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ABSTRACT 

In the context of facilitating operational decision-making through simulation-based digital twins, precise 
and expeditious synchronization of simulation models with real-system load states is paramount. Such 
synchronization serves to attenuate the typical transient behavior observed in material flow simulation, 
confining it to a brief temporal window. This paper delineates a novel conceptual framework for initializing 
simulation models, illustrated through an exemplar of an order picking system integrated with SAP 
Extended Warehouse Management as its warehouse and operation management system. Through empirical 
inquiry, the ramifications of the proposed initialization framework on simulation model transient behavior 
are scrutinized. Notably, the reference simulation model commences in a state of 'empty' load. The findings 
of this study evince that the proposed approach yields a significant improvement in transient behavior. 

1 INTRODUCTION 

The term 'digital twin' has gained widespread usage across diverse domains, generally denoting a virtual 
representation of a product, process, or system. In 2012, scientists at the National Aeronautics and Space 
Administration (NASA) introduced the term to describe a digital flight system that allows for analysis and 
prognostic capabilities. (Piascik 2012; Qi, 2018; Tao 2018).  

Various published instances of digital twins encompass a wide array of use cases and technical 
configurations. Kritzinger et al. (2018) have categorized these diverse approaches into digital models, 
digital shadows, and digital twins, as illustrated in Figure 1. 

Central to the notion of digital twins is the establishment of a bidirectional data interchange between 
the physical system and its digital counterpart (Harper 2019; Kritzinger 2018; Tao 2018; Qi 2018). 
Although the frequency of data exchange remains unspecified, Digital twins hold promise for seamless 
integration into decision support systems, facilitated by the reciprocal data exchange. By maintaining a 
virtual real-time depiction of the real system, digital twins enable proactive assessment of decision 
feasibility within the virtual environment. In addition to the simulation-based digital twins addressed in this 
paper, there are other approaches to evaluating alternative courses of action in decision support systems. 

To mitigate the risk of erroneous decision-making and facilitate decision review, the synergistic 
utilization of digital twins alongside forecasting models is advocated. This approach, encapsulated within 
the realms of predictive or prescriptive analytics in data analytics, enables purposeful and anticipatory 
optimization of complex logistics and production systems during operational phases. A particularly 
promising avenue entails the creation of a digital twin endowed with predictive or prescriptive analytical 
capabilities, finding applications in diverse domains such as production control, machine parameter 
optimization, and workforce management (Kritzinger 2018) 

Figure 1 delineates the interrelation between distinct tiers of digital models and data analytics. 
Furthermore, the figure provides an overview of the typical data basis used and the authority responsible 
for decision-making. Data harvesting entails the collection and analysis of system data devoid of explicit 
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modeling, as embraced by the paradigms of digital models, digital shadows, and digital twins. Often, data 
harvesting is synergistically integrated with other methodologies. 

 

Figure 1: Different levels of digital models and areas of application (based on Kritzinger 2018; Kauke 
2021). 

At Level 1, digital models facilitate the generation of reports and retrospective or descriptive analyses 
of systems. These analyses are typically prompted at periodic intervals and cater to specific inquiries, 
primarily utilized in strategic planning contexts owing to limited automation in data exchange processes. 

Digital shadows (level 2) automate data transmission from real to virtual systems, furnishing copious 
data for analytical purposes. However, compared to digital twins, digital shadows exhibit relatively subdued 
modeling of system behavior and interdependencies. Consequently, digital shadows excel in scrutinizing 
discrete facets within a system, such as individual machinery. Leveraging their extensive data repositories, 
digital shadows enable precise prognostics, encompassing maintenance requirements. 

Conversely, digital twins (Level 3) boast comparably extensive data repositories while additionally 
modeling inter-system interactions, affording a holistic portrayal of system dynamics. Notably, digital twins 
often incorporate simulation models that autonomously process requisite data, thereby supporting the 
prescriptive analytics paradigm.  

When employing simulation models for operational decision support, initializing the simulation model 
at the onset of each simulation run poses a massive challenge. It is imperative to meticulously assess the 
real system's current state and seamlessly transmit this information to the simulation model. Moreover, 
ensuring the alignment of order data utilized for simulation with the simulated system state is paramount. 

