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ABSTRACT

The creation and maintenance of effective production plans is a central problem in supply chain planning.
NXP Semiconductors N.V. uses a Mathematical Programming (MP) model to generate offline production
plans on both short and long-term horizons. However, production plans need online updates in response
to unforeseen events. This process is carried out manually, making the updated plans not optimal. This
paper proposes the use of Deep Reinforcement Learning (DRL) as a method to produce close-to-optimal
updated plans. DRL is suitable for large-scale problems and can produce close-to-optimal scheduling
solutions quickly, whereas MP models ensure optimality at the expense of high computational complexity.
The performance of DRL is compared against traditional optimization methods and a MP model using a
simulation model that mimics NXP’s situation. The results of this study highlight the usefulness of DRL as
a tool for short and long-term decision-making in supply chain planning within the semiconductor industry.

1 INTRODUCTION

Supply chain planning is pivotal for semiconductor companies due to the industry’s dynamic nature,
marked by variable demand, global manufacturing, and multi-tier suppliers (Banerjee 2007). These factors
contribute to the complexity of planning processes, making them dynamic, intricate, and highly sophisticated
(Mönch et al. 2018). Semiconductor supply chain planning presents unique challenges due to its NP-hard
nature, necessitating quick and high-performance solutions (Mönch et al. 2018). Many companies rely on
mathematical models for planning, such as NXP’s hierarchical Mathematical Programming (MP) model,
IBM’s SCO processes supported by MP, and Intel’s supply chain planning supported by MP (Degbotse
et al. 2013), (Denton et al. 2006), (Bean et al. 2005). Other semiconductor companies, like Infineon and
Texas Instruments, have also explored using MP models for supply chain planning (Ziarnetzky et al. 2019),
(Deng et al. 2010). MP models guarantee optimal plans at the expense of a high computational complexity.
This makes MP models a viable solution for weekly planning, where the entire plan is produced based on
a set of static variables, but not for daily planning, where the solution algorithm needs to adapt swiftly to
unforeseen events.

In NXP, the process of rapidly adapting plans to unforeseen events is known as rapid scenario planning.
Currently, the company manages rapid scenario planning manually, requiring supply chain planners to update
plans generated over the weekend by an MP model. However, this slow process can lead to sub-optimal
resource utilization and operational inefficiencies. In practice, supply chain planners frequently respond
to unforeseen events by canceling orders and addressing them again in the following week while leaving
the rest of the current plan unchanged. Later, when the new (weekly) plan is generated, it includes the
unsatisfied orders from the previous week. This results in underutilization, as planners do not modify the
current week’s plan but cancel and delay orders.

Reinforcement Learning (RL) and meta-heuristics are popular techniques for quickly producing close-
to-optimal scheduling solutions. RL is a method used to learn sensible policies in sequential decision-making
problems. In the context of scheduling problems, a policy is a function that, given the current schedule and
the remaining orders, assigns one of the remaining orders to a location and a time in the schedule. On the
other hand, meta-heuristics explore the space of all possible complete schedules to find a close-to-optimal
one.
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This work will focus on a Deep Reinforcement Learning (DRL) optimization method for the supply chain
planning problem experienced at NXP. DRL involves using advanced deep neural networks to approximate
policies or values in RL algorithms. In contrast to RL, DRL is suitable for handling large-scale problems,
which is the case for NXP’s scenario.

Recent approaches include DRL for task scheduling (Lu et al. 2021), for capacity planning (Tseng
et al. 2023), and for supply chain synchronization (Jackson 2022). There is a gap in deep reinforcement
learning (DRL) research when it comes to long-term strategic decision-making in supply chain scheduling.
This issue needs to be addressed because current planners do not take into account long-term consequences
when being pressured to make rapid decisions. A decision made early in the planning process can lead
to significant delays, especially if the company is planning to fully utilize all resources. Planners usually
choose the path with the least resistance, with minor short-term impacts, ignoring long-term effects. This
paper addresses this gap by comparing DRL algorithms against traditional optimization methods and an
MP model to produce long-term scheduling plans. Note that this paper focuses on the question of whether
it is possible to apply DRL in this context, and if it can match the performance of other methods. It does
not however focuses on proving that DRL would be the best option.

