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ABSTRACT

We consider ranking and selection (R&S) problems where the performance of competing designs or
alternatives can only be assessed by evaluating two alternatives simultaneously with a binary outcome; the
true performance of an alternative is quantified by its average probability of outperforming other alternatives.
We discuss the challenges associated with applying conventional R&S techniques to this particular setting
and propose heuristic algorithms based on Thompson sampling to overcome those difficulties. Through a
series of simple numerical experiments, we assess the effectiveness of these heuristics and highlight open
research questions.

1 INTRODUCTION

Ranking and selection (R&S) aims at identifying the best design among a possibly large, but finite, set of
competing designs by simulating each design through a sufficient number of replications.

In this paper, we consider a specific variant of R&S where the performance of competing designs
or alternatives can only be assessed by evaluating two alternatives simultaneously whereby the sampling
outcome is binary; the true performance of a design is then defined as its average probability of outperforming
the other competing designs. More specifically, given a set of k competing designs or alternatives with
some unknown underlying ranking, our objective is to determine the top-ranked design in the set through
pairwise comparisons. Identifying the top design through pairwise comparisons is a challenge encountered
in many applications, including player ranking in games, sports tournaments, recommender systems, image-
based search, public choice models such as voting schemes or decision rules in committees, and market
research (Eriksson 2013). Other applications include selection in evolutionary algorithms, optimizing search
engine result relevance, and preference elicitation in decision making (Groves and Branke 2019). Pairwise
comparisons are also used in multi-criteria decision-making among alternatives as human judgment is
impaired by the lack of transitivity due to such factors as threshold effect, disturbance in concentration or,
simply, errors in input data (Xiao et al. 2023).

The method of paired comparisons, whose roots can be traced back to psychometrics, studies general
preferences based on all possible pairwise comparisons between alternatives (e.g., A/B testing). However, as
the number of alternatives, k, grows large, the consideration of all possible pairwise comparisons (i.e., total
enumeration of k(k−1)/2 cases) becomes increasingly inefficient (Lu and Boutilier 2011). This complexity
is magnified when operating under a constrained sampling budget, making it highly desirable to devise
procedures that efficiently identify the most informative pairs to evaluate, rather than non-adaptively or
exhaustively evaluating all possible comparisons. While the development of traditional R&S procedures has
achieved huge success, in this paper, we discuss some of the difficulties in applying them to our setting where
the pairwise comparison outcomes are modeled as Bernoulli random variables. To address these challenges,
we resort to Thompson sampling, a popular approach in the realm of multi-armed bandit problems, and
develop two easy-to-implement heuristic policies to guide the sampling process. The numerical results show
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that our simple heuristics deliver quite efficient and robust performance compared with several benchmarks,
which highlights promising avenues for further research.

The remainder of the paper is organized as follows: Section 2 provides a light overview of the vast
literature about R&S and pairwise comparison settings. The problem is formally formulated in Section 3
where the heuristic algorithms are also presented. Section 4 illustrates the performance of the proposed
heuristics under various metrics. Promising venues for further research are discussed in Section 5.

2 LITERATURE REVIEW

R&S literature features two main streams of research: fixed precision and fixed budget. The former stream,
which dates back to the pioneering works of Bechhofer (1954), Paulson (1964), and Rinott (1978), treats
R&S as a statistical problem and aims at providing frequentist guarantees for the estimated best design. To
achieve a pre-specified confidence level, an indifference-zone (IZ) parameter is often introduced to indicate
the smallest difference in mean performance that is worth detecting; as a result, this stream is labeled as IZ
procedure in the literature. More recent notable works in this stream include the fully sequential procedure
of Kim and Nelson (2001), the IZ-free procedure of Fan et al. (2016), and the parallel computing procedure
of Zhong et al. (2022).

