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ABSTRACT 

Digital Twins (DTs) play a crucial role in the fourth industrial revolution. In the context of discrete material 
flow systems, companies under constant competitive pressure seek solutions to minimize costs and 
maximize performance. Simulation-based DTs can help make optimal decisions in the design, planning, 
and control of these systems. Such DTs are until now created and updated by domain experts producing 
costs and are often not considering the advances made in machine learning to improve prediction quality. 
Learning DTs out of data could be the solution for a broader application. A lot of work has already been 
done that contributes to this endeavor, yet relevant building blocks originate from different scientific areas 
resulting in the use of different terminology. Thus we present a holistic review of relevant work and analyze 
the state of the art based on a new classification scheme deriving relevant building blocks and gaps for 
future research. 

1 INTRODUCTION 

Digital Twins are one of the key enablers of digital transformation (Kritzinger et al. 2018). All DTs have 
in common that they can process a constant data flow from the corresponding physical system to a virtual 
copy of this system. They use the virtual system to analyze and evaluate possible changes to the system and 
respond with the best change suitable for a given scenario (Grieves and Vickers 2017). Following this 
definition, a DT consists of three parts: A physical system in real space, a virtual system in virtual space, 
and the connection that ensures steady bi-directional data flow between these two systems. DTs are often 
distinguished from digital models (DMs) and digital shadows (DSs) with respect to the degree of 
automation of this data flow (Kritzinger et al. 2018). While DMs have a bidirectional manual data flow, 
DSs rely on an automated data flow into the virtual system and DTs have an automated flow in both 
directions. 

DTs are used in a lot of industries, ranging from classical manufacturing to defense, automotive, and 
recycling. The paper at hand focuses on the manufacturing industry, more generally discrete material flow 
systems (DMFS). They can be characterized as systems processing discrete objects (parts) that move at 
regular or irregular intervals along transportation routes or conveyor lines, comprising production and 
logistic systems (Arnold and Furmans 2006). DMs have been used to design, plan, and control these DMFS 
for decades, e.g., in the context of material flow simulations, logistic assistance systems (Zajac and 
Schwede 2016), and the digital factory (Thiede et al. 2013). With DSs and DTs the focus from models for 
single use cases shifted to a holistic approach to have a virtual copy during the whole life cycle of the DMFS 
(Abdoune et al. 2023). The aspect of an automated data flow from the model to the physical system is not 
all that relevant for the management of DMFS, since human decision-makers are in the loop and decisions 
are not time-critical within seconds. Therefore, we will from here on refer to DSs and DTs as digital twins. 
Aside from the aspect of representing the current state as well as managing the historical data of the physical 
system, a core task of DTs is predicting behavior and evaluating changes. Especially in the area of DMFS, 
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the use of discrete-event simulation (DES) within DTs is widespread (Korth et al. 2018), which is why we 
will focus our work on Simulation-based digital twins (SBDTs) (Lugaresi and Matta 2021). 

Based on the rise of attention in Artificial Intelligence (AI) and Machine Learning (ML) and supported 
by the aspect that DTs basically are a huge storage of Big Data, the topic of auto-generating or learning 
DTs from data has recently become an interesting topic in research and application for three main reasons: 
The broad application for SBDTs has been hindered by the difficulty to create them. On the one hand, 
creating (simulation) models of DMFS is still a labor-intensive task for experts (Charpentier and Véjar 
2014; Lugaresi and Matta 2021). On the other hand, a DT once created has to be kept up to date when the 
underlying system changes (Friederich et al. 2022; Lugaresi and Matta 2021), which again can only be done 
manually by experts (Denno et al. 2018). Thus, reducing the manual expert labor to create DT models (1) 
and automatically updating the DT models (2) are two of the reasons for learning DTs from data. Updating 
must be differentiated from synchronizing. While synchronization based on transaction data is the standard 
behavior of every DT, updating refers to structural changes of the model based on changes in the master 
data of the system (e.g., new processes, resources, or changed behavior). Since the accuracy of the 
prediction is an important aspect of decision-making (Grieves 2022), improving the prediction accuracy of 
the DT model (3) e.g., by using ML is the third reason. 