We will evaluate the effectiveness of the suggested optimization methods using a simulation model
that replicates the conditions at NXP. This optimization challenge involves three distinct physical supply
chains, with each chain consisting of three types of sequential resources: assembly resources, wire-bonding
resources, and final testers. Among these resources, the final testers are the bottleneck resources. The
Customer Order Decoupling Point (CODP) is situated between the front-end and back-end processes,
assuming infinite stock within the CODP. Three supply paths are available: dual-sourcing path capable of
producing both product types A and B, and two dedicated supply paths, each exclusively producing either
type A or B. Lead times from CODP to end-product storage differ, with the dual-sourcing path taking one
week and the dedicated paths taking two weeks. Despite similar weekly capacities across supply paths, the
dual-sourcing path exhibits faster production for both product types. The system is depicted in Figure 1.

Figure 1: Simulation of NXP’s scenario

Our planning horizon spans 52 weeks to create annual production schedules. Confirmed orders from a
five-tier customer priority system (1 being the highest, 5 being lowest) populate the order book. Assumptions
include an infinite wafer buffer, a static order book, and fixed lead times. In the next section, we illustrate
the performance of traditional and tailored dispatching prioritization rules (DPRs) compared to the MP
model and the DRL agents.

2 METHODOLOGY

This section discusses the considered planning methods, namely, DPRs, MP, and DRL. We will highlight
each method’s advantages and drawbacks. This paper utilizes two (policy-based) DRL algorithms: the
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well-established Proximal Policy Optimization algorithm (Schulman et al. 2017) and the recently proposed
Deep Controlled Learning (Temizöz et al. 2020). We will show how the latter yields superior performance.

2.1 Dispatching Prioritization Rules (DPRs)

DPRs aim to construct schedules from scratch, allocating partial orders to supply paths for specific weeks
while minimizing order lateness and magnitude. We introduce generic and tailored DPRs for the context
of supply chain. The generic DPR is based on the Earliest Due Date (EDD); this benchmark assesses
capacity for all product type-supply path combinations, assigning partial orders based on confirmed due
dates and customer priorities (i.e. order release decision). However, early commitments of capacity may
result in inefficiency.

The tailored DPR differentiates from the generic benchmark by storing a potentially optimal action choice
for each supply path and product type combination, totaling four combinations. Unlike the benchmark,
it is not constrained by sequential decision-making that necessitates utilizing all capacity in the current
week to schedule for the next week. Instead, in each iteration, the decision rules determine an action
choice, comprising information about the supply path (plus product type): the week from which capacity
is deducted and the items will arrive (which may not align with the scheduling week), and the confirmed
due date of the order to be scheduled. The overarching approach remains similar: iteratively prioritize
orders by each week and priority until unmet demand is addressed. Similar dispatching rules are applied
by (Horiguchi et al. 2001), within the semiconductor industry context. The DPR selects the supply path
(plus product type) to commence production, targeting the ”First Available Week,” ideally aligning with
the Just-In-Time (JIT) week to maximize efficiency. In cases where JIT scheduling is not feasible, orders
are scheduled earlier, or when that is not feasible, later. The JIT date for each supply path synchronizes
with the confirmed due dates of products A and B that we are currently planning following the stacked
approach. Orders are assigned to the alternate supply path if actions exhibit similar customer priorities
and confirmed due dates and are equally early or late. Opting for the alternate supply path, rather than the
preferred or dual-sourcing path, when comparable factors enhance flexibility. It accommodates potential
production needs for the other product type.