The latter stream of literature addresses R&S from an efficient budget allocation perspective, which
aims at allocating a finite simulation budget to competing designs to maximize some quality metric for the
estimated best design. This stream can be further categorized into two sub-streams. The first sub-stream
originates from the adaptive optimal computing budget allocation (OCBA) approach (Chen et al. 2000),
which is shown to be asymptotically optimal using large deviations theory (Glynn and Juneja 2004). These
procedures dynamically sample designs to learn and satisfy the optimal sampling ratios, with representative
papers including Gao et al. (2017), Shin et al. (2018), and Chen and Ryzhov (2023). The second sub-
stream adopts the Bayesian perspective and tends to myopically improve some quality metric. Notable
examples include the Knowledge Gradient (KG) procedure of Frazier et al. (2008), the expected value
of information (EVI) procedure of Chick et al. (2010), and the approximately optimal allocation policy
(AOAP) of Peng et al. (2018). Apart from the two main sub-streams, there is some recent work borrowing
the idea of Thompson sampling from multi-arm bandit problems to address R&S problems (e.g., Russo
(2020), Peng and Zhang (2022)). In general, fixed-budget procedures are more efficient and necessitate
a smaller simulation budget than fixed-precision procedures to achieve a comparable level of decision
quality. However, they typically fail to offer rigorous statistical guarantees. A recent exhaustive review on
traditional R&S can be found in Hong et al. (2021).

R&S with pairwise comparisons has been explored by Groves and Branke (2019). They assume a
value-based sampling outcome (defined as the score with which design i beats design j) under Gaussian
noise and adapt conventional myopic R&S procedures to this setting. Further, Xiao et al. (2023) investigate
this setting from an OCBA perspective, and propose heuristic algorithms to adaptively balance the derived
conditions of optimal sample allocation ratios. Li et al. (2020) consider identifying the most important
nodes in a random network, where the importance of nodes is determined by the stationary distribution of
the transition matrix; they adapt the AOAP for this setting to actively select the pair of nodes for sampling.
The closest work to our binary outcome model is that of Priekule and Meisel (2017), which develop several
heuristic algorithms based on the KG procedure.

The task of identifying the top alternative through pairwise comparisons has also been investigated
by the computer science community under the concept of dueling bandits (Yue and Joachims 2009).
Some works assume there exists a complete ranking of alternatives, consistent with all pairwise preference
probabilities, aiming to identify the so-called Condorcet winner. Examples include Jamieson and Nowak
(2011), Yue et al. (2012), and Mohajer et al. (2017). When no structural assumption is made for the
pairwise preference, a universal Condorcet winner may not exist. In such cases, Wu and Liu (2016) devised
the double Thompson sampling procedure to seek the Copeland winner, while Heckel et al. (2019) actively
learn and rank alternatives according to Borda scores. These methodologies resemble fixed-precision R&S
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procedures, which aim to minimize accumulated regret or provide frequentist guarantees, with provable
sample complexity bounds. A comprehensive review of dueling bandits problems and algorithms is offered
by Bengs et al. (2021).

3 PROBLEM FORMULATION AND ALGORITHM

Consider k competing designs or alternatives whose performance can only be assessed through pairwise
comparison. The sampling outcome Yi j ∈ {0,1} of any pair of designs (i, j), where i, j ∈ {1,2, . . . ,k} and
i ̸= j, is independent and identically distributed Bernoulli random variables with parameter 0 ≤ pi j ≤ 1.
Here, pi j reflects the probability that design i outperforms design j, satisfying the condition pi j + p ji = 1.
For each design i, the average winning probability is then given by

pi =
1

k−1 ∑
j ̸=i

pi j. (1)

The best design is then defined as i∗ := argmax1≤i≤k pi, which can be estimated by

î∗ = argmax
1≤i≤k

1
k−1 ∑

j ̸=i
p̂i j,

where p̂i j is the empirical estimator obtained from simulation experiments. Given the symmetry of sampling
outcomes for (i, j) and ( j, i), we can simply focus on sampling (i, j) with i < j and construct the estimator
p̂i j =

1
ni j

∑
ni j
l=1Y l

i j and p̂ ji = 1− p̂i j.

Remark 1 In our problem setting, we do not assume any specific structure for the winning probabilities,
except that pi j + p ji = 1. Consequently, “probability cycles” can occur, and a universal Condorcet winner
i∗ with pi∗ j > 0.5,∀ j ̸= i∗ may not exist. In such settings, alternative definitions for the best design
are considered, including the Borda winner, the Copeland winner, the random-walk winner, and the von
Neumann winner (see Bengs et al. (2021) for detailed definitions). In this paper, we chose to adopt the
Borda score, the average winning probability defined in (1).

