
Proceedings of the 2024 Winter Simulation Conference

H. Lam, E. Azar, D. Batur, S. Gao, W. Xie, S. R. Hunter, and M. D. Rossetti, eds.

A HIGH EXTENSIBLE MODELING METHOD USING

THREE-LAYER COMPONENT-BASED ARCHITECTURE

Haozhe Yuan1, Yiping Yao1, Wenjie Tang1, and Feng Zhu1

1College of Systems Eng., National University of Defense Technology, Changsha, CHINA

ABSTRACT

Extensibility and reusability are important yet competing objectives in the modeling process. Despite the

progress made by current modeling methodologies, they tend to be limited by either one-way control
transfers or static data linkages. Considering these limitations, we introduce a novel three-layer, progressive,
composable modeling architecture that divides the system model into three layers: components, entities,
and systems. It incorporates behavior trees for the assembly of functional components into entities and
adopts a publish-subscribe communication paradigm to dynamically establish interactions among entities.
Case studies confirmed that this approach facilitates the efficient development of simulation models.

Moreover, it allows for the agile adaptation of entity behavior models and their interconnections, ensuring
robust extensibility and optimizing the reuse of models as simulation requirements evolve.

1 INTRODUCTION

Computer simulations provide a repeatable experimental environment to study various systems, allowing
researchers to observe system behavior under different conditions for diverse research purposes. In practice,
researchers frequently adjust and refine models in response to changes in the research objectives,

necessitating a model architecture with high extensibility. Alternatively, the reuse of validated models has
garnered interest to enhance modeling efficiency and ensure simulation reliability. However, these two
goals are conflicting and present significant challenges. The component-based modeling approach has
demonstrated potential to enhance model extensibility, reusability, and flexibility.

A kind of component-based modeling strategies represent models as several components
interconnected through ports to forge a complete model. The primary challenge lies in the need for ports to

be precisely defined using hard coding, leading to static data linkages within the system and restricting the
decoupling between components, such as the discrete-event system specification (DEVS) framework
(Zeigler 1976), which componentizes the model structure through hierarchical recursion; however, the
internal port connections of the coupling model are hard-coded, hindering the support of flexible
adjustments in the inter-entity interactions. The other kind of strategies separate the model's behavior from
its specific logical functions, thus facilitating function modularization. The effectiveness of this strategy

depends largely on the behavior modeling method. State machines have been widely adopted to outline
behavioral logic. Such a framework often entails one-way control transfers, wherein the control flow is
transferred between components, continuing its operation within a new context without reverting to the
original point of invocation (Colledanchise and Ogren 2018). This configuration can yield an intricate
model structure, increasing the complexity of model maintenance. Modifications to a single component can
trigger changes in other parts of the model, limiting its ability to expand flexibly and accommodate new

modeling objectives. Static data linkages and one-way control transfers are the main challenges in
component-based modeling research.

We propose a hierarchical modeling architecture that integrates the use of the aforementioned two
component strategies at different levels and has made improvements to address the issues they each face.
The system is organized into a series of entities that interact via discrete events to yield a comprehensive

2301979-8-3315-3420-2/24/$31.00 ©2024

Yuan, Yao, Tang, and Zhu

model. Within an entity, event processing and generation are implemented by invoking functional
components. The system model can be assembled in two steps: 1. Components to Entity. This phase is based
on the idea of separating behavior from functionality and modularizing the functionalities. It models entity

behaviors using a behavior tree structure (Iovino et al. 2022) constrained by the postcondition-precondition-
action (PPA) paradigm, invoking various functional components to handle events. In the structure of
behavior trees, there are dedicated nodes responsible for managing control transfers. The control token is
guaranteed to be returned to the parent node after being passed to a child node, forming a two-way control
transfer mechanism. This is beneficial for the modularization of behavior models, as adding or removing a
node or even a subtree does not affect other nodes, making it easy to expand; 2. Entities to System. This

subsequent phase employs the publish-subscribe paradigm (Crowley 2008), whereby it establishes data
links among entities through real-time matching of publish/subscribe interests, enabling entity assembly
into the system model through a dynamic interaction network. This strategy allows a system model to be
incrementally constructed from components to entities, and ultimately to a holistic system, thereby
introducing two-way control transfers and dynamic interactions among the model's constituents to enhance
the reusability and extensibility of the model. This paper presents a case study of a system of firefighting

drones for extinguishing small-scale forest fires, confirming that the proposed method supports the effective
construction of system models, enables efficient model expansion and existing model reusability as the
simulation objectives change.

The remainder of this paper is organized as follows. Section 2 provides a brief introduction and analysis
of existing component-based modeling methods. Section 3 presents the background knowledge of behavior
trees and the PPA paradigm. Section 4 details the specific content of the three-layer progressive assembly

architecture. Section 5 presents case studies and result analysis. Lastly, Section 6 summarizes the findings
of this study and proposes future research directions.