2.2 Mathematical Programming (MP) model

In this work, we use the results of the MP model as a baseline. In each subsequent iteration, less urgent
customer orders are scheduled, using the left-over, available capacity of resources that are not already
occupied by higher-priority customers (in hours). While this method can speed up convergence (as the
solution space decreases after each iteration), there’s a risk of reaching a local optimal solution and not
exploring the entire solution space. To tackle this, the decision variables are reset and optimized for each
iteration, allowing a more thorough exploration of different solution regions. This approach increases
computational time but is better suited for achieving a ”global optimum.” Additionally, the paper retains
the previous objective value by saving the minimized cumulative shortage for priority 1 orders after the first
iteration (i.e., the sum of lateness multiplied by the size of priority 1 orders). This saved value is then added
as a new constraint for subsequent iterations to maintain consistency in the initial solution and prevent
converging to local optima. Therefore, the next iteration minimizes both priority 1 and 2 orders while
adhering to the new constraint, ensuring that the cumulative shortage for priority 1 orders does not exceed
the previously saved cumulative shortage for priority 1. The same model is then used for five iterations,
with each iteration becoming more complex to solve due to additional constraints from previous iterations
and an expanding solution space by allowing more order priority types to be simultaneously planned. The
final iteration solves for all orders (priorities 1 through 5) and has four additional constraints relative to the
first iteration, ensuring that the saved cumulative shortages for priorities 1 through 4 (from the previous
iterations) do not exceed the cumulative shortages for priorities 1 through 4 in the current model. We will
not have the MP model results available for all cases due to time constraints. We can only run it a few
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times, so the results can only be used as a reference for the deterministic problem and problems with low
levels of randomness. It can’t be used for results when a high level of randomness is introduced because
of the variability of the solutions and the number of runs needed to have a good confidence interval.

2.3 Deep Reinforcement Learning (DRL)

2.3.1 Markov Decision Processes (MDPs)

We propose an MDP that mimics the simplified semiconductor back-end supply chain shown in section 1.
The Markov Decision Process is a mathematical framework for modeling decision-making problems with
partly random and controllable outcomes. It is a framework that addresses reinforcement learning problems.
An MDP is defined by a tuple < S,A,P,R,γ >, where: A: Finite action set, S: Finite-state set, R: Reward
function, P: State transition probability, and γ: Discount factor γ ∈ [0,1]

The transition probability, P(s′|s,a), refers to the likelihood of going to state s′ ∈ S, given your current
state s ∈ S, and a chosen action a ∈ A. The states capture the agent’s perception of the environment. A
policy π is a function mapping states to actions. The policy defines the behavior of an RL agent. A policy is
a probability distribution on the set of actions A given the current state s. It provides a probability of picking
an action a at state s. A value function is the expected reward over a state (state-value function) or action
(action-value function). Reinforcement learning aims to find the optimal policy by iteratively updating value
functions, illustrated through the Bellman equation (Puterman 2014): vπ(s) = Eπ [∑

∞
k=0 γkRt+k+1|St = s].

The Bellman equation decomposes the value function into the expected immediate reward and the expected
value function of the next time step: vπ(s) = Eπ [Rt+1 + γvπ(s′)|St = s]. The Bellman equation guides the
algorithm’s action selection, providing the foundation for value-based algorithms that iteratively update the
value function until convergence.

For direct comparison with MP based approaches, our MDP formulation involves the scheduling of a
known set of orders for a period of 52 weeks. Our MDP formulation involves the sequential allocation of
those orders to supply path-week combinations. We first allocate priority 1 orders, then priority 2 orders,
etc; within each priority, we first allocate the orders with the earliest due date, etc. The MDP state space
keeps track of the remaining capacity for each week, path, and the remaining orders and is discussed in
detail in Section 2.3.2. The MDP action specifies the supply path and the week that the order should be
produced, an action may prescribe that the product for the requested order is to be produced in week w
using supply path sp. However, actions are contextual: the production week is specified relative to some
focal week that depends on the order due date and the capacity available for the resources, this will be
discussed in Section 2.3.3.

2.3.2 State Space

The state space encompasses all necessary information to represent a planning scenario, i.e. a situation
in which some of the orders in the order book are planned, while orders still need to be planned. In
particular, the state contains the unplanned orders (the order book), and the remaining capacity on each of
the supply paths, for each of the weeks in the planning horizon. This information is primarily captured in
matrices or vectors containing integers. For the order book, the matrix size (52 (weeks) X 5 (priorities)) for
each product is fixed. Figure 2 illustrates how unfulfilled (i.e. still to be planned) demand is stored. The
quantities are aggregated for a specific priority, with a specific confirmed due date. If there is no demand
for this combination, the matrix is filled with a 0 for that particular index. To mimic the current way of
scheduling (i.e. the stacked mathematical programming approach), higher priority orders (e.g. priority 1)
are satisfied before lower priorities, and according to ”Earliest-Due-Date”. Therefore, the state space also
includes information for the current customer priority and confirmed due date (refer to the green square in
Figure 2) for the product A and B orders currently being scheduled.