The challenge is to identify the top-ranked item using significantly smaller computational effort than
evaluating all possible pairwise comparisons. This is because as k grows large, the total enumeration of
k(k−1)/2 comparisons becomes computationally infeasible. We therefore consider this problem from a
fixed-budget perspective and assume a sampling budget N = O(k(k−1)/2). This constraint allows for
limited sampling of each pair, making accurate evaluation of all pairwise comparisons impractical. As
outlined in Algorithm 1, our goal is to develop a procedure to iteratively select the next pair to sample
and return the estimated best design in the end. The key ingredient is the sampling policy π , which aims
at efficiently allocating the limited sampling budget to maximize the quality of the returned design. Two
commonly used frequentist quality metrics in the literature are the probability of correct selection (PCS)
and the expected opportunity cost (EOC), defined respectively as:

PCS := P
[
î∗ = i∗

]
and EOC := E

[
pi∗ − pî∗

]
,

where the randomness in î∗ may arise from both the sampling outcomes and the sampling policy.

3.1 Bayesian Framework

Several efficient R&S procedures have been developed under the Bayesian framework (e.g., KG and AOAP).
Within this framework, the unknown parameters are regarded as random variables and characterized by
a prior distribution. In sequential procedures, the posterior or conditional distributions for the parameters
drive the sampling process. In our problem settings, we follow the Bayesian framework whereby we adopt
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Algorithm 1: Framework of the sampling budget allocation procedure
Setup: Take n0 samples for each pair of design (i, j).
Update the information set as Et0 with t0 =

k(k−1)n0
2 .

for t = t0 +1, . . . ,N do
Identify the next pair (it , jt) = π(Et−1) to sample according to some policy

π : E →{(i, j) : 1 ≤ i < j ≤ k} .

Sample (it , jt) to get Y t
i j and update the information set Et .

end
Return: î∗ = argmax1≤i≤k

1
k−1 ∑ j ̸=i p̂i j

a Beta conjugate prior. More formally, for each pi j with 1 ≤ i < j ≤ k, we assume an independent prior
distribution, given by

pi j ∼ Beta(α0
i j,β

0
i j),

where the uniform prior with α0
i j = β 0

i j = 1 is a natural and commonly used choice. Let Et := {(il, jl,Y l
i j)}t

l=1
represent the information set that records all the sampled pairs and outcomes up to step t. Denote by nt

i j the
number of total samples for pair (i, j) and W t

i j as the count of “wins” where design i outperforms design
j. According to the Bayes rule, the posterior distribution for pi j given Et is:

pi j|Et ∼ Beta(α t
i j,β

t
i j),

where α t
i j = α0

i j +W t
i j and β t

i j = β 0
i j + nt

i j −W t
i j. Symmetrically, we have p ji|Et ∼ Beta(α t

ji,β
t
ji) with

α t
ji = β t

i j and β t
ji = α t

i j. The posterior expectation (mean estimator) is given by pt
i j = α t

i j/(α
t
i j +β t

i j) and
pt

i =
1

k−1 ∑ j ̸=i pt
i j. The corresponding predictive distribution for Yi j|Et is Bernoulli with parameter pt

i j.
Although the above Bayesian formulation is natural, adapting traditional R&S procedures to this setting

presents significant challenges. For example, Priekule and Meisel (2017) employ the KG framework (Frazier
et al. 2008) to develop efficient algorithms for pairwise sampling. The one-step look-ahead sampling policy
is defined as:

(it , jt) = argmax
(i, j)

KG(i, j) :=
{
Et−1

[
max

l
pt

l | Et−1,(i, j,Yi j)

]
−max

l
pt−1

l

}
,

where Et−1 denotes the expectation conditioned on Et−1. However, this KG implementation is somewhat
inefficient as the Bernoulli setting frequently leads to zero values of KG for all pairs in multiple steps of the
algorithm. For the multi-step look-ahead version, we also found it difficult to characterize the optimal number
of steps to use. Some other well-established traditional R&S procedures (e.g., AOAP) try to myopically
improve the Bayesian posterior PCS, i.e., P