2 RELATED RESEARCH

Many useful methodologies exist for the direct decomposition and reconfiguration of model structures, such
as the event graph (EG) method (Schruben 1983), a discrete-event simulation (DES) technique that
elucidates discrete-event systems by mapping events and their interrelations. Nonetheless, the specification

of event interactions, a task undertaken during the design and development stages, poses challenges in terms
of adaptability to modifications of interaction dynamics. Innovations such as listener EG objects (Buss and
Blais 2007) and object-oriented EGs (Tiacci 2020) integrate object-oriented principles with EGs, elevating
the modularity of EG models. However, these methods do not refine the static interactions among objects.
System models based on Petri nets (Murata 1989), which are structurally clear and well-integrated. Despite
their structural merits, Petri nets exhibit tight coupling that conflicts with the demand for flexible model

adjustments. Amparore et al. (2024) proposed the segmentation of large systems into components
developed in Petri net formalism. This method uses labels instead of component IDs to identify port
interactions, which significantly enhances the degree of inter-component loose coupling. However, it does
not fully address the challenges posed by the one-way control transfer characteristics of Petri nets, which
have a structure similar to the state machine. The DEVS framework proposed by Zeigler for specifying
discrete-event systems supports hierarchical model development by using a coupled model as a fundamental

component in another coupled model (Palaniappan et al. 2006). However, the hierarchical assembly of
DEVS-based system models is implemented using input/output ports and message couplings, which means
that all pairwise data links between components must be explicitly defined during the system design phase.
Thus, the complexity will increase when the system developer adds a new layer to the system, which
markedly limits system model extensibility. For the sake of mathematical rigor, DEVS disperses the
behavior of components into different functions but is often limited by the readability factor during the

modeling and programming process. Architecture analysis and design language (AADL)-DEVS (Ahmad
and Sarjoughian 2023) leverages the complementary advantages of the two modeling standards at different
design levels, but AADL and DEVS both define the connections between components through hard coding
and do not address problems with static data linkages. The network simulator J-Sim (Sobeih et al. 2007),

2302

Yuan, Yao, Tang, and Zhu

which is based on the autonomous component architecture (ACA), shares similarities with DEVS but
enhances inter-component decoupling. Two components, acting as the initiator (caller) and reactor (callee),
are bound at the system integration time to fulfill the contract. From the perspective of design patterns, this

study applies the mediator pattern. However, the existence of the mediator contract class means that, when
the system needs to be expanded, the mediator complexity and management difficulty will increase.

Another strategy in component-based modeling involves separating a model's behavior from its specific
functions, thereby facilitating functional componentization. MAXSIM, a combat simulation platform,
features a behavior editor predicated on state machines, allowing users to visually modify model behaviors.
When modeling a complex system, multiple one-way control transfers exist. The basic object model (BOM)

(Gustavson 2001) was developed to address the challenges of poor reusability and redundancy associated
with federation object models within high-level architectures. Despite this, the BOM continues to rely on
state machines to model transitions between steps in pattern description tables. This approach inevitably
results in complex control transfers and dependencies. In the three-layer architecture for complex adaptive
systems (CAS) (Zhu et al. 2017), one or more CAS models are built from lower-level components. The
bottom layer is a simulation model component (SMC) that implements some rule-specific support

functionality. The middle layer is a logical process (LP) model that states that an agent can react to a current
situation by executing a sequence of SMCs. The top layer is the CAS system model, which defines a CAS
model consisting of several LPs and their interactions. Ding et al. (2023) developed a flexible operation
simulation platform that integrates the three levels of campaign systems, tactical entities, and technical
components. Fine-grained electromagnetic models are included in large-scale system simulations to create
highly realistic electromagnetic environments. However, for both of the two methods, the data linkages

between entities are fixed and the entity behavior models are rigid, rendering them inflexible to changes in
the research objectives.

The aforementioned methods effectively facilitate the component-based construction of simulation
models. However, they are constrained by the one-way control transfer-related complexity of the behavior
model or static data linkage-related difficulty in extending component interactions. To address these issues,
we drew upon the concept of assembly at the system, logical entity, and technical component levels and

replaced hard-coded interactions with a publish-subscribe paradigm to achieve the inter-entity dynamic
matching of data connections； further modularized the functionality of entities, and organized them into
a behavior tree structure to enable two-way control transfer and enhance the readability of the model code.

3 BACKGROUND

3.1 Behavior Tree

Behavior trees originated in the computer gaming industry and are widely used in robotics and games.