Note that supply path 1 is a dual-sourcing supply path. Capacity is subtracted by choosing either to
produce product A, or product B. Due to the unique usage rates, the amount of hours needed is different
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Figure 2: Matrices including unfulfilled demand for product A and B

to produce 2500 items (i.e. 2500 items = 1 lot). Due to order batching, orders are always expressed as
a multiple of 2500. After each action, where 2500 items are scheduled for production, the capacity is
adjusted accordingly. Capacity is subtracted from the moment of arrival.

The state space keeps track of focal week or First Week Available (FWA) for each specific order. The
focal week for each supply path-product type combination is determined depending on the current due date
of product A and product B, as well as the weekly capacity left. Idealistically the FWA is equal to the
JIT date. This means that the orders arrive from production in the same week as when they are needed.
However, this is not always possible due to capacity constraints. When production capacity in that week
is insufficient, the focal week is moved to an earlier week with sufficient production capacity (staying as
close as possible to the JIT date), or, if there is no such week, it is moved to a later week (but closest to
the JIT date).

All in all, the state space includes 2 matrices, one for each product type, of size 52(weeks) multiplied
by 5(priority types), where each index represents the aggregated quantities for a specific due date and
priority. Another matrix includes the available capacity (in hours) for each week, for each final tester (i.e.,
bottleneck), and for each supply path of size 52(weeks) multiplied by 3(physical supply paths). We also
keep track of the current due date and priority being scheduled for each product type (i.e. 4 scalers). For
each combination of product type and supply path, we track the ”focal week” and previous weeks that
still have capacity available to schedule an order for 2500 items (this will be explained in more detail
in subsubsection 2.3.3). The information includes the week numbers (from 1 to 52) and the difference
(measured in number of weeks) from a specific week to the ”focal week.” This results in 24 values: 4
(product type-supply path combinations) x 3 weeks x 2 (absolute week numbers and relative differences
respective to the focal week).

2.3.3 Action Space

Figure 3: Matrix including the available capacity (in number of items) for each week, for each supply
path, based on the bottleneck resource. For supply path 1, products A and B, it is based on 100% of the
capacity.

Figure 3 is an illustrative example highlighting the information derived from the state and illustrates
the action space for a specific state. It tracks the production capacity for each supply path and product type
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combination, along with the optimal scheduling week based on the Just-In-Time approach. Note that the
capacity is subtracted from the moment of arrival. In this figure, suppose that there is demand for either
product A or B due in week 8. The action space consists of 12 actions. For each combination of product
type and supply path, the agent can decide to assign a partial order to the focal week (see the blue squares
in Figure 3), the first available week earlier before the focal week (see the orange squares in Figure 3) or
the second available week before the focal week (refer to the purple squares in Figure 3). Note that the lead
time for supply chain 1 is one week, and for supply chains 2 and 3 is two weeks. Our annual production
plan starts in week 1. Our planning horizon is spanning from week 1 until week 52; for products to arrive
at week t, we need to start production in a week t − leadtime.

Long-term decision-making in this scheduling problem necessitates action masking to align with
prioritization based on due dates and customer priorities. Specifically, actions are masked to restrict the
neural network (NN) to selecting actions involving the product type with the highest priority or the lowest
confirmed due date (comparing the current due date and priority for product A and B orders), maintaining
fidelity to the stacking methodology. Additionally, capacity constraints dictate further action masking to
prevent the selection of weeks with insufficient capacity. Actions concerning product types that are already
fully satisfied are masked to avoid unnecessary noise that may hinder the NN’s learning ability. In essence,
action masking is implemented to constrain the selection of actions by the neural network to those pertaining
to the product type exhibiting the highest priority or the earliest confirmed due date, thereby upholding
the stacking methodology. Moreover, action masking takes into consideration capacity constraints, thereby
precluding the selection of weeks characterized by insufficient capacity.