Getting an overview of the state-of-the-art in this area is not trivial since contributions are made from 
a wide range of different scientific areas. From the DT community, data-driven DTs are investigated aiming 
at using data to create and update DTs for production environments (Friederich et al. 2022). Besides that, 
coming from the area of software automation, low code approaches are carried out to create process-aware 
digital twin cockpits (Bano et al. 2022). From the simulation community, work has been done in automated 
model generation (Goodall et al. 2019) and data-driven simulation (Biesinger et al. 2019). From the 
business process engineering field, process mining deals with generating predictive models from event log 
data (van der Aalst 2012) mainly focusing on business processes in general rather than manufacturing. 
Production system identification aims at bridging this gap focusing on information about infrequent events 
(Denno et al. 2018). Lastly, from the data science community partial models are learned from big data, that 
could be relevant for an overall SBDT for DMFS: Process time prediction (Müller and Grumbach 2023), 
product quality prediction (Czimmermann et al. 2020), predictive maintenance (Nunes et al. 2023).  

The aim of this paper is to provide an overview of the different contributions, identifying useful 
approaches, building blocks as well as existing gaps. Aside from looking at the scientific field, the 
application area, the methods used, and the data required, we will have a look at the reasons for learning 
the DT in the specific case. Furthermore, we propose a novel classification scheme based on the single 
model components needed to create a SBDT for DMFS. Relevant literature contributions are evaluated 
based on the proposed framework. Our three main contributions in the area of learning SBDTs for DMFS 
are: 

 
1. Identification of relevant scientific areas contributing to the topic 
2. A novel classification scheme to identify relevant building blocks and gaps of a given solution  
3. Overview of research gasps and existing building blocks in the current state-of-the-art 
 

The rest of the paper is organized as follows: In Section 2 we provide a brief overview of related work 
in the different areas mentioned above. Section 3 describes the research methodology used for literature 
gathering and the novel classification scheme is presented. Section 4 summarizes the main findings of the 
literature review, followed by Section 5 which discusses the findings and gaps. We conclude the paper with 
Section 6 where we give an outlook on future research possibilities. 

2 RELATED WORK 

In this section, we review the relevant literature beginning with literature reviews that deal with learning 
SBDTs for DMFS. Then we will summarize the work done in the four relevant research areas dealing with 
learning SBDTs that we introduced in the last part of section 1: Process mining, data-driven simulation, 
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data-driven DTs, and ML-based component behavior prediction that consists of process time prediction, 
product quality prediction and predictive maintenance. 

2.1 Learning Digital Twins  

Even though there are several literature reviews concerning DTs in general (Liu et al. 2021; Melesse et al. 
2020) the subject of how SBDTs especially in the area of DMFS can be learned out of data has not been 
addressed holistically so far to the best of the authors knowledge. We believe this is the case because of 
relevant work being spread over the four following scientific areas. Adamenko et al. differentiate two types 
of DT creation methods: data-driven and system-driven (Adamenko et al. 2020). While data-driven 
approaches lead to model-free DTs used as input for ML, system-driven approaches are models created by 
experts and mainly used in the area of SBDTs. Adamenko et al. state that a combination of both approaches 
would be optimal without going into further detail. Learning DTs would be such a combination. 

2.2 Process Mining 

Process Mining consisting of several sub-tasks, roots from business process modeling and aims at 
automatically exploiting knowledge from event log data that is available in IT systems about business 
processes. Process discovery is used to generate a process model based on Petri-nets that can be transformed 
into a simulation model. Process conformance checking compares real and discovered process models. 
Process enhancement techniques aim to extract performance information of the process (Pourbafrani et al. 
2020), while process prediction tries to predict relevant performance measures from the event logs (Tax et 
al. 2016). There has been a lot of work on process mining in recent years. Even though business processes 
in general are far less complex than material flow systems, we identified a couple of contributions that 
could be beneficial for the generation of SBDTs for DMFS. We will present the publications clustered by 
the components that they learn and not in temporal order.  

Rozinat et al. dive into subfields of process mining, namely decision mining and organizational mining, 
and create a simulation model from the logs deriving different aspects or sub-models from the data. Typical 
for process mining they learn part-type-based process paths for a 1:1 relationship, not considering supply 
parts or divergence of the part flow, as well as used resources and process time models. Additionally, they 
use decision trees to learn part type-based routing and priority rules (Rozinat et al. 2009).  

Pourbafrani et al. learn a system dynamics simulation model from the event log which gives insight 
into parameter influences on business performance indicators. With respect to SBDTs, they learn the 
standard information of process path for 1:1 part transformation and used resources (Pourbafrani et al. 
2020).  

