobs more rapidly. This increase in throughput
also potentially improves customer satisfaction through quicker order fulfillment. Additionally, measuring
machine utilization, which indicates the proportion of time machines are actively processing jobs, serves
as a critical metric for assessing productivity and minimizing downtime.

Given the widespread utilization of heuristic PDRs for JSSP due to their simplicity and effectiveness
under certain scenarios, we conducted a comparative analysis between the performance of the DRL agent
and most commonly used PDRs, namely FIFO, SPT, LIFO, LPT, LTWR, MTWR, STPT, LTPT. This
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comparison is crucial in demonstrating the superior capabilities of the DRL agent over conventional
scheduling approaches.

We conducted training and validation experiments on the generated instances 6×6, 10×10, 15×15,
20× 20, and 30× 20 ). For each instance size, we randomly generated 100 instances and reported the
average objective (makespan) and gap compared to the OR-Tools solutions for our method and various
baselines. The gap is calculated using the following formula: Gap(%) =

(
Objective Value−Optimal Value

Optimal Value

)
×100.

In these experiments, our DDQN agent was utilized to allocate jobs to machines across different problem
instances. The results are tabulated in Table 1, which demonstrates that the DDQN agent consistently
outperformed all baseline PDRs across various JSSP instances. It is noteworthy that as the size of the
instance increased, the performance of the baseline PDRs diminished significantly, whereas the DDQN
agent maintained a stable and relatively superior performance.

Instance FIFO SPT LIFO LPT LTWR MTWR STPT LTPT DDQN
6×6 Obj. 694 656 682 663 676 639 687 651 581

Gap 42.21% 34.43% 39.75% 35.86% 38.52% 30.94% 40.78% 33.40% 19.06%
10×10 Obj. 1227 1157 1176 1129 1162 1148 1192 1131 1095

Gap 51.86% 43.19% 45.54% 39.73% 43.81% 42.08% 47.52% 39.98% 35.52%
15×15 Obj. 1892 1803 1833 1756 1823 1795 1877 1746 1577

Gap 59.26% 51.77% 54.29% 47.81% 53.45% 51.09% 58.00% 46.97% 32.74%
20×20 Obj. 2512 2458 2488 2403 2466 2435 2498 2414 2216

Gap 61.44% 57.97% 59.90% 54.43% 58.48% 56.49% 60.54% 55.14% 42.42%
30×20 Obj. 3188 3068 3122 3011 3089 3039 3175 3016 2497

Gap 64.33% 58.14% 60.93% 55.21% 59.23% 56.65% 63.66% 55.46% 28.71%

Table 1: Computational Results.

Figure 2 illustrates the evolution of makespan over time across five distinct JSSP instances with each
sub-figure presenting both training and validation performance. While the training lines exhibit an initial
exponential decline in makespan, indicating rapid learning, it eventually plateaus; conversely, the validation
lines swiftly stabilize, which underscores the model’s ability to generalize its learned scheduling strategies
effectively across different scales of job shop configurations. Regarding to the machine utilization KPI,
we observed at increments of 9% for the 6×6 instance, 12% for the 10×10, 15% for the 15×15, 18%
for the 20×20, and reaching up to 21% for the largest 30×20 instance, respectively.

In contrast to heuristic PDRs, which rely on predefined strategies, the DRL agent dynamically adjusts
its scheduling solutions in response to the evolving state of the job shop. This entails a potential discovery of
more efficient scheduling methodologies not preconceived by heuristic approaches. Consequently, the DRL
agent exhibits not only a flexibility in optimizing utilization across varying scenarios but also successfully
achieves a balanced optimization of overall system performance.

5 CONCLUSION AND FUTURE WORK

This paper delves into the effectiveness of DRL in optimizing the JSSP through a custom-built DES. Through
experimentation and analysis, our findings confirm that the DRL agent possesses the capacity to learn and
adapt within various job shop settings, leading to notable improvements in KPIs. Such outcomes highlight
DRL’s potential as an innovative substitute for traditional PDRs, especially in navigating the complexities
presented by dynamic JSSP environments. This investigation enhances the wider comprehension of DRL’s
utility in combinatorial optimization tasks. Practically, applying DRL in conjunction with DES to address
JSSP presents significant implications for sectors that benefit from adaptable and dynamic scheduling
approaches.

The experimental results present a strong indication of DRL’s capability to refine complex scheduling
processes. By capitalizing on DRL’s inherent ability to derive insights from interactions within a DES, the
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Figure 2: Evolution of Makespan.

DRL agent managed to exhibit enhancements in certain KPIs. Nevertheless, while the advantages seem
promising, this approach encounters several hurdles. A notable challenge is the extensive computational
resources and time necessary for the DRL agent’s training, which escalates with the complexity of the
scheduling environment. Additionally, the efficacy of the scheduling solution is substantially influenced by
the design of the reward function, state representation, and the DRL model’s structure. Another vital issue
is ensuring that the agent generalizes well across varied job shop setups without overfitting to particular
cases, requiring meticulous adjustment and validation.

In summary, exploring DRL as a solution to the JSSP offers invaluable perspectives on the potential
of AI-driven methodologies to redefine conventional scheduling practices. The adaptability, learning
capability, and the possibility to discover innovative scheduling strategies underscore DRL as a formidable
tool in scheduling optimization. However, overcoming the challenges associated with training intricacies,
model design, and ensuring broad generalization is crucial for tapping into DRL’s complete applicability
in practical scenarios. Future studies could investigate hybrid approaches that merge DRL’s strengths
with domain-specific heuristics, or delve into advancements in DRL architectures to boost efficiency and
scalability.
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