Behavior trees can be formally defined as 𝐵𝑇 =< 𝑉, 𝐸, 𝜏 >, where 𝑉 denotes the set of tree nodes, 𝐸
represents the set of edges, and 𝜏 ∈ 𝑉 denotes the root node. Execution within a behavior tree begins at the
root node, disseminating a tick signal downstream. Each node responds to this signal by performing
designated functions and returns one of three statuses: SUCCESS, FAILURE, or RUNNING. The nodes in
the tree are categorized into two main types: control nodes (non-leaf nodes), which govern the propagation
of tick signals among child nodes, and execute nodes (leaf nodes), which execute specific condition checks

or actions. Classic control nodes include sequence nodes that execute child nodes in order until one returns
a FAILURE status or all return SUCCESS and selector nodes that execute child nodes sequentially until
one returns SUCCESS or all return FAILURE.

Diverging from finite state machines, behavior trees maintain a call-and-return dynamic between nodes,
whereas the reactivity feature ensures the correct execution sequence. A tree structure, rather than a network
structure, has the advantages of modularity and readability, which allow developers to tailor behavior trees

to meet specific modeling requirements.

2303

Yuan, Yao, Tang, and Zhu

3.2 PPA Paradigm

The PPA paradigm is a design pattern for behavior trees. The postcondition represents the objective of the
behavior, the precondition denotes the conditions that must be met to achieve the goal, and the action

signifies the operation required to fulfill the postcondition based on satisfaction of the precondition. These
three elements are shown in the tree structure of Figure 1. For instance, when entering a building is the goal,
the precondition would be an open door and the action would be entering through the door. Additionally, a
precondition can serve as a postcondition for another PPA subtree, further decomposing it.

Figure 1: PPA subtree structure.

4 MODELING ARCHITECTURE

Our architecture divides the system model into three layers: components, entities, and systems. Initially, in
the Components to Entity phase, behavior trees are utilized to integrate functional components.
Subsequently, in the Entities to System phase, as the entity model specifies the types of data allowed for
publishing and subscribing, the simulator aligns these publish and subscribe interests to dynamically forge
data linkages among entities, thereby constructing the system model. This ultimately forms a progressive
Component to Entity to System assembly modeling architecture.

4.1 Formalism of the Entity Model

Embracing the discrete-event system perspective, we modeled a simulation entity using the following octet:

𝐸𝑛𝑡𝑖𝑡𝑦 =< 𝑆𝑖𝑛𝑡, 𝐼𝑒𝑛𝑣, 𝑋, 𝑌, 𝑇𝑠𝑢𝑏 , 𝑇𝑝𝑢𝑏, 𝑓𝑖𝑛𝑖𝑡, 𝑓𝑏𝑡 >

Here, 𝑆𝑖𝑛𝑡 represents the set of internal states derived from the aggregation of the entity's internal

attributes: 𝑆𝑖𝑛𝑡 =×𝑖=1
𝑚 𝑎𝑡𝑡𝑟𝑖𝑖.

𝐼𝑒𝑛𝑣 denotes the environmental information set, or external state set, representing the dataset of external

environmental mappings perceived by the entity, as derived from the environmental attributes of interest to

the entity: 𝐼𝑒𝑛𝑣 =×𝑖=1
𝑛 𝑒𝑛𝑣𝑖.

𝑋 and 𝑌 denote the input and output sets, respectively. In discrete-event systems, an entity's response

to an input event involves executing an action, which alters its state, or scheduling an output event. Defined

within the DES paradigm, an event comprises two components: a timestamp (time of occurrence) and event

content (custom structure):𝑋 = {< 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝, 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 >}, 𝑌 = {< 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝, 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 >}.

𝑇𝑠𝑢𝑏 and 𝑇𝑝𝑢𝑏 represent the sets of interests subscribed to and published by the entity, i.e., the entity

can send and receive messages on the corresponding topic data: 𝑇𝑠𝑢𝑏 = {𝑡𝑜𝑝𝑖𝑐}, 𝑇𝑝𝑢𝑏 = {𝑡𝑜𝑝𝑖𝑐}. Under

the publish-subscribe paradigm, a 𝑡𝑜𝑝𝑖𝑐 acts as a message-routing identifier, which can be of any data

category, tailored by the modeler to fit the modeling goals and system characteristics. In addition to a simple

string form, some systems permit the adoption of complex topics with attributes, allowing subscribers to

apply fine-grained filtering.

2304

Yuan, Yao, Tang, and Zhu

𝑓𝑖𝑛𝑖𝑡 denotes the initialization function. This function generates the entity's initial state and a set of
output events, initiating the simulation based on predefined experimental scenarios: 𝑓𝑖𝑛𝑖𝑡: 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 →
𝑆𝑖𝑛𝑡 × 𝑌 ∪ {∅}.

𝑓𝑏𝑡 represents the behavior function. The logical functions of entities, such as motion and
communication, were designed as different functional components incorporated within the behavior
function to introduce two-way control transfers and refine the design constraints for model behavior. It
updates the internal states, environment information, and publish/subscribe interests based on the internal
states, environment information, and new inputs: 𝑓𝑏𝑡: 𝑆𝑖𝑛𝑡 × 𝐼𝑒𝑛𝑣 × 𝑋 → 𝑆𝑖𝑛𝑡 × 𝐼𝑒𝑛𝑣 × 𝑌 ∪ {∅} × 𝑇𝑠𝑢𝑏 ×
𝑇𝑝𝑢𝑏.