Not only focusing on parts, more detailed information about resources is also crucial. Event logs contain 
valuable insights about resources and their scarcity. Martin et al. are able to predict resource availability by 
considering information about rare events and digging deeper than just modeling standard availability. They 
extend their work including process structures and batch processing knowledge in the model, thus raising 
the accuracy of process execution (Martin et al. 2017).  

In the area of process prediction, a focus is set on predicting the next process that will be executed. 
Thus, dealing with learning situation-specific routing rules (Moon et al. 2021; Evermann et al. 2017) and 
additionally complex process time models (Tax et al. 2016). All three publications use deep learning for 
prediction (large language models, recurrent neural networks, and long short-term memories). 

Martin et al. focus on the prediction of interarrival times of parts at the entry points of a system in the 
context of business processes. This approach offers the possibility to integrate queuing behavior, making it 
valuable for practical applications (Martin et al. 2016).  

Bano et al. is the only approach dealing with generating DTs directly. They use a low-code approach 
to create a “process-aware digital twin cockpit”. Their DT is generated iteratively by log data derived from 
sensors. The discovered models serve as a foundation for a code generator to create DTs as well as for the 
user interface to display individual performance indicators and the status of the system. Since the approach 
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generates data classes to capture the data received, it is the closest approach to auto-generating a complete 
DT by combining the scientific areas of process mining and software engineering. Nevertheless generating 
simulation models is not part of the approach (Bano et al. 2022).  

A different approach aims to predict the remaining cycle times of products which can be seen as an 
alternative or supplement to simulation-based cycle time prediction. Also utilizing process mining, Choueiri 
et al. use multi-linear regression and a transition system to predict the cycle times. Being one of the few 
approaches applied in a manufacturing environment they achieve to learn simple process time models, a 
process path based on part-types for a job shop problem without considering supply parts or routings. 

The last work goes beyond the field of process mining, called product system identification (Denno et 
al. 2018). They focus on manufacturing systems in a flow job setting and use SCADA events including 
resource failures to generate the model. In addition to process mining, they use genetic programming and 
probabilistic neural networks to generate a validated information model and create a mechanism to update 
the model based on new events. They argue that process mining is not complex enough to model all 
behaviors of DMFS and achieve auto-generation advances, especially for resource models predicting 
capacities for parallel processing, standard and exceptional availability as well as simple priority rules. 

2.3 Automated Model Generation and Data-Driven Simulation 

For the area of material flow simulations, two streams become apparent: automated model generation 
(Milde and Reinhart 2019) or automatic model generation (Huang et al. 2011) and data-driven simulation 
(Charpentier and Véjar 2014). Both approaches aim at the use of data to reduce the manual efforts to 
perform a simulation study. 35% of the effort can be assigned to the model development and 28% to the 
data analysis (Milde and Reinhart 2019). Even though the focus is not set to DTs, the simulation model 
aspect is highly relevant for SBDTs. In both areas, there are approaches reaching from automated 
parametrization of existing models and automated reconfiguration of existing model elements to auto-
generation of complete models. Milde and Reinhart auto-generated the simulation model of a job shop 
manufacturing system based on artificially generated event logs and resource error data. They can generate 
process paths, needed resources, process and setup times as well as priority rules and routing rules. The 
custom-tailored algorithm generates a core manufacturing simulation data model to be imported for 
simulation into a standard simulation software (Milde and Reinhart 2019).  

Charpentier and Véjar use spatial-temporal data from a smart manufacturing environment. With 
individual programming, they can generate process paths of part types and part type-based routing rules as 
well as a process time model and a localization of the resources within the shop floor. They also learn M:N 
part transformations and design a strategy for a delayed update of the model when the online data changes 
over time (Charpentier and Véjar 2014).  

Another approach uses shop floor operational data to update the process time model of the manually 
modeled simulation of a remanufacturing scenario (Goodall et al. 2019). Lugaresi and Matta entail process 
mining in their approach to learn a process structure out of event log data. They can generate a model for 
the main part flow including resources, process times, and quota-based routing rules. They also derive part-
specific frequencies of part arrival in the source of the system. Furthermore, they stress that model tuning 
is an important part of simulation since data from real DMFS can be noisy and the right level of abstraction 
has to be found (Lugaresi and Matta 2021). 