This paper presents a novel approach to initializing simulation models for order picking systems, 
leveraging contemporary order data sourced from an SAP Extended Warehouse Management (EWM) 
system. The proposed methodology entails data importation, analysis, and seamless integration of system 
status updates from the SAP system into the simulation environment. 
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2 INITIALIZATION OF SIMULATION MODELLS 

The initialization of simulation models encompasses the establishment of initial conditions and starting 
values requisite for commencing simulations. It is imperative to meticulously define the initial conditions 
pertaining to diverse variables and parameters within the model to ensure the production of realistic and 
meaningful outcomes. This entails specifying crucial attributes such as the initial positions of transportation 
units or other pertinent properties delineating the state of the internal transport system at the simulation's 
onset. The process of initialization profoundly influences the transient behavior of the model. The transient 
phase denotes the initial period during which the simulated system or process adapts from its initial 
conditions towards a stable or steady-state configuration. As elucidated by Hanisch et al. (2005), the 
transition time denotes the duration necessitated for a system to evolve from its initial state to a phase where 
its behavior exhibits greater regularity or predictability, thereby diminishing the impact of initial conditions. 

Simulation constitutes a pivotal tool in material flow planning, facilitating the validation of planning 
outcomes prior to system implementation. Frequently, simulation runs commence with an 'empty' model, 
indicative of all conveyors being devoid of material and no orders being initiated. Metrics garnered during 
the transient phase often deviate from reality. To avert erroneous interpretations, critical system metrics 
should be assessed post the transient phase's culmination. Notably, the transient phase may extend over 
several hours of simulation time, particularly for expansive and intricate models. Simulation models 
integrated within the ambit of digital twins necessitate minimal transient phases. Consequently, thorough 
parameterization of the simulation model prior to commencing simulation runs is imperative to accurately 
reflect the current load status of the system. 

2.1 RELATED WORK IN THE FIELD OF ORDER PICKING SYSTEMS   

Order picking constitutes a critical process within intralogistics, particularly with the surge of online 
commerce (Günthner 2014). The efficiency of the order picking system profoundly influences the storage 
dynamics of a diverse array of articles and the expeditious delivery of goods, thus establishing an 
indispensable competitive edge, particularly for online retailers. The system operates with four principal 
objectives: 

 
 High performance 
 Cost efficiency 
 Reduced throughput times 
 Adherence to delivery deadlines 
 
Performance, quantified in picks per hour, ensures the expeditious processing of customer orders, while 

cost-effectiveness remains a crucial consideration. Minimization of lead times significantly enhances 
overall system performance, necessitating the mitigation of buffer stocks, particularly in multi-area systems. 
Adherence to cut-off times is paramount for meeting delivery deadlines. 

The pursuit of these objectives has been the focal point of scholarly inquiry for decades, resulting in 
the formulation of various approaches that, contingent upon their attributes, can exert either a positive or 
negative influence on the system. Numerous comprehensive literature reviews have been published over 
time, warranting acknowledgment (Kosten 2017; van Gils 2018). The work of van Gils et al. holds 
particular relevance for the development of this research endeavor. 

Parameters under scrutiny are broadly categorized into strategic, tactical, and operational planning 
issues (van Gils 2018). Strategic parameters encompass layout design, automation levels, and handling 
equipment. While the digital twin does not inherently investigate variations in these parameters, it 
acknowledges the likelihood of an overarching system comprising diverse subsystems characterized by 
distinct degrees of automation, layouts, and handling equipment. Operational parameters pertain to resource 
allocation, including workforce size, zoning, and storage assignments, with considerations such as batching, 
routing, and job assignment falling within this domain. 
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This classification does not account for time intervals in the examination or modification of planning 
issues. It is reasonable to anticipate a significant increase in the frequency of these issues from strategic to 
operational levels. Consequently, the digital twin is designed to consider parameters at intervals ranging 
from daily to hourly or shorter, rendering tactical and operational parameters inherently relevant. 

Periodic reassessment of specific actions is essential to ensure alignment with the defined objectives of 
the picking system. The scope for action encompasses three primary aspects, with the optimization of 
picking tour sizes emerging as a pivotal lever. Picking tours, whether singular or comprising multiple orders 
(multi-order-picking), necessitate optimization to meet lead time and efficiency benchmarks. 