Figure 2 shows the architecture of the entity model. The function call reflects the relationship between
the entity and component models, whereas the read/write operation entails 𝑓𝑏𝑡 and 𝑓𝑖𝑛𝑖𝑡 reading data from
or writing data to other elements of the entity model.

Figure 2: Entity model architecture.

4.2 Components to Entity: Behavior Function Assembles Components

This method separates behavior from functionality at the entity level and uses a behavior tree to assemble
functional components into an entity’s behavior function.

2305

Yuan, Yao, Tang, and Zhu

By constructing behavior trees based on the PPA paradigm, design constraints were introduced into the
entity behavior modeling process, further optimizing the model structure. As shown in Figure 1, within the
modeling phase, the entity behavior objectives (postcondition), actions required to achieve these objectives

(action), and prerequisite conditions (precondition) are placed in the corresponding condition and action
nodes of the PPA subtree structure. Each node, condition, or action invokes the corresponding functional
component to address the specific logic it represents. Through the recursive augmentation of PPA subtrees,
developers progressively refine the behavior function of the entity model until further decomposition of the
precondition nodes is untenable.

Fundamentally, the entity's behavior function manifests as a behavior tree formulated via the PPA

paradigm, defined as 𝑓𝑏𝑡 =< 𝑉, 𝐸, ≼> . The node set 𝑉 = {< 𝑡𝑦𝑝𝑒, 𝑓𝑢𝑛𝑐 >} . Here, 𝑡𝑦𝑝𝑒 =<
𝑐𝑜𝑛𝑡𝑟𝑜𝑙, 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 >. Control nodes’ 𝑓𝑢𝑛𝑐 elements dictate tick signal propagation based on predetermined
logic, whereas the 𝑓𝑢𝑛𝑐 of execute nodes expresses a specific function of the entity behavior. The 𝑓𝑢𝑛𝑐 of
execute nodes reads data from the entity's internal state set, environmental information set, and input event
content, and calls functional components for computation.

The execute nodes are further divided into two categories: conditions and actions. Condition nodes

within the behavior tree activate sensor-type functional components, assimilate data from input events,
combine them with internal state and external environmental data for condition judgment, and subsequently
store outcomes in 𝐼𝑒𝑛𝑣 for access by action nodes. To foster component reusability while acknowledging
that various condition nodes may require identical functional components, condition nodes were designed
to follow functional component output with additional evaluative logic. For instance, within a behavior tree
incorporating both ally and adversary distance evaluative nodes, a single sensor-type functional component,

class-TargetDistance, is sufficient to interpret the position data from target entities. These condition nodes
independently assess the affiliation and proximity of the target entity. Alternatively, action nodes are more
straightforward because they extract the requisite data from internal and environmental sources to facilitate
component-executed tasks.

Algorithm 1 describes the operational logic of the behavior function. Each iteration sets the execution
pointer at the root node (Line 1), initiating movement and execution across nodes based on their 𝑓𝑢𝑛𝑐

elements (Line 6, Line 10). Nodes return states, such as SUCCESS, FAILURE, or RUNNING (Line 6, Line
9). This iterative process continues until the root node state of the Behavior Tree is altered (Line 2).

Algorithm 1: Pseudocode for behavior function.

1 𝑝𝑜𝑖𝑛𝑡𝑒𝑟 ← 𝑛𝑜𝑑𝑒0;

2 while not 𝑛𝑜𝑑𝑒0. 𝑠𝑡𝑎𝑡𝑒 == 𝐼𝑛𝑣𝑎𝑙𝑖𝑑 do:

3 𝑝𝑜𝑖𝑛𝑡𝑒𝑟 ← 𝑝𝑜𝑖𝑛𝑡𝑒𝑟. 𝑛𝑒𝑥𝑡;

4 switch(𝑝𝑜𝑖𝑛𝑡𝑒𝑟. 𝑡𝑦𝑝𝑒)

5 case 𝑐𝑜𝑛𝑡𝑟𝑜𝑙:
6 𝑝𝑜𝑛𝑖𝑡𝑒𝑟. 𝑠𝑡𝑎𝑡𝑒, 𝑝𝑜𝑖𝑛𝑡𝑒𝑟. 𝑛𝑒𝑥𝑡 ← 𝑓𝑢𝑛𝑐(𝑝𝑜𝑖𝑛𝑡𝑒𝑟. 𝑐ℎ𝑖𝑙𝑑. 𝑠𝑡𝑎𝑡𝑒, 𝐸, ≼);

7 break;