[
∩ j ̸=i∗,t pi∗,t > p j | Et

]
with i∗,t being the estimated best design

at step t. However, in our Bayesian formulation, the posterior characterization of pi becomes complicated
as an average of k− 1 Beta distributions, making the posterior PCS hard to approximate. Groves and
Branke (2019) get around this challenge by approximating the posterior distribution as Gaussian, enabling
the application of traditional R&S techniques. However, this approximation appears to be rough for binary
outcomes, as illustrated by our empirical results. Furthermore, extending the OCBA ratio (Glynn and
Juneja 2004) of traditional R&S problems to this pairwise comparison setting remains challenging even
for Gaussian distributed sampling outcomes. Xiao et al. (2023) propose an approximate solution, which
still falls short of achieving true optimality.
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3.2 Top-Two Thompson Sampling

Given the above challenges, we develop heuristics based on another Bayesian scheme for adaptive allocation
of sampling effort that has recently received significant attention from various communities. Thompson
sampling is an algorithm for online decision problems where actions are taken sequentially in a manner
that must provide a balance between exploiting what is known to maximize immediate performance and
exploring or investing to accumulate new information that may improve future performance (Russo et al.
2018). Originally developed within the context of multi-arm bandit problems, Thompson sampling balances
the exploration-exploitation trade-off through a stationary randomized strategy that assigns the sampling
budget to arms (alternatives) in proportion to the posterior probability of being optimal. However, when the
posterior probability is concentrated around a particular value, Thompson sampling acts almost as a pure
exploitation algorithm, allocating an insufficient portion of the budget for the exploration of other possibly
optimal alternatives. To restore the balance, Russo (2020) introduced Top-Two Thompson sampling (TTTS),
a set of Bayesian algorithms for best-arm identification with provable properties.

Peng and Zhang (2022) illustrate the relevance of Thompson sampling for R&S where a good balance
between exploration and exploitation is needed for efficient allocation of the sampling budget to each
alternative. To this end, we adopt TTTS to iteratively select the next pair (i, j) to sample for enhancing
the accuracy of the estimated best design. To accommodate the pairwise comparison setting, the top
candidate is identified in the usual manner. Then we consider two policies to designate the runner-up.
The first policy, TTTS+Random, selects the runner-up randomly from the remaining k−1 alternatives. In
the second policy, TTTS+MaxVar, the runner-up is the design that exhibits the largest posterior variance
in pairwise comparison probabilities with the top candidate based on the information collected thus far.
While TTTS+Random provides a cost-effective, but less targeted, approach to exploration, TTTS+MaxVar
aims to refine the top design’s estimate by incorporating variability considerations. Both sampling policies
are heuristic; as a result, there is no guarantee that one would dominate the other. We summarize the two
sampling policies in Algorithm 2 and 3. The tuning probability parameter γ controls the allocation of the
sampling budget between the top design and the others, where a robust choice of 0.5 is suggested by Russo
(2020) in practice. In addition, when the posterior distribution becomes highly concentrated, it may take
a long time to generate i2 ̸= i1. To avoid a heavy computational overhead, it is common practice to set a
limit on the number of repeat loops; we adopt a cap of 100 in the numerical tests whereby the resulting
computational cost is not excessive compared with existing methods. The following section illustrates the
performance of our heuristic algorithms on simple test problems.

Algorithm 2: TTTS+Random
Input: Information set Et−1, a probability parameter 0 < γ < 1
Sample p̃i j ∼ Beta(α t−1

i j ,β t−1
i j ) for all 1 ≤ i < j ≤ k, and set p̃ ji = 1− p̃i j.

Compute i1 = argmaxi p̃i =
1

k−1 ∑ j ̸=i p̃i j and generate x ∼ U(0,1).
if x ≤ γ then

Set it = i1.
else

repeat
Sample p̃i j ∼ Beta(α t−1

i j ,β t−1
i j ) for all 1 ≤ i < j ≤ k, and set p̃ ji = 1− p̃i j.

Compute i2 = argmaxi p̃i =
1

k−1 ∑ j ̸=i p̃i j.
until i2 ̸= i1
Set it = i2.

end
Randomly select jt ̸= it and switch (it , jt) if jt < it .
Return: (it , jt)
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Algorithm 3: TTTS+MaxVar
Input: Information set Et−1, a probability parameter 0 < γ < 1
Sample p̃i j ∼ Beta(α t−1

i j ,β t−1
i j ) for all 1 ≤ i < j ≤ k, and set p̃ ji = 1− p̃i j.