Dynamic human resource planning systems facilitate the flexible allocation of available personnel 
across various sections of the picking system, thereby enhancing workforce utilization in response to daily 
fluctuations in orders. Synchronization of anticipated partial order arrivals through time-differentiated 
release of picking orders can curtail buffer area requirements and bolster system reliability. The current 
approach to determining release times and worker allocation is based on experience, which may not always 
result in good decisions. Conversely, a digital twin possesses the capability to curate a tailored suite of 
measures from the available options through monitoring, forecasting, and simulation, optimizing outcomes 
to meet specific requirements. 

2.2 RELATED WORK IN THE FIELD OF INITALIZATION OF MODELLS  

This section examines papers that have addressed the topic of initializing simulation models, either in a 
narrow or broad context. 

Hanisch et al. (2005) describe two approaches for initializing online simulation, which are comparable 
to the simulation-based digital twin mentioned earlier. The first approach involves running a simulation 
model (parent model) synchronously with the real system. This model can be replicated to conduct a 
predictive simulation more quickly, allowing for the forecasting of future states. The second approach in-
volves creating a model as needed and initializing it with current measured values. This approach is similar 
to the one presented in this article. However, the authors did not provide a description of the data analysis 
or the exact initialization process in their article.  

Le and Fang's (2024) literature review offers a comprehensive overview of the current research on 
digital twins for logistics and supply chains. However, the review lacks detailed consideration of the topic 
of initialization, with most sources only briefly mentioning its necessity.  

The work of Ashrafian and Pedersens (2023) focused on the development of a digital twin for an order 
picking system. The article explains the data used for the simulation, but does not cover the interpretation 
of the real-world data or the procedure for initializing the model. 

Rabe and Dross (2015) describe the architecture of a decision support system for logistics systems and 
the use of a reinforcement model. They demonstrate how process and warehouse data can be used for 
training and validation. However, they do not provide a detailed procedure explanation. 

Nicoletti and Appolloni (2024) present a framework for digital twins as a service for 5PL logistics 
providers. The framework should include functions for data preparation and analysis, with simulation being 
an essential component. However, the authors do not provide a concrete procedure for model synchro-
nization. 

Simulation-based digital twins are utilized to optimize and control production systems. For example, 
Rachner et al. (2023) proposed an approach for flexible production systems in which workstations are 
connected via AGV. The authors emphasize the significance of linking real and virtual systems in terms of 
data technology, but do not provide a detailed description. 

Models for testing are also used for virtual commissioning. Albrecht et al. (2024) presented an approach 
for automatic model generation and initialization. However, the focus of this work is on coupling with 
control instances for signal exchange. This area of application presents other challenges and cannot be 
compared with the initialization of material flow models for an internal transport system.  

Bergmann et al. (2011) conducted a systematic investigation of the data required for initialization in 
production systems, how to transfer these data to the simulation model in a standardized way, and the 
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potential problems that need to be solved to adequately initialize the model elements. The authors proposed 
a solution based on the CMSD standard, which can be extended to logistics systems. However, the required 
data analysis is not presented in detail. 

In summary, transferring the real system state to the digital model is necessary to use digital twins. 
However, many publications do not provide detailed information on data preparation and model 
initialization. From the author’s perspective, this is an essential aspect that significantly affects the quality 
of the results, particularly when investigating over a short-term time horizon. 

2.3 RESEARCH METHOLOGY 

This paper elucidates the initialization process of a simulation model within the framework of a case study. 
The methodology entails the automated extraction and analysis of data sourced from an SAP EWM system. 
Furthermore, the narrative outlines encountered challenges during the analytical phase. Additionally, the 
paper delineates discrepancies in order processing times resulting from non-synchronization between the 
simulation model and the prevailing system status, as observed within a simulation study. The primary 
objectives of this article are to address the following research inquiries: 
 

 How can the current system status be extracted from SAP EWM data? 
 How can the analyzed system state be seamlessly transferred to the simulation model? 
 What are the ramifications of model initialization on simulation outcomes? 

