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ABSTRACT 

The rapid advancement of autonomous vessels and communication technology promises safer, more 
efficient, and sustainable shipping solutions. While autonomous vessels (AVs) offer the potential to 
significantly reduce the number of accidents caused by human error, their successful integration into mixed 
environments hinges on their ability to navigate complex interactions with manual vessels (MVs) 
effectively. We study the dynamics of interaction between AVs and MVs under the lens of cooperative and 
non-cooperative behavior using a cooperative game theory model in a connected mixed environment. 
Different risk perceptions of AVs and MVs based on ship domains were considered for the estimation of 
collision risk for different vessel types in mixed traffic. Simulation results validate the proposed collision 
avoidance strategy in multiple scenarios, demonstrating that the cooperative game approach can help AVs 
to dynamically adapt their trajectories and effectively obtain collision-free paths amid complex interactions 
with various encountered vessels. 

1. INTRODUCTION 

Intelligent maritime transportation systems including vessel networking technologies (such as vessel-to-
vessel (V2V) and vessel-to-infrastructure (V2I) communications) will lead maritime transportation to 
witness a transformative shift towards the integration of Autonomous vessels (AVs) in maritime traffic 
environments. AVs promise increased operational efficiency and enhanced sustainability through 
optimized route planning, reduced fuel consumption, and minimum idle time. The adoption of AVs in 
maritime transportation would drive progress toward a more sustainable and technologically advanced 
maritime industry while enhancing safety and efficiency in maritime waters.   
       While AVs promise the potential to significantly reduce the number of accidents caused by human 
error and minimize collision risks at sea, challenges remain (Chen et al. 2021). These challenges revolve 
around the effective integration of AVs alongside manual vessels (MVs) in mixed-traffic environments, 
where vessels with varying autonomy would interact within confined shared waterways. MV maneuvering 
in confined mixed traffic waters, in compliance with International Regulations for Preventing Collisions at 
Sea (COLREGs), will present challenges for AVs to effectively interpret COLREGs, estimate collision 
risks, and predict collision avoidance strategies of MVs. Varying levels of autonomy and risk perceptions 
of vessels in mixed traffic will manifest in the form of varied collision avoidance strategies in shared 
waterways, resulting in unpredictability and uncertainty in the environment. This problem will be further 
compounded in close proximity and busy waterway scenarios where the efficiency of AVs will be impacted 
in the presence of MVs, introducing complex interactions with various encountered vessels. The need to 
address the risk and safety issues in mixed traffic environments thus necessitates exploring effective 
cooperative collision avoidance strategies for autonomous vessels to ensure improved safety, efficiency, 
and reliability for AVs (Gong and Du 2018; Sun et al. 2020).  
     We propose a multi-AV cooperative collision avoidance framework using a coalition-based cooperative 
game theory model. The idea is to enable AVs to estimate the collision risks from encountered ships 
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(including AVs and MVs), cooperate with other AVs by forming a coalition, and shift their trajectories if 
required to mitigate potential risks of collision.  The study examines the performance of cooperative 
(coalition-based) collision avoidance strategies of AVs in comparison to independent collision avoidance 
behavior in mixed-traffic using simulation tests across multiple scenarios. In addition to addressing existing 
gaps in collision avoidance strategies for AVs, this research aims to facilitate the practical implementation 
of autonomous systems in real-world maritime environments by ensuring safer mobility practices in mixed-
traffic environments. 
     The remainder of this paper is organized as follows. Section 2 discusses related works; Section 3 
introduces problem description and practical considerations. Section 4 discusses collision risk and safety 
parameters considered in the study. The model description is given in Section 5, which is followed by 
simulation results and discussion in Section 6 and the conclusion in Section 7.  