8 case 𝑒𝑥𝑒𝑐𝑢𝑡𝑒:

9 𝑝𝑜𝑖𝑛𝑡𝑒𝑟. 𝑠𝑡𝑎𝑡𝑒, 𝑆𝑖𝑛𝑡, 𝐼𝑒𝑛𝑣, 𝑦, 𝑇𝑠𝑢𝑏 , 𝑇𝑝𝑢𝑏 ← 𝑓𝑢𝑛𝑐(𝑥. 𝑐𝑜𝑛𝑡𝑒𝑛𝑡, 𝑆𝑖𝑛𝑡, 𝐼𝑒𝑛𝑣);

10 𝑝𝑜𝑖𝑛𝑡𝑒𝑟. 𝑛𝑒𝑥𝑡 ← 𝑝𝑜𝑖𝑛𝑡𝑒𝑟. 𝑙𝑎𝑠𝑡;

11 break;

12 return 𝑆𝑖𝑛𝑡, 𝐼𝑒𝑛𝑣, 𝑦

In summary, the entity model manages the invocation of the component model by using behavior

functions, capitalizing on the inherent strengths of behavior trees, including two-way control transfer
capability, modularity, and enhanced readability. These attributes facilitate the flexible and precise

adjustment of entity behaviors, significantly enhancing model extensibility and reusability.

2306

Yuan, Yao, Tang, and Zhu

4.3 Entities to System: Dynamic Interest Matching Among Entities

After assembly of the components into the behavior function of an entity, this architecture dynamically
matches inter-entity interactions based on their publishing/subscribing interest sets. Here, this task was

completed by using a simulation platform, i.e., a simulator. The simulator was equipped with an event list
and interest-matching module. Algorithm 2 provides the pseudocode for the simulator.

The event list catalogs the upcoming events. When an entity generates an output (Lines 4–7 and 23–27
in Algorithm 2), the simulator positions it accurately within the list according to its timestamp (Lines 3–9).
Next, the simulator dispatches the imminent event to the pertinent entity (Line 13), initializing the entity's
behavior function to address the event (Lines 16–18) and adjusting the simulation clock to align with the

event's timestamp (Line 14).
Unlike conventional interest-matching algorithms that find the target entities for every event, our

methodology implements an entity-to-entity matching mechanism within its interest-matching module to
minimize redundant calculations. During the simulation initialization phase (Line 2), the interest-matching
module delineates a normalized multidimensional space per topic by assigning each dimension to an
attribute under the topic. It then maps all entity publish and subscribe interest sets to a multidimensional

space, forming each entity's publish and subscribe regions. The intersecting regions denote potential data-
exchange pathways between entities across various topics. The methodology also permits dynamic
adjustment of the entity interest sets during simulation, necessitating recalibrations solely for the affected
entities (Lines 20–21).

Algorithm 2: Pseudocode for the simulator.

1 𝑡𝑖𝑚𝑒 ← 0;

2 𝑑𝑒𝑠𝑡𝑚𝑎𝑝 ← 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑟_𝑚𝑎𝑡𝑐ℎ(𝑎𝑙𝑙 𝑇𝑝𝑢𝑏 , 𝑎𝑙𝑙 𝑇𝑠𝑢𝑏);

3 #Handle initial events

4 𝑦𝑖𝑛𝑖𝑡 ← 𝑝𝑢𝑏𝑒𝑛𝑡𝑖𝑡𝑦. 𝑓𝑖𝑛𝑖𝑡(𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜);

5 𝑒𝑣𝑒𝑛𝑡. 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ← 𝑦𝑖𝑛𝑖𝑡 . 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝;

6 𝑒𝑣𝑒𝑛𝑡. 𝑑𝑒𝑠𝑡𝑙𝑖𝑠𝑡 ← 𝑑𝑒𝑠𝑡𝑚𝑎𝑝. 𝑓𝑖𝑛𝑑(𝑦𝑖𝑛𝑖𝑡 . 𝑡𝑜𝑝𝑖𝑐);

7 𝑒𝑣𝑒𝑛𝑡. 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 ← 𝑦𝑖𝑛𝑖𝑡 . 𝑐𝑜𝑛𝑡𝑒𝑛𝑡;

8 #Insert initial events into event list of simulator

9 𝑒𝑣𝑒𝑛𝑡𝑙𝑖𝑠𝑡. 𝑖𝑛𝑠𝑒𝑟𝑡(𝑒𝑣𝑒𝑛𝑡);

10 #Start running

11 while not termination_condition(𝑡𝑖𝑚𝑒) do:

12 #Fetch new event

13 𝑛𝑒𝑥𝑡_𝑒𝑣𝑒𝑛𝑡 ← 𝑒𝑣𝑒𝑛𝑡𝑙𝑖𝑠𝑡. 𝑝𝑜𝑝_𝑓𝑟𝑜𝑛𝑡();