2.3.4 Reward Function

Because of the assumed fixed lead times, it is known at the moment of (partially) scheduling an order,
whether this (partial) order is late, and by how many weeks. Therefore, we can provide the agent with
feedback when scheduling orders late immediately after the decision is made. Wplan is the week selected by
the JIT approach, and WDD is the confirmed due date. The feedback signal is 0 when orders are scheduled
early or just in time. The optimization problems reach the ”final state” when all the orders in the order
book have been allocated, or when all capacity is utilized. There are always orders left unsatisfied when
the state terminates. The cumulative demand (i.e., CD in Equation 1 ) of unsatisfied orders is given as a
final reward at the end. Equation 1 weights the unfulfilled demand based on quantity and lateness (i.e.
week 52 - weekDD). This reward function directly aligns with the objective value of the MP model, except
for the priority weights. We provide the agent with priority weights (i.e., wprio) to communicate that the
customer priorities matter and not to risk lateness of higher prioritized orders to avoid lateness for lower
prioritized orders.

CDt,prio =
t

∑
1
(

t ′≤t

∑
t ′=1

Dt ′,prio) (1)

R(x) =


2500∗ (Wplan −WDD)∗wprio, if WDD <Wplan

∑
5
prio=1(∑

t=52
t=1 (CDt,prio))∗wprio, if state is final

0, otherwise

2.3.5 Algorithms

Reinforcement learning (RL) is a machine learning paradigm wherein an agent learns to solve a task through
iterative trial and error. The fundamental steps in RL involve the agent being in a state s, taking an action
a, receiving a reward r, and transitioning to a new state s′. This process forms the foundation of all RL
algorithms. However, algorithms differ in methods for updating the policy.
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Proximal Policy Optimization (PPO): Proximal Policy Optimization (PPO) is a prominent deep policy
gradient algorithm that directly enhances a policy while incorporating a clipping mechanism to moderate
large policy updates, as introduced by (Schulman, Wolski, Dhariwal, Radford, and Klimov 2017). PPO
seeks to strike a balance between exploration and exploitation by optimizing a surrogate objective function,
often leveraging probability ratios to regularize policy updates. Serving as a successor to Trust Region
Policy Optimization (TRPO), PPO maintains the concept of policy optimization with a trust region constraint
while simplifying its implementation.

Deep Controlled Learning (DCL): Deep Controlled Learning (DCL) is an approximate policy iteration
algorithm that iteratively refines policies by defining RL as a classification problem (Temizöz, Imdahl,
Dijkman, Lamghari-Idrissi, and van Jaarsveld 2020). Utilizing simulation, DCL accumulates state-action
pairs to construct a dataset employed for neural network training. For each state in the dataset, DCL
determines an estimated ”optimal” action by selecting the action with the least anticipated expected costs
over a trajectory. While mapping states to estimate optimal actions, DCL progressively constructs datasets
and refines policies.

Both PPO and DCL update the policy directly in each iteration (i.e., policy iteration). PPO is an on-
policy method: the policy is updated based on the data collected by the current version of the policy. Once
the parameters are updated, it discards the old policy. DCL, on the other hand, is an off-policy method. The
data used for learning can come from a different policy than being updated. While PPO bases its parameter
updates on a trajectory, DCL bases its parameter updates on multiple trajectories. During the exploration,
the neurel network is learning a function that, given a state, returns an action. This is called a policy function.

2.3.6 Environment

To enhance the understanding of the environment and decision-making processes in reinforcement learning
(RL), it is crucial to differentiate between the concepts of ”state” and ”features”. In reinforcement learning
(RL), the ”state” is all the information the agent needs to navigate the environment effectively. It provides a
complete picture of the current situation. ”Features” are derived from the state. They are carefully chosen
or engineered to give to the neural network (NN) as input. The objective of feature selection is to ensure that
the NN receives all the essential information needed for effective learning. The action space encompasses
12 distinct actions, necessitating deeper insight into their implications for the NN. Through exploration
of the environment, the NN receives rewards for specific state-action pairs, prompting the inquiry: What
information is requisite for actions (a) given a state (s)?

Deterministic Decision Making: Initially, the NN will undergo training in a deterministic context,
where all samples are derived from trajectories sharing the same initial order book. For the deterministic
case, additional information regarding the order book is not needed, as the NN should inherently recognize
the environment through trial and error, given that all samples originate from the same order book. This
indirect exposure to circumstantial information aids the agent’s learning process.