Compute i1 = argmaxi p̃i =
1

k−1 ∑ j ̸=i p̃i j and generate x ∼ U(0,1).
if x ≤ γ then

Set it = i1.
else

repeat
Sample p̃i j ∼ Beta(α t−1

i j ,β t−1
i j ) for all 1 ≤ i < j ≤ k, and set p̃ ji = 1− p̃i j.

Compute i2 = argmaxi p̃i =
1

k−1 ∑ j ̸=i p̃i j.
until i2 ̸= i1
Set it = i2.

end

Set jt = argmax j ̸=it Var
[
pit j | Et−1

]
=

αit jβit j
(αit j+βit j)

2(αit j+βit j+1) and switch (it , jt) if jt < it .

Return: (it , jt)

4 NUMERICAL ILLUSTRATION

We illustrate our heuristic algorithms with a simple synthetic problem under different numbers of competing
designs. For comparison purposes, we include the following algorithms in the experiments:

• Random Sampling (RS): In each iteration, a pair (it , jt) is randomly selected for sampling. Even
though it is well known to be inefficient (Jamieson and Nowak 2011), RS provides a natural and
robust benchmark.

• POCBA (Groves and Branke 2019): By approximating the posterior distribution of each pi j as
Gaussian, this procedure looks one step ahead to improve the posterior PCS.

• KG+RS (Priekule and Meisel 2017): This algorithm uses KG to identify the pair for sampling
provided that it can identify any pair with positive KG value; otherwise, it uses random sampling.

The four cases include k = 10,20,50,and 100 competing designs, giving rise to a total number of pairs of
45, 190, 1225, and 4950, respectively. In the experiments, each pair initially receives n0 = 10 samples; we
set the total budget to be N = 1000k. The pairwise comparison probabilities pi j are randomly drawn from
the standard uniform distribution U(0,1). We evaluate the efficiency of each algorithm through R = 10,000
independent macro replications, calculating the frequentist estimates of PCS and EOC as follows:

P̂CS =
1
R

R

∑
r=1

1

{
î∗r = i∗r

}
and ÊOC =

1
R

R

∑
r=1

(pi∗r − pî∗r
),

where i∗r and î∗r denote the true and estimated best design in the r-th macro replication respectively. The
results are depicted in Figure 1 and Figure 2.

From the results, we observe that the two versions of the TTTS policy yield comparable performance
while consistently outperforming the other algorithms across the four cases. As the number of designs
increases, the benefits of employing TTTS become more pronounced. In contrast, the KG+RS procedure
exhibits only a slight advantage over RS. This observation suggests that while the KG framework theoretically
makes sense, the Bernoulli setting often results in KG values of zero, thereby curtailing its potential. Notably,
the performance of POCBA is disappointing, especially in the first two cases. Thus, the direct use of
Gaussian approximations for Bernoulli outcomes is not robust. In summary, we find that TTTS provides
an efficient framework to overcome the difficulties faced by the other procedures for selecting the best
system where the performance of competing designs can only be assessed through pairwise comparisons
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(c) k = 50.
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(d) k = 100.

Figure 1: Comparison of the achieved P̂CS.

with binary outcomes. Although TTTS was originally designed to choose a single top design to sample,
we show that aggregating TTTS with heuristic ways of identifying a runner-up can be both effective and
robust for handling R&S with pairwise comparisons.

5 CONCLUSION

In this paper, we address the challenge of ranking and selection (R&S) where the performance of com-
peting designs or alternatives can only be assessed by evaluating two alternatives simultaneously; the true
performance of a design is defined as its Borda score, i.e., its average probability of outperforming the
other competing designs. Under a fixed-budget perspective, we discuss some of the difficulties in applying
popular R&S techniques to this context and propose the heuristic algorithms based on Thompson sampling
to overcome those difficulties.

In our experiments, we note that Top-Two Thompson Sampling offers an effective approach to identifying
the pair of designs to sample from. Shi et al. (2023) establish the posterior large deviation ratios for general
adaptive sampling policies, including TTTS, for contextual R&S problems. They propose a randomized
sampling policy to force sufficient exploration and prove its consistency. To generalize our observations
from this limited set of experiments, our current focus is on characterizing the behavior of TTTS for
pairwise comparisons and formally proving its properties.
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Figure 2: Comparison of the achieved ÊOC.
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