Finally, Smith also generates the model directly from spatial-temporal data based on an individual 
programming approach. Generating locations of resources, process time models, and the capacity of the 
resources to process parts in parallel as well as a quota-based routing rule (Smith 2015). 

2.4 Data-Driven Digital Twin 

Whereas the areas so far focused mainly on generating petri-nets or discrete-event simulation, this area 
focuses on generating DTs for DMFS directly (while rarely considering simulation). Biesinger et al. show 
how important data about resources, products, and process information is to build a data-driven DT 
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(Biesinger et al. 2019). Kumbhar et al. use data in combination with process mining to generate knowledge 
about process structures. They use SCADA events and argue that these event log data sources provide vital 
information for such DTs. As one of the few works, they manage to learn N:1 relationships, including 
supply parts into their transformation model (Kumbhar et al. 2023). Friederich et al. have the most holistic 
approach to generating a SBDT for DMFS from our point of view. They use state, event data, and condition 
monitoring data to combine methods from process mining and ML to generate and update a SBDT 
(Friederich et al. 2022). Liu et al. in contrast use knowledge graphs as a different structure to project data 
knowledge for a DT. Their insights about updating DT models are valuable (Liu et al. 2023). The last two 
contributions coin the term “digital twin shop floor” when developing a data-driven DT. Zhang et al. use 
ML models to predict time and quality models (Zhang et al. 2024). Zhuang et al. on the other hand mention 
the importance of big data for prediction purposes and develop a framework for comparing simulation and 
data prediction accuracy (Zhuang et al. 2018). 

2.5 ML-Based Component Behavior Prediction 

The last field we consider originates from the data science community and is focused on using Ml-based 
regression to predict certain partial aspects system. We consider process time model prediction, product 
quality prediction, and predictive maintenance relevant to DMFS. Some work has recently been performed 
on learning complex situation-specific process time models using ML (Bender et al. 2022; Müller and 
Grumbach 2023; Rizzuto et al. 2021). Besides predicting process time, several researchers use ML to 
evaluate the quality of products (Muhr et al. 2020; Lehr et al. 2020; Czimmermann et al. 2020). Often 
summarized under the term anomaly detection as well, visual information of cameras or other sensor 
information is used to assess the quality of a product. The last cornerstone of ML-based component behavior 
prediction is predictive maintenance. The topic is well-studied and results can be used to predict resource 
unavailability (Nunes et al. 2023). 

3 METHOD 

For our classification of relevant literature, we conducted a systematic literature review (SLR) according to 
a proposed framework (Kitchenham et al. 2009). We approached the following research questions: 
 

1. What are the reasons to learn parts of the SBDT? 
2. Which parts of SBDTs are learned in the context of DMFS? 
3. What are the current gaps in the literature? 

3.1 Keyword Search and Criteria 

To cover as much ground as possible, we used Google Scholar to search for relevant publications. Scholar 
searches a wide variety of databases and sort them according to their relevance for the provided search 
strings. The quality of the search is highly determined by the words and synonyms used. As stated, the 
contributions of DT learning come from different scientific areas and use a lot of different wordings for 
similar topics (Jones et al. 2020). Thus, we tried to make up for that with a high semantic variance. 
Combined with logical conjunction and disjunction we used the strings in Table 1. The statement in the 
first column addresses the target model (DT or simulation) and was combined with all statements in the 
second column at the same time. The first row addresses the aspect of data as the source, the second is 
dedicated to the reason for learning (e.g., generation or update), the third is dedicated to the application 
domain of DMFS and the fourth is dedicated to specific terms from the four scientific areas presented in 
section 2. 

Table 1: Search strings used (The asterisk tells the search engine to accept anything after the symbol). 

AND ((“data-driven”) OR (“data*”)) 
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((“digital twin”) 
OR 

(“simulation)) 

AND ((“adaptive”) OR (“update*”) OR (“synchro*”) OR (“online”) OR (“self*”) 
OR (“generat*”)) 
AND ((“manufacturing”) OR (“production*”) OR (“scheduling”) OR (“iot”)” OR 
(“shop floor”) OR (“cps”) OR (“cyber-physical*”) OR (“supply chain”) OR 
(“warehouse”) OR (“assembly”) OR (“material flow”) OR (“shop floor”)) 
AND ((“process mining”) OR (“automatic model generation”) OR (“production 
system identification”) OR (“predictive maintenance”) OR ((“prediction”) AND 
(“product quality”) OR (“process time”)) OR (“process”) OR (“cockpit”) OR (“”)) 

 
This way, we researched a total amount of 245 papers. To distill the relevant ones for the classification, 

we applied the following criteria: 
 
1. The paper was written in English. 
2. The paper was published in a journal, conference proceedings, magazine, and book. 
3. Duplicated papers were only considered once. 
4. The paper specifically focuses on the application of DMs in the context of DMFS. 
5. In the context of the above applications, all sectors are feasible. 
6. The paper provides a building block to learn parts of a SBDT from data in the given context. 
7. The paper mentions creation objectives, model components, and the methods used. 
 