Stochastic Decision Making: Suppose we observe that the agent effectively learns to optimize scheduling
and maximize utilization of preferred supply paths by strategically producing products A and B. In that
case, we can further enhance its learning by introducing randomness. One example is allowing orders to
be delayed or expedited. Training a Deep Reinforcement Learning (DRL) algorithm with this uncertainty
enables the development of an agent capable of rapid scenario planning. Once trained, this agent can
generate new entire schedules from scratch in response to order delays or expedited requests. Depending on
business needs, the agent can be trained on various stochastic elements, such as order delays. Validating the
training of a DRL agent on order book variations with randomness confirms the potential for DRL in rapid
scenario planning. The agent’s learned strategy is tailored to specific order book characteristics. However,
when the order book changes—due to delays, density fluctuations, or other factors—the strategy may need
adjustment. Introducing more stochasticity enhances the agent’s generalizability but may reduce accuracy.
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The level of introduced randomness raises questions about the agent’s learning capacity and adaptability.
By experimenting with different levels of randomness, we aim to balance adaptability and accuracy.

2.3.7 Feature Engineering

In a stochastic environment, an agent may be unable to learn detailed information about the order book,
which means that it may need to adjust its strategy in response to changes in the order book. However,
depending on the level of randomness present, the agent may still be able to infer other circumstantial
details, especially if the aggregated quantities remain consistent. As a result, the agent can ”learn” the
distribution of orders for products A and B within the order book, which can help it anticipate future
demand and improve its predictive capabilities.

It can be challenging to identify the features that assist the algorithm in learning and those that may
hinder it. The workings of the neural network (NN) and the associations it creates when mapping states to
actions are not transparent. Therefore, it is necessary to experiment with different feature combinations to
find the optimal configurations. One feature combination consistently outperformed others, indicating its
crucial role in mapping states to actions. In Figure 4, feature information is illustrated. The purple, orange,
and blue squares represent the action space of the agent with 12 actions. This is based on the confirmed due
dates in week 8. The yellow boxes indicate the ”first available week” after the targeted week by following
the JIT methodology. The agent is provided with detailed information for 16 squares, including utilization,
absolute week numbers, relative week numbers (against the current confirmed due dates), capacity left in
hours, and how much capacity is measured in the number of buckets of 2500 items. The number of buckets
is determined by the usage rates of each product-resource combination. Additionally, the number of buckets
already reserved for products A and B regarding the dual-sourcing supply path are also given to the NN to
recognize which weekly combinations of product A and B buckets eventually lead to better performances
when the states terminate. Lastly, the aggregated information is provided for the capacities before the
purple squares and after the yellow squares in Figure 4. This aggregated data, presented in terms of hours
or bucket quantities, furnishes the agent with crucial insights into remaining capacities for each supply
path-product type combination, indicative of various facets such as proportionate demand scheduling and
indirect details concerning product distribution. Additionally, the utilization metrics of weeks available for
scheduling partial orders in specific supply paths offer vital insights into the feasibility of accommodating
pending orders within the current action space constraints. This information, customized to reflect differing
usage rates across supply paths, helps agents make informed decisions by providing standardized utilization
metrics across all actions.

While incorporating order book features (e.g., information about the distributions of the unsatisfied
orders) did not disrupt learning, it introduced noise, resulting in a marginal degradation in objective value.
Because of the constrained sequence of assigning orders to supply paths, detailed information about the
order book is unnecessary. For the NN to learn to anticipate, it uses circumstantial information. This is
possible as we keep the total aggregated quantities consistent with the demand for products A and B; we
only manipulate the distributions.

Figure 4: Example visibility features
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3 RESULTS

3.1 Computational Time

The running time is more or less the same for all stochastic levels. However, the level of randomness
does influence the training time of the agent. Furthermore, for the agent to learn properly, more samples
(and thus simulations) must be done before training the agent, increasing the time needed. Training and
sampling, however, only need to be done once. After training, the generations of new plans for both DPRs
and DRL agents are significantly quicker than relying on MP models, Table 1. However, the savings in
computation time are achieved at the cost of solution quality.