3 USE CASE 

This paper illustrates the concept of initialization within the framework of a 'distribution center' (DC) use 
case. The DC comprises several storage zones and a sizable order picking area. Numerous inbound goods 
areas receive incoming shipments, while multiple outbound areas dispatch goods. Spanning across an 
expanse of 20,000 m², the DC has the capacity to accommodate up to 60 industrial trucks and facilitate 
concurrent order picking tasks by 25 workers. The order picking process is based on the person-to-goods 
principle. Items are provided on pallets in racks, which are located on the lower level. According to VDI 
3590 (1994), this is a static and decentralized provision. The worker selects the required quantity from the 
pallet and places the picking units on the pallet, which is subsequently delivered to the customer. Figure 2 
presents a segment of the simulation model. 

This section elucidates the material and information flow within the context of order picking. Stock 
Keeping Units (SKUs) are initially stored on pallets within a physical warehouse, serving as the source 
handling unit in SAP EWM. A warehouse operator retrieves these goods and arranges them onto a pallet 
designated as the destination handling unit. Upon completion of the order picking process, the assembled 
pallet undergoes wrapping in foil before being dispatched to the shipping area. Figure 3 provides a graphical 
representation of this process, accompanied by detailed step-by-step information. 

The initiation of the process commences with the release of the pallet for picking, prompting the 
creation of a warehouse order (WO-100) for SKU retrieval. Simultaneously, warehouse tasks 
(WT-1, -2, -3, -4) are generated for each SKU, specifying the quantities to be extracted from the source 
handling units. The storage locations for picking (source storage bin) are organized into types (e.g., source 
storage type 7200) within the EWM. Additionally, a warehouse task (WT-5) is generated to designate the 
final placement of the pallet. Warehouse pickers access these tasks via their terminals and proceed to the 
designated provision locations with picking carts. Upon confirmation of task completion, the operator 
records the removal of items from the source handling unit and posts them to the destination handling unit 
in SAP EWM. Subsequently, the operator transports the completed pallet to the designated drop-off 
location, confirming task WT-5. The designated drop-off location has already been allocated to a different 
storage type (destination storage type 7300). Upon confirmation of all warehouse tasks for the warehouse 
order (WO-100), signifying successful completion of all positions, a new warehouse order (WO-110) is 
generated. In the presented use case requiring pallet wrapping, a corresponding warehouse task (WT-6) is 
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created. Following acknowledgment by the operator responsible for the wrapping machine, the warehouse 
order is confirmed. This initiates the creation of another warehouse order (WO-120) managing pallet 
transportation from the picking area to the shipping area, comprising two warehouse tasks (WT-7, -8). Upon 
completion of these tasks, the handling unit is transferred from the source storage bin to the destination 
resource, ensuring accurate tracking of pallet movements. 

 

Figure 2: Simulation model of the DC using Plant Simulation with marked areas. 

 

Figure 3: Illustration of the process and selected information. 

Terminal displays guide forklift drivers in pallet transportation tasks, providing pertinent pickup and 
drop-off location information. Confirmation of task completion by the operator triggers the display of the 
subsequent drop-off location. 

Additional warehouse orders and tasks are generated if further handling stages are necessary, mirroring 
the process outlined for WT-120. A comprehensive summary of pertinent information pertaining to 
individual warehouse orders and tasks is provided in the tables depicted in Figure 4. 

The above example shows that the warehouse order and the warehouse task can be used to determine 
where a handling unit (e.g., a pallet) is located in the warehouse at a given time. It is not possible to deter-
mine the exact location of pallets that are currently on a forklift truck, i.e., in transit.  

There are warehouse orders and tasks for all relevant processes in the DC, such as incoming goods, 
replenishment, stock transfers, etc. By analyzing these data, a comprehensive representation of the current 
task processing in the DC can be produced and transferred to the simulation. 
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Figure 4: Presentation of selected information on the individual warehouse tasks and orders. 

With regard to the use case, it can be concluded that the material flows in the warehouse are described 
by warehouse orders. The progress of the orders can be identified by the status of the warehouse tasks. The 
example includes a warehouse task for each picking position and an additional task for dropping off the 
pallets. There are two tasks for each transport step. The first task represents the pick-up of a transport unit 
by a transport resource. The placement of the transport unit is documented by the second task. For transfer 
to other applications, the existing data structure must be analyzed and transferred to the initialization 
concept described below. 