Following these rules, we identified a total of twenty-two articles to sort into our classification scheme. 

Lots of papers were excluded because they did not match the learning criteria (e.g., only synchronization) 
or had no DMFS as an application domain. 

3.2 Classification Scheme 

Our classification scheme is based on the basic model components needed to describe DMFS (Figure 1). 
Since there has been no scheme focusing on learnable components of DMFS the classes were derived from 
existing literature (Arnold and Furmans 2006) and standards (Simulation Interoperability Standards 
Organization 2012) on DMFS. The features were derived from the contributions analyzed for the review, 

Figure 1: Classification scheme. 
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with one exception: since there were no contributions focusing on “supply control”, the features were 
created based on existing supply strategies categorizations (Hellingrath et al. 2004).  

DMFS can be described by a set of static and a set of dynamic components (Arnold and Furmans 2006). 
Static components describe the possibility space of the system (e.g., processes that can be performed, 
resources that can be used), while dynamic components define the concrete material flow for a certain part 
or order (e.g., routing rules). Static components are parts, resources, and processes (Simulation 
Interoperability Standards Organization 2012). Parts are transformed by processes using resources, 
sometimes based on orders. Processes have a predecessor-successors relationship (process model). The 
transformation can have an impact on spatial position (transition model) and physical properties of the parts 
(transformation model). It needs resources to be executed (resource model), resources have the capacity to 
handle parts in parallel (resource capacity model) and the process takes time (time model). It also affects 
the quality of the parts involved (quality model).  

The process model describes the possible process flows for different part types or even individual 
orders. The transition model describes the possible movement of the parts from one resource to another or 
from one spatial position to another. The transformation model describes which parts can be transformed 
into which parts (e.g., assembly, packing, unpacking, forming) and can be based on a 1:1, N:1, or N:M 
cardinality. The resource model describes the resource options that are needed to execute the process (e.g., 
transport by automated guided vehicle or forklift and driver) and states the standard, exceptional, and 
situation-based availability. The latter allows the prediction of unavailability in a certain situation (e.g., in 
the case of predictive maintenance). The resource capacity model describes the observed or maximum 
capacity of a resource. The time model describes the process time that passes while the quality model 
describes the possible impact on the parts’ qualities. Both models can be unconditional probability 
distributions (e.g., uniform or normal distribution) or conditional probability distributions keeping specific 
characteristics of the situation into account (e.g., deep neural networks).  

Dynamic components are used to define the concrete dynamic material flow within the DMFS. There 
are four components order generation, order control, resource control, and supply control. Order 
generation defines the load the system must process. We differentiate between part-based frequencies which 
are defined at the sources of a system and complex order generation, which generates high-variant orders 
based on historical customer demand data. Order control defines how parts are processed, sometimes 
referred to as routing rules (Milde and Reinhart 2019). There can be simple quota-based mechanisms (e.g., 
30 % of the parts go to process 1 and 70% to process 2), and there can be rules based on part types for parts 
with low variants or order-specific routings for high-variant parts. The most complex routing would be 
situation-based since they take e.g., resource and part availability as well as delivery dates into account. 
Resource control defines how resources decide to handle processing requests, also sometimes referred to 
as priority rules (Milde and Reinhart 2019). The control can be based only on the arrival sequence of the 
request (e.g., FIFO, LIFO). It can be based on priority rules based on attributes of the part or order (e.g., 
shortest-job-first, due date) including combinations of these simple rules. It can describe a batch-based 
processing defining batch sizes for different part types or can be situation-specific trying to optimize the 
processing based on defined objectives. Supply control describes how supply parts are provided. It can be 
based on frequencies (e.g., 500/h), based on stock monitoring (e.g., Kanban), or demand-based (e.g., JIT). 