Table 1: Comparison of the relative run times

Optimization Technique Time Decrease (in %)
MP model Reference
DPRs - 99.17%
DRL (once trained) - 98.14%

3.2 Low Level of Randomness

Low stochastic behavior involves shuffling an entire order by 1 week, with a β% chance that the confirmed
due date does not change, (1−β )

2 % chance that the due date is one week earlier, and (1−β )
2 % chance that

the due date is one week later. Therefore, the lower β , the more randomness is introduced. Both agents
trained using the DCL algorithm, performing better or worse, exhibit marginal changes compared to the
tailored DPRs. This similarity might imply that both the DPR and DCL agents experience changes in the
objective value influenced by factors such as order distribution and available capacity, potentially leading
to late orders due to capacity limitations. Despite differences in mean objective performance between the
DCL agent and the tailored DPR, the difference between the DCL agent and tailored DPR is insignif-
icant, so no conclusion can be drawn about which of the two methods is more optimal regarding the
objective value. While DCL agents consistently match performance against customized DPRs, PPO agents
do not demonstrate this consistency. Nevertheless, PPO agents consistently show a minimal margin of error.

Table 2: Results of the use case discussed throughout this paper solved using the different optimization
methods

Optimization Method Mean Objective
β = 0.5

Standard Error
of the Mean
β = 0.5

Mean Objective
β = 0.9

Standard Error
of the Mean
β = 0.9

MP reference - reference -
Tailored DPR +14.5% +/- 0.6% +16.3% +/- 0.5%
Generic DPR +295.3% +/- 0.2% +342.38% +/- 0.1%
PPO +164.6% +/- 0.02% +70.7% +/- 0.02%
DCL +14.3% +/- 0.6% +16.5% +/- 0.5%

3.3 High Level of Randomness (different order books)

In this scenario, the distribution for products A and B orders is modified across priority levels one through
five, and across due dates while upholding a consistent aggregate quantity for both products A and B across
all priority levels and due dates. Due to the high variance in objective values (the cumulative shortage) for
each trajectory, the MP model fails to produce consistent results for this scenario. The method results in
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varying aggregated item numbers for different priorities within each order book, contributing to significant
fluctuations in the final cumulative reward. Therefore, the results of the MP model are not considered. The
results shown in Table 3 show a pattern similar to those of Table 2. Interestingly, the learned DRL agent,
utilizing Deep Controlled Learning, demonstrates performance comparable to, or even slightly better than,
the tailored DPR. In contrast, the benchmark based on traditional EDD DPRs exhibits notably inferior
performance.

Table 3: Results of the use case discussed throughout this thesis solved using the different optimization
methods

Optimization Method Mean Objective Standard Error
of the Mean

Tailored DPR reference -
Generic Benchmark +208.2% +/- 0.7%
PPO +35.1% +/- 0.2%
Deep Controlled Learning -0.02% +/- 2.6%

4 CONCLUSION

Rapid scenario planning can be effectively conducted using deep reinforcement learning (DRL) algorithms,
particularly Deep Controlled Learning (DCL), as evidenced by their satisfactory performance while sig-
nificantly reducing runtime. This effectiveness holds true across low- and high-stochastic scenarios, with
DCL demonstrating adaptability to diverse order books. Furthermore, training the DCL agent in various
order books improves its robustness, allowing it to generate solutions quickly for different scenarios after
a single training session. Notably, the DCL agent consistently matches the performance of tailored DPRs.
However, it is unable to beat the tailored DPR consistently. DCL is better equipped to solve this use case
than PPO as it reduces the effect of randomness in the environment.

The tailored DPRs are overengineered for the specific scenario outlined in this paper. Simple decision
rules that revolve around having resources capable of producing only one or two product types will not be
effective in real-world situations. The tailored DPRs will not hold up when expanding the supply chain for
this use case, whereas the MDP can be extended. However, it’s important to note that extending the MDP
significantly increases complexity and, hence, training time. The DCL agent is trained on trajectories sampled
following the tailored decision rules. Expanding the supply chain and thereby reducing the effectiveness of
the tailored decision rules will once again impede the agent’s efficient learning, necessitating more samples
and, in turn, increasing the training time.