4 CONCEPT FOR INITIALIZATION 

This section introduces the concept of initializing a simulation model employed to explore potential 
operational decisions within an order picking system situated in a DC. Given the typically abbreviated 
simulation period, often confined to the ensuing eight hours, minimizing the transient phase of the 
simulation model becomes imperative. Hence, it becomes necessary to “fill” the simulation model at the 
outset of the simulation run, addressing key questions such as: 

 
 Which pallets are in the functional area (e.g., buffer locations) and which picking or transport steps 

still need to be completed? 
 Which warehouse orders have been released?  
 What resources are currently being used and where are they located in the DC? 

 
The subsequent delineation outlines the process of "populating" the model before initiating a simulation 

run. Initial steps entail the extraction of pertinent data from SAP EWM and their transfer to an external 
database. This data transfer can be executed through methods such as CSV file exports or leveraging a 
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REST API in conjunction with the SAP Business Technology Platform (as discussed in Galka et al., 2023). 
Subsequently, the data undergo a comprehensive analysis, a procedural overview of which is provided in 
Figure 5 and further elucidated below. 

 

Figure 5: Presentation of selected information on the individual warehouse tasks and orders. 

In addition to the warehouse order data, whose analysis is described below, further information is 
available for the model initializations. The number and type of vehicles can be imported from master data 
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in SAP (cf. Galka 2023). Each vehicle has a unique identification number in SAP, which is saved when the 
warehouse task is confirmed. It is assumed that every vehicle used has confirmed at least one task in the 
analysis period. In the event that this assumption is invalid, it is presumed that the vehicle is not currently 
in use and that it is not created in the simulation. For simulation spanning longer periods, personnel 
deployment plans and shift models can also be imported. These are typically only available in limited form 
in the SAP system and must be imported from other data sources. 

4.1 Analysis of Warehouse Orders 

For each warehouse order, the algorithm verifies its release status and whether it has been fully processed, 
indicated by confirmation. Fully processed orders, where subsequent orders have been generated or the 
process has concluded, are excluded from initialization and simulation. Orders not yet released undergo 
further scrutiny to determine their starting position within the warehouse. If the starting position 
corresponds to a standard storage location, e.g., on a rack, the order is treated conventionally in subsequent 
simulation. However, if the source bin is a functional area, such as a buffer location, special consideration 
is warranted during model initialization. Here, the pallet is generated within the appropriate functional area 
in the simulation model, and the order is added to the list of pending warehouse orders (case 6 in Fig. 5). 
As these orders have not been released, no associated warehouse tasks are present in the analyzed dataset; 
these tasks are created dynamically during the simulation. 

4.2 Analysis of Warehouse Tasks  

Regarding warehouse orders that have been released but remain unconfirmed, a meticulous analysis of the 
associated warehouse tasks is imperative to accurately convey the status of order processing to the 
simulation model. This entails scrutinizing the warehouse tasks linked to the respective order. Warehouse 
tasks are generated in SAP EWM with ascending document numbers (#) and executed sequentially in 
accordance with their assigned order. While each warehouse order comprises at least one task, it may also 
encompass multiple tasks. The subsequent section provides a comprehensive delineation of each potential 
scenario. 

Case 1: All warehouse tasks associated with a transfer step or picking process remain unconfirmed 
until the commencement of the respective process. At present, the SKUs are situated within the 'source 
storage bins'. These orders are allocated to the table of released orders within the simulation framework. In 
cases where a warehouse task already possesses an assigned resource, the corresponding order is linked to 
said resource. Alternatively, if the resource is yet to be instantiated within the model, it is generated at the 
designated picking initiation point (base). Order processing initiates from this base location. It is noteworthy 
that resources may already be present within the model if they are currently engaged in executing another 
order. 

Case 2: In adherence to official protocols, it is imperative that a warehouse task with a higher document 
number be confirmed only after confirmation of preceding tasks for the same warehouse order. However, 
deviations from this standard may occur, where a warehouse task with a higher document number has been 
confirmed while a preceding task remains unconfirmed. Such discrepancies typically arise due to manual 
intervention by authorized users. Instances may also arise when warehouse pick-up tasks remain 
unconfirmed while drop-off tasks have been confirmed, indicating potential manual alterations. To ensure 
the integrity of the simulation process, warehouse orders with inconsistent task sequences are systematically 
excluded and disregarded during initialization and subsequent simulation runs. 