The specific realization of the respective model component can be read as a complexity degree from 
top to bottom (e.g., a model is less complex that assigns an unconditional probability distribution as a time 
model to a process than an unconditional one, gaining the possibility to predict the process lead time for a 
specific situation). 

4 RESULTS 

The proposed classification scheme was applied to a collection of texts identified with the mentioned 
literature technique (Kitchenham et al. 2009). In Table 2 we present the main findings. The relevant papers 
are classified first with respect to the reason why model learning was used (reduce creation effort (R1), 
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update the DT (R2), improve prediction accuracy (R3)) and second according to the static and dynamic 
components that are learned from data and which degree of complexity the learned model component has. 

Table 2: Summary of the literature review. 

 Publication R1 R2 R3 PM TSM TFM RM RCM TM QM OG OC RC SC 
Bano et al. 2022 ✓     PART RES 1:1 SUI   UCPD          
Biesinger et al. 2019 ✓ ✓       1:1 SUI   UCPD          
Charpentier 
and Vejár 2014 

✓ ✓   PART LOC M:N     UCPD     PART    

Choueiri et al. 2020     ✓ PART RES       UCPD          
Denno et al. 2018 ✓ ✓   PART RES 1:1 EAVA CA UCPD     PART ARR  
Evermann et al. 2016 ✓                     SIT    
Friederich et al. 2022 ✓ ✓ ✓ PART RES 1:1 SEAVA   UCPD          
Goodall et al. 2019   ✓             UCPD          
Kumbhar et al. 2023 ✓     PART RES N:1 SUI   UCPD          
Liu et al. 2023   ✓   PART RES N:1 SUI              
Lugaresi and  Matta 2021 ✓     PART RES 1:1 SUI   UCPD   PART QUO     
Martin et al. 2015 ✓                   PART      
Martin et al. 2016 ✓           EAVA              
Martin et al. 2017 ✓     PART                 BAT  
Milde and Reinhart 2019 ✓     PART RES 1:1 SUI   UCPD     PART BAT  
Moon et al. 2021 ✓                     SIT    
Pourbafrani et al. 2020 ✓         1:1 SUI   UCPD          
 Rozinat et al. 2009 ✓     PART   1:1 SUI   UCPD   PART PART    
Smith 2015 ✓     PART  LOC     CA UCPD   

 
QUO    

Tax et al. 2016 ✓               CPD     SIT    
Zhang, J. et al. 2023     ✓           CPD CPD        
Zhuang et al. 2018     ✓           CPD CPD        
SUM 17 6 4 12 10 11 11 2 16 2 3 9 3 0 

 
To answer our first research question as we can see from the summary, almost all publications learn 

components of the DT from data to reduce manual modeling effort. Only six papers focus on updating the 
model components and just four papers deal with improving prediction quality. The most holistic update 
approach is performed on a semantic web-based DT (Liu et al. 2023). A memorizing-forgetting model is 
used to classify new data points over time in long-term and short-term knowledge. Another approach is 
based on constant updates of a genetic programming population considering SCADA events as individuals 
(Denno et al. 2018).  The other approaches either focus on updating probability distributions with new data 
(Goodall et al. 2019; Friederich et al. 2022) or integrate or delete components of the model based on a 
delayed reaction to changing event logs (Biesinger et al. 2019; Charpentier and Véjar 2014). All but one 
paper that has a focus on improving the prediction qualities chooses this as the only reason to learn the 
model component from data. The reason here is surely the complexity of integrating ML into a DT 
framework without increasing manual work that must be done for data preparation, feature selection, and 
meta-parameter optimization. The only approach that integrates automated ML into a DT framework 
conceptually (Friederich et al. 2022), only validates it on predicting resource unavailability due to 
disruptions.  

To answer the second research question looking at the static model components, for the process model 
all contributions focus on part type-based process graphs, which can only work for low variance products. 
The transition model is normally described by possible resource-to-resource connections (usually 
workstations). Only two contributions use spatial locations since they use not only event logs but spatial 
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data from autonomous moving vehicles. For the transformation model, the vast majority only focuses on 
simple 1:1 part transformation. Two papers focus on more complex transformation with supply parts and 
only one paper considers the general M:N relationship, where individual programming is used to retrieve 
the information from the data. For the resource model normally the suitability of resources for a certain 
process is learned. Two papers focus also on standard and exceptional availability, adding data about 
resource status changes into their algorithms. Only one paper focuses on using ML-based availability 
prediction using condition monitoring data and combines methods from process mining and ML. The 
Resource capacity model is considered by only two contributions focusing on the capability of parallel 
processing as observed. No paper addresses to learn the maximal capacity of resources. The time model is 
the most common component, but the focus is nearly always on simple unconditional distributions. Only 
two papers focus on ML-based process time prediction. The same papers are the only ones that integrate 
product quality prediction.  