5 DISCUSSION

5.1 Long-Term Decision Making and Ambiguity

In reinforcement learning, different sequences of actions and states can lead to the same reward, making long-
term decision-making challenging. For instance, in supply chain management, prioritizing between supply
paths may not significantly affect rewards due to constraints, but there are still optimization opportunities
within the preferred path. Finding the ”sweet spots” of the preferred supply path, by combining the number
of items for products A and B produced in the same week, can help maximize utilization. However, as
different strategies produce the same rewards, this introduces noise for the neural network to recognize
tiny differences in orders that can be beneficial.

Trajectory non-uniqueness is especially a problem when introducing randomness. Significant disparities
in the reward function can impede the agent’s ability to discern which policies are effective. Additionally, it
becomes challenging for the agent to isolate the portion of reward signals attributable to differences in the
(initial) order book that should be derived from the features presented to the neural network (NN). When
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the reward function varies significantly, the agent may struggle to understand the underlying patterns and
correlations between actions and rewards. While it may still be possible for the agent to learn from many
samples, such variations can disrupt its learning capabilities and hinder its ability to generalize effectively.

When a specific state offers multiple actions with identical immediate rewards, it is called ”action
non-uniqueness.” This can further complicate decision-making, as the agent must navigate through states
where multiple actions lead to the same immediate or final reward. To ensure convergence of the NN, we
only selected state-action pairs to be included in the mini-batch samples that contributed to changes in the
objective value. Thus, we dealt indirectly with the action ambiguity by discarding most of the state-action
pairs that returned the same immediate reward, assuming being in a particular state.

5.2 Limitations

PPO is not well-suited for this MDP design because it updates its policy based on the most recent trajectory,
whereas we require an algorithm that updates policy based on multiple trajectories, comparing similar
states. The inherent randomness in the environment may overshadow good policies, leading to suboptimal
outcomes. Although PPO may generate a good policy initially, fluctuations in the order distribution introduce
additional noise in cumulative rewards, potentially degrading performance compared to a seemingly inferior
policy that happened to benefit from favorable order-book conditions. DCL, on the other hand, aggregates
similar states from different policies, making it a more robust method that is particularly effective in
stochastic environments.

Considering an entire product portfolio can become complex due to the ”curse of dimensionality”.
Adding NXP’s product portfolio creates a large state and action space. The method discussed in this paper
only applies to small scenarios and can help manage competing products on a dual-source supply path.
However, extending it requires modifications to the proposed current methodology.

This paper aims to replicate the scheduling modeling used at NXP using LP models with DRL. It is
important to note that mathematical models and DRL are typically used for different types of problems.
DRL is based on sequential decision-making and is suited for dynamic systems where not all information
is known in advance and is instead revealed during simulation. Mathematical models make simultaneous
decisions and are used for problems where all variables and options are known in advance. Given that our
problem is restricted by the LP format of NXP and the stochastic elements are known in advance and do
not change during simulation, it may be more effective to consider (meta-)heuristics that use mathematical
formats but differ from MP models by searching the solution space more effectively, especially when the
goal is to reduce run time. Meta-heuristics that use a mathematical format to search the solution space more
effectively and reduce run-time include Genetic Algorithms, Particle Swarm Optimization, Ant Colony
Optimization, Simulated Annealing, and Tabu Search (Salhi and Thompson 2022).

6 FUTURE RESEARCH

While this project has laid a foundational understanding of Deep Reinforcement Learning (DRL) within
the context of a specific supply chain scenario, further enhancements of the simulation model are necessary
for comprehensive applicability.

• Reducing the planning horizon from one year to a shorter period can potentially alleviate inefficiencies
in the agent’s learning process. With fewer actions between the trajectory’s start and end, the agent
could better discern optimal policies and mitigate state non-uniqueness.

• Rather than predefining a static order book, introducing order arrivals with varying customer
priorities might create a more dynamic environment for the agent. Real-time reaction to each arrival
potentially promotes adaptability and reduces repetitive scenarios.

• An immediate improvement involves adding an additional supply path for one of the two product
types. Adding another path could potentially address the uniqueness problem without fundamentally
changing the properties of the system. It is not expected for the uniqueness problem to be an issue
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when expanding the model for real-life scenarios. However, the curse of dimensionality remains a
significant issue.
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