14 𝑡𝑖𝑚𝑒 ← 𝑛𝑒𝑥𝑡_𝑒𝑣𝑒𝑛𝑡. 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝;

15 𝑥 ← 𝑛𝑒𝑥𝑡_𝑒𝑣𝑒𝑛𝑡;

16 for 𝑑𝑒𝑠𝑡𝑒𝑛𝑡𝑖𝑡𝑦 in 𝑥. 𝑑𝑒𝑠𝑡𝑙𝑖𝑠𝑡;

17 #Trigger the behavior function of destination entity

18 𝑑𝑒𝑠𝑡𝑒𝑛𝑡𝑖𝑡𝑦 → 𝑓𝑏𝑡(𝑥. 𝑐𝑜𝑛𝑡𝑒𝑛𝑡);

19 #Update the results of interest match

20 if there is 𝑝𝑢𝑏𝑡𝑜𝑝𝑖𝑐/𝑠𝑢𝑏𝑡𝑜𝑝𝑖𝑐 change:

21 𝑑𝑒𝑠𝑡𝑚𝑎𝑝. 𝑢𝑝𝑑𝑎𝑡𝑒();

22 #Generate a new event and insert it into the simulator's event list

23 else if there is new 𝑦:

24 𝑒𝑣𝑒𝑛𝑡. 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ← 𝑦. 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝;

25 𝑒𝑣𝑒𝑛𝑡. 𝑑𝑒𝑠𝑡𝑙𝑖𝑠𝑡 ← 𝑑𝑒𝑠𝑡𝑒𝑛𝑡𝑖𝑡𝑦. 𝑑𝑒𝑠𝑡𝑚𝑎𝑝. 𝑓𝑖𝑛𝑑(𝑦. 𝑡𝑜𝑝𝑖𝑐);

26 𝑒𝑣𝑒𝑛𝑡. 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 ← 𝑦. 𝑐𝑜𝑛𝑡𝑒𝑛𝑡;

27 𝑒𝑣𝑒𝑛𝑡𝑙𝑖𝑠𝑡. 𝑖𝑛𝑠𝑒𝑟𝑡(𝑒𝑣𝑒𝑛𝑡);

2307

Yuan, Yao, Tang, and Zhu

Thus, the simulator can dynamically establish inter-entity communication links with minimal
computational overhead, effectively structuring the system model. If model expansion is required, the
developer is merely tasked with revising the entity publish and subscribe sets, independent of other entities'

presence or modifications, which simplifies and expedites the model augmentation process.

5 CASE STUDY

This case study consisted of two phases. (1) The firefighting drone (Firefighter, entity ID 309191) navigates
toward the forest fire (Fire, entity ID 309201) along a predefined route and deploys extinguishing bombs
(Extinguisher, entity ID 309191000). The effectiveness of the architecture can be evaluated by analyzing
the behavioral transitions of entities and exchange of messages as recorded in the simulation logs. (2) A

simulation incorporating mountainous terrain features (Mountain, entity ID 309211) and autonomous fire
detection and response by the drone is developed. The drone must navigate the terrain to avoid collisions.
We will analyze its extensibility and reusability by adjusting the process of entities and system models.

5.1 Phase 1: Model Development and Validation

First, we modeled the behavioral functions of each entity. Using Firefighter as an example, Figure 3
illustrates the PPA paradigm-based three-step construction process for the behavior tree: In Figure 3(b),

Fire is Out? is the postcondition, Extinguish is the action, and Close to Fire? is the precondition that serves
as the postcondition in the subtree shown in Figure 3(c).

(a) Initial postcondition. (b) First PPA subtree.

(c) Close to Fire? expanded. (d) Final tree.

Figure 3: Modeling process for Firefighter behavioral function.

The Fire is Out? and Close to Fire? nodes of Firefighter call the ModelProcess method of the target

state recognition component class TargetDamage and target distance judgment component class
TargetDistance, respectively, to realize the purpose of the node. Firefighter also calls the extinguish
component via the Extinguish node to publish an entityCreate message to Extinguisher to activate it. The
Motion node is included in the behavioral functions of the three entities, all of which call the motion
component to move to the navigation point (i.e., change their own position and publish a new posChange

2308

Yuan, Yao, Tang, and Zhu

message). Their differences are as follows: the navigation point of Firefighter is given in the scenario, that
of Fire is empty, and that of Extinguisher is determined according to the location of the Fire. In addition to
having nodes identical to those of Firefighter, Extinguisher has the Is Launched? node, which can judge

whether it is activated, and the Detonate node, which publishes the detonation message to entities within
range. In addition to the Motion node, Fire also needs to check its own survival status and publish it
externally through the node Is Damaged?.

The system model structure is shown in Figure 4, which illustrates the attributes of the entities’ internal
state sets and topics in the publish/subscribe interest sets. The behavioral functions are also presented in the
form of behavioral trees.