The dynamic components are far less considered in the contributions. Order Generation is done based 
on learning part-wise frequencies. Complex order generation is not considered. Order control is learned on 
nearly all levels: Quota-based, Part-wise, and also based on the current situation in the field of process 
prediction using Deep Learning (large language models, recurrent neural networks, or long short-term 
memories). Resource control is done only by three contributions: one based on arrival sequences learning 
FIFO and LIFO behavior and two based on batch control, learning the batch size used for a process by a 
resource. We found no work for learning supply control behavior.  

5 DISCUSSION 

To summarize the findings: there is still work to do until all components of SBDTs for DMFS are generated 
automatically and additionally take advantage of the maximal prediction quality. One big challenge is surely 
the data availability and quality. Approaches based on standardized event logs (like process mining) or 
smart factory environments have demonstrated the power of good data quality for the learning of model 
components. It would be interesting to switch the task of process mining from “What can I get from as little 
data as possible?” to “Which data do companies need to capture to be able to learn the whole SBDT?”. 
Even though the results show that for a lot of model components building blocks are already available, there 
is the need to integrate the building blocks into one framework – especially dealing with the issue of 
automating the ML process completely to not only improve prediction quality but reduce manual expert 
labor as well. Furthermore, more complex smart manufacturing (e.g., job shop, matrix-production) 
environments with high-variant products are still underrepresented. Most work is based on standard parts 
with a single process sequence, ignoring supply parts and complex product structures. Especially the 
business process focus of the process mining area lacks the complexity of DMFS (Denno et al. 2018). 
Finally, there is a need for more work on the dynamic components. While order control is covered quite 
well, order generation, resource control, and especially supply control needs to be focused in the future.  

To finally answer the third research question about the existing gap in the literature, we summarize the 
points discussed above: 

 
1. Since a lot of building blocks for the learning model components exist, the task at hand is to create 

frameworks that integrate all the building blocks, focusing on the automation of the ML process. 
2. More work should be dedicated to the learning of dynamic system behavior. Especially order 

generation, resource control, and most of all supply control are still blank spaces. 
3. With a lot of work being available on flow job-based MFS with standardized low-variant products, 

more work should be dedicated to complex job shop environments with high-variant products. 
4. As data standardization (as with event logs) boosts the advances in the field of learning models, 

future analyses should be focused on what kind of data would be necessary to fully automate the 
generation and update of SBDTs. 
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6 CONCLUSION AND OUTLOOK 

This paper focuses on learning SBDS for DMFS. After introducing the numerous relevant scientific areas 
that contribute to this overall objective, we introduced a novel classification scheme based on breaking 
down DMFS into static and dynamic components and their possible realizations. These realizations served 
as a reference to what could possibly be learned in the context of these systems. Conducting a systematic 
review of respective literature, we analyzed why learning was applied, which components were learned to 
which degree and had a look at data requirements and the methods applied. The three main contributions 
were (1) “identification of relevant scientific areas contributing to the topic” detailed in section 2, (2) “a 
novel classification scheme to identify relevant building blocks and gaps of a given solution” detailed in 
section 3.2 and (3) “an overview of research gasps and existing building blocks in the current state of the 
art” detailed in section 4 and summarized in section 5. Some of the details of the analysis, such as the 
detailed methods used in the publications could not be addressed within the limitations of this paper. 

For future work, it would be interesting to broaden the view to comparable application domains. 
Especially in the domain of continuous material flow, there have already been some notable advances in 
auto-generating SBDTs (Martinez et al. 2018). It would also be of interest to think about a standard data 
format (such as event logs or even based on event logs) to be able to completely learn SBDTs. This standard 
could be used as a blueprint for the industry and their IT service provider to answer the question of what 
data should be captured in their material flows. Furthermore, there is a need for more publically available 
industry data sets for the research community to advance faster in this area. Finally, an interesting area only 
recently arisen is the use of large language models to generate models out of process descriptions and 
application domain expert knowledge (Kourani et al. 2024). 
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