Case 3: In this case, the picking process has already been started by a resource. However, the pallet has 
not yet been completely picked or placed on the transfer area. Therefore, it can be assumed that the pallet 
is currently on its way to its destination. The data cannot be used to determine the exact location of the 
equipment containing the pallet. In this case, the picking vehicle is generated in the simulation model on 
the aisle in front of the last confirmed picking position. There, the vehicle can start its movement to the 
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next pick position or transfer area. All subsequent actions of the vehicle are contingent upon the events 
depicted in the simulation model. 

The program checks if the resource has already been created in the simulation model as part of another 
warehouse task. This may be the case if several pallets are transported simultaneously by a single resource. 
If the resource has already been added, another resource with the same name cannot be created in the 
simulation model. 

Case 4: For some processes (e.g., wrapping pallets with foil), a warehouse order is created with only 
one warehouse task. If the warehouse order has already been released and not yet confirmed, the handling 
unit is located at the source storage location. In the simulation model, the handling unit is created on the 
corresponding area and the warehouse task is added to the queue of open tasks. 

Case 5: In this case, the warehouse order should already have been confirmed. This can only happen if 
the posting workflow has not been completed at the time of the data transfer. This is usually prevented by 
locking logic in the database. 

The initialization of the simulation model can be completed when all warehouse orders and tasks have 
been analyzed. 

5 STUDY OF TRANSIENT BEHAVIOUR 

To demonstrate the influence of the described initialization concept on the transient behavior of a simulation 
model, a simulation study was carried out using artificially generated data. Unfortunately, real data from 
the use case cannot be published. In addition, the feasibility of the concept was evaluated using real data as 
part of a research project.  

The simulation study focused solely on the picking process within the DC, excluding incoming goods 
processes, replenishment processes, and truck loading. Over a 12-hour simulation period, 500 orders 
(pallets) were to be picked, each containing at least three order lines and up to twelve order lines per pallet. 
One position can hold a maximum of 20 picking units, which are typically cartons. The picking system was 
operated by eight operators. The process starts with picking up an empty pallet and ends with transferring 
the picked pallet to the pallet wrapper. 

 

Figure 6: Results of the study: Lead time limit without initialization (red) and with initialization (green), 
number of released picking orders (blue line). 
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The study compares the proposed initialization concept with the classical approach in material flow 
simulation, where the model is empty at the beginning of the run. The study selected the lead time of a 
warehouse order as the relevant KPI. This metric describes the time between the release of the warehouse 
order and the confirmation of the last warehouse task. Figure 6 shows the average order lead time as a 
function of the simulation time. For example, orders that were confirmed within 30 to 45 minutes of the 
start of the simulation are grouped together and the average is calculated. 

The results of the simulation study show that the described initialization concept can shorten the 
transient behavior of the simulation model. This results in the simulation model representing the real system 
more quickly when preloaded with tasks at the start of the simulation.  

6 CONCLUSIONS 

This paper presents an approach for initializing a simulation model for an order picking system based on 
transaction data from a SAP EWM system. The approach is case-specific and can be applied to similar use 
cases with comparable input data. The initialization and pre-assignment of simulation models is particularly 
important if the simulation model is to provide short-term decision support for operational decisions. In 
contrast to support strategic decisions, simulation for this purpose often has longer simulation periods, 
allowing for a longer transient time of the simulation model. It is important to take this into account when 
analyzing the result parameters.  

The described procedure is not suitable for the permanent synchronization of simulation models. Its 
purpose is to significantly shorten the transient phase, thereby ensuring that the model behavior corresponds 
to the real system as quickly as possible. For a new analysis, the model is initialized anew and current data 
are imported from the SAP EWM. The time required to exchange and analyze the data depends on the 
amount of data. For the use case, the time required was less than one minute. The function was implemented 
directly in Plant Simulation for testing purposes. In order to enhance the runtime and streamline the analysis, 
the function was then implemented in the backend of the communication interface between SAP and Plant 
Simulation.   

As part of a research project, which investigates simulation-based digital twins to support operational 
decisions, it was observed that the synchronization between the real system and the digital simulation model 
places new requirements on the initialization of simulation models. In this context, it is necessary to develop 
generally applicable approaches for the initialization of simulation-based digital twins. 
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