Figure 4: System model structure.

Figure 5 shows a frame of the simulation running process, depicting Firefighter in motion toward Fire
at simulation times of 20 and 20.5; a detailed log of entity behaviors is also shown. The entities were
designed to dispatch a self-scheduling message at 0.5 intervals; therefore, Firefighter will repeat the
behaviors taken at time 20 at time 20.5.

Figure 5: Frame of simulation log.

 o

2309

Yuan, Yao, Tang, and Zhu

Table 1 details the nodes activated within the behavioral functions of each entity at 20, along with the
outcomes of their execution, referred to as entity-executed actions. The table also lists the topic of
transmitted messages associated with these actions.

Table 1: Simulation log for simulation time (Simtime) = 20.00.

Simtime Entity ID Node being ticked: Behavior Topic of sent message

20.00 309191 Fire is Out?: 309201 is not extinguished
20.00 309191 Close to Fire?: Distance from 309201 = 4472.52

20.00 309191 Motion: Motion
20.00 309201 Is Damaged?: No damage
20.00 309201 Motion: Motion posChange
20.00 309191000 Is Launched?: No launch

Table 2 highlights a pivotal moment, i.e., upon the Close to Fire? node of Firefighter determining that
the proximity to Fire falls below the 200-unit threshold, the entity promptly activates the Extinguish node.
This action sends an entityCreate message, triggering the activation of Extinguisher. Upon reception of the
entityCreate message, the Is Launched? node's conditional check is satisfied, thereby enabling initiation of
the subsequent behavioral sequence.

Table 2: Simulation log for Simtime = 131.00–131.10.

Simtime Entity ID Node being ticked: Behavior Topic of sent message

131.00 309191 Fire is Out?: 309201 is not extinguished
131.00 309191 Close to Fire?: Distance from 309201 = 189.77
131.00 309191 Extinguish: Extinguish entityCreate

131.00 309201 Is Damaged?: No damage
131.00 309201 Motion: Motion posChange
131.10 309191000 Is Launched?: Launched
131.10 309191000 Fire is Out?: 309201 is not extinguished
131.10 309191000 Close to Fire?: Distance from 309201 = 168.89
131.10 309191000 Motion: Motion

Lastly, Table 3 details the instant when Extinguisher, upon detecting a distance of less than 20 units

from Fire, detonates and subsequently alters Fire's state of existence.

Table 3: Simulation log for Simtime = 134.60–134.70.

Simtime Entity ID Node being ticked: Behavior Topic of sent message

134.60 309191000 Is Launched?: Launched
134.60 309191000 Fire is Out?: 309201 is not extinguished
134.60 309191000 Close to Fire?: Distance between 309201 = 14.02
134.60 309191000 Detonate: Detonate detonate, entityIsDead

134.70 309201 Is Damaged?: Damaged entityIsDead
134.70 309191 Fire is Out?: 309201 is extinguished

5.2 Phase 2: Model Extension and Flexibility Analysis

In the subsequent phase, the system introduces Mountain, which also utilizes a Motion node with an empty
navigation point and publishes events under the posChange topic without subscribing to any events.
PosChange events from Mountain were monitored by all entities capable of movement within the system.

2310

Yuan, Yao, Tang, and Zhu

Incorporating this new entity merely entails updating the subscribe sets of Firefighter and Extinguisher to
reflect the altered interaction dynamics.

Evolution of the simulation model for this phase led to the streamlined creation of new behavioral

functions for Firefighter, maintaining the PPA tree structure (Figure 6). The No collision risk? node assesses
the collision risk based on the analytical outcomes derived from the position data of Mountain by using the
TargetDistance component. The subtree enclosed in the red box represents the final behavioral function of
Firefighter, which is fully preserved and reused.

Figure 6: Updated behavioral function of Firefighter.

This model modification process underscored the reusability and extensibility of the proposed
architecture, indicating that the simulation model can effectively modify the behavioral logic and
interaction networks of entities to align with new simulation goals and fully exploit preexisting components

and behavioral functions.

6 CONCLUSION

This study yielded a highly extensible modeling methodology that categorically disaggregates a system into
three hierarchical levels: components, entities, and systems. The integration of behavior trees, characterized
by their robust two-way control transfers and enhanced readability, enables adaptable modifications to
entity models. The implementation of publishing and subscribing interests within entities' input/output

configurations supports the establishment of dynamic inter-entity interactions. This three-layer Component
to Entity to System assembly architecture's efficacy, extensibility, and reusability has been verified through
the empirical case study delineated here.

Considering the large amount of work on the automatic generation of behavior trees, the proposed
architecture can be combined with artificial intelligence technology to explore the spontaneous organization
of entity models to produce the correct behavioral logic. This would further enhance system model

extensibility, enabling autonomous learning of and adaptability to more complex and uncertain
environments to increase simulation efficiency and result accuracy.