2. LITERATURE REVIEW 

Collision avoidance for autonomous vessels is an active area in research. Most existing studies in the 
domain have focused on strategies that detect static and dynamic obstacles in the path of autonomous 
vessels and generate a collision-free path based on different encounter situations in complete autonomous 
frameworks (Chen 2019; Liang et al. 2019; Zhao 2019; Chen 2020; Wang 2021).  However, only a few 
studies (Wang et al. 2023; Liu et al. 2022) have explored collision avoidance strategies in mixed traffic 
environments in maritime.  
      Furthermore, based on existing literature, research methods for collision avoidance can be studied under 
two categories: Artificial Intelligence (AI) based and rules-based decision-making. Methods based on AI 
have included the development of deep reinforcement learning (DRL) models that exhibit excellent 
performance in controlling complex systems, such as autonomous ships by deriving optimal policies 
through trial-and-error interactions with surrounding situations (Sutton and Barto 2018). Studies have 
incorporated these approaches including Q-learning and Deep Q-Networks (DQN) for collision avoidance 
in smart ships (Chen 2019; Zhao 2019; Chen 2020; Wang 2021; Zhou 2019).  Besides, AI-based methods 
designed for individual robots can be expanded to function effectively across several robots (Zhang et al. 
2021). Numerous studies have adapted single-agent reinforcement learning algorithms to multi-agent 
reinforcement learning (MARL) to study multiple autonomous vessels. This enables vessels to investigate 
their individual best strategies simultaneously. This thus becomes a potential method that can be extended 
to cooperative collision avoidance in mixed traffic scenarios as well. However, there exist limitations to 
these methods including poor model interpretability (Wu et al. 2020) and the curse of dimensionality as the 
number of players increases (Di and Shi 2021).  
       Rule-based decision-making methods are another potential method to model for collision avoidance. 
Hu et al. (2020) proposed a cooperative bypassing algorithm in mixed traffic for autonomous platoons and 
created a cooperative adaptive cruise control framework. The outcomes of the simulation demonstrated that 
the algorithm could raise the effectiveness and performance of the platoon. There are existing studies on 
the use of game theory models for cooperative decision-making for roadways (Ji and Levinson 2020), (Yu 
et al. 2018), (Fu et al. 2023; Jing et al. 2019).  Furthermore, Wang et al. (2023) is one of a few studies in 
maritime that provides a collaborative collision avoidance strategy for autonomous ships under mixed 
scenarios using generalized reciprocal velocity obstacle (GRVO) algorithm. It focused on the 
implementation of the GRVO algorithm as a collision avoidance strategy in a mixed autonomy scenario. 
Our study however, aims to investigate the broader scope of the interaction dynamics and conflict resolution 
between autonomous and manual vessels using cooperative game theory in a connected mixed traffic 
environment. In this direction, we propose the potential of cooperative coalition-based collision avoidance 
framework for the safe maneuvering and interactions of autonomous vessels in mixed-traffic situations.  
      Previous research indicates (1) There is a notable gap in maritime literature concerning the interaction 
between multiple AVs and MVs for collision avoidance in mixed traffic scenarios; (2) While rule-based 
methods offer better interpretability in comparison to artificial intelligence-based approaches, research on 
rule-based methods for multi-AV cooperative collision avoidance in maritime mixed environments is 
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limited; (3) Despite the extensive use of game theory in various domains, its application to multi-AV 
collision avoidance in maritime mixed traffic remains largely unexplored.  

3.  PROBLEM DESCRIPTION AND PRACTICAL CONSIDERATION  

Safer mobility in mixed maritime navigation is multifaceted and critical for the safe integration of AVs into 
existing maritime environments. The presence of AVs in mixed traffic would involve complex interactions 
due to the diverse behaviors, intentions, and risk perceptions of MVs. This would create dynamic and 
complex encounter situations for AVs to navigate through, resulting in increased collision risks. The 
challenge comes from the need for AVs to effectively assess risk perceptions of MVs, identify potential 
encounters that need evasive actions (including shifting trajectories), and coordinate and collaborate with 
other AVs. 
      Identification of potential encounter scenarios by AVs in mixed-traffic environments is crucial for an 
effective collision avoidance strategy. These encounters can be defined using collision risk parameters and 
potential trajectory intersections that may arise due to evasive actions. We assume a three-parallel lane 
(trajectory) waterway environment to provide predefined routes for AVs and MVs (Figure 1). We identify 
three broad scenarios of potential risky encounters for an AV in such a maritime setup. First is the ‘same 
trajectory scenario’, where two vessels on the same trajectory, following each other, need to ensure 
minimum collision risk for safe maneuvering (Figure 2a). Any evasive action that requires AVs to shift 
trajectory in this scenario, may result in another two encounter scenarios that include: (1) merging scenario, 
where two vessels attempt to merge (shift) into a common lane from different lanes at the same time (Figure 
2b); (2) shifting to the same lane scenario, where a vessel may depart from its current course and maneuver 
into the adjacent lane with existing vessels (Figure 2c). Each of these encounter situations requires AVs to 
effectively assess collision risk and adapt collision-free trajectories accordingly.   
     Addressing these challenges necessitates high situational awareness, collaborative efforts, and shared 
communication among AVs (assuming MVs to be uncontrollable), to ensure effective collision avoidance. 
Communication protocols and infrastructure including maritime cloud network, V2V, and V2I 
communication are expected to be capable of facilitating AVs to perceive, store and transmit