REFERENCES

Ahmad, E. and H. S. Sarjoughian. 2023. “An Environment for Developing Simulatable AADL-DEVS Models”. Simulation

Modelling Practice and Theory 123:102690.

2311

Yuan, Yao, Tang, and Zhu

Amparore, E., M. Beccuti, P. Castagno, S. Pernice, G. Franceschinis, and M. Pennisi. 2024. “From Compositional Petri Net

Modeling to Macro and Micro Simulation by Means of Stochastic Simulation and Agent-Based Models”. ACM Transactions

on Modeling and Performance Evaluation of Computing Systems 9(1):1-30.

Buss, A. and C. Blais. 2007. “Composability and Component-based Discrete Event Simulation”. In 2007 Winter Simulation

Conference (WSC), 694-702 https://doi.org/10.1109/WSC.2007.4419663.

Crowley, P. 2008. “A Dynamic Publish-Subscribe Network for Distributed Simulation”. In 2008 22nd Workshop on Principles of

Advanced and Distributed Simulation. June 3rd-6th, Roma, Italy.

Ding, B., F. Mu, Y. Li, Z. Chen, and C. Liu. 2023. “Design of System Combat Simulation Platform for Complex Electromagnetic

Environment”. Journal of System Simulation 35(02):330-338.

Gustavson, P. 2001. “BOM Study Group Final Report”. Simulation Interoperability Standards Organization.

Iovino, M., E. Scukins, J. Styrud, P. Ogren, and C. Smith. 2022. “A Survey of Behavior Trees in Robotics and AI”. Robotics and

Autonomous Systems 154:104096.

Murata, T. 1989. “Petri Nets: Properties, Analysis and Applications”. Proceedings of the IEEE 77(4):541-580.

Colledanchise, M. and P. Ogren. 2018. Behavior Trees in Robotics and AI: An Introduction. Boca Raton: Chapman & Hall/CRC

Press.

Palaniappan, S., A. Sawhney, and H. S. Sarjoughian. 2006. “Application of the DEVS Framework in Construction Simulation”. In

2006 Winter Simulation Conference (WSC), 2077-2086 https://doi.org/10.1109/WSC.2006.322996.

Schruben, L. 1983. “Simulation Modeling with Event Graphs”. Communications of the ACM 26(11):957-963.

Sobeih, A., M. Viswanathan, D. Marinov, and J. C. Hou. 2007. “J-Sim: An Integrated Environment for Simulation and Model

Checking of Network Protocols”. In 2007 IEEE International Parallel & Distributed Processing Symposium (IPDPS), March

26th-30th, Long Beach, USA.

Tiacci, L. 2020. “Object-oriented Event-graph Modeling Formalism to Simulate Manufacturing Systems in the Industry 4.0 Era”.

Simulation Modelling Practice and Theory 99:102027.

Zeigler, B. P. 1976. Theory of Modeling and Simulation: Discrete Event and Iterative System Computational Foundations. New

York: Wiley.

Zhu, F., Y. Yao, W. Tang, and J. Tang. 2017. “A Hierarchical Composite Framework of Parallel Discrete Event Simulation for

Modelling Complex Adaptive Systems”. Simulation Modelling Practice and Theory 77:141-156.

AUTHOR BIOGRAPHIES

HAOZHE YUAN received a B.S. degree in Information Management and Information Systems from Harbin Institute of

Technology, China, in 2022. He is currently pursuing his M.S. degree in Management Science and Engineering from the College

of Systems Engineering, National University of Defense Technology, China. His research interests include modeling and simulation

of complex systems and behavior modeling. His email address is yuanhaozhe1023@nudt.edu.cn.

YIPING YAO is a Professor in the College of Systems Engineering, National University of Defense Technology, China. His

research interests include high-performance simulation systems, parallel and distributed simulations, cloud computing, and parallel

algorithms. His email address is ypyao@nudt.edu.cn.

WENJIE TANG is the corresponding author and an Associate Professor in the College of Systems Engineering, National

University of Defense Technology, China. His research interests include high-performance simulation systems, parallel and

distributed simulations, and the modeling and simulation of complex systems. His email address is tangwenjie@nudt.edu.cn.

FENG ZHU is an Associate Professor in the College of Systems Engineering, National University of Defense Technology, China.

He was an Academic Visitor to the Department of Computing, Imperial College London, U.K., in 2015. His research interests

include high-performance computing and the modeling and simulation of complex systems. His e-mail address is

zhufeng@nudt.edu.cn.

2312

https://doi.org/10.1109/WSC.2007.4419663
https://doi.org/10.1109/WSC.2006.322996
mailto:yuanhaozhe1023@nudt.edu.cn
mailto:ypyao@nudt.edu.cn
mailto:tangwenjie@nudt.edu.cn
mailto:tangwenjie@nudt.edu.cn
mailto:zhufeng@nudt.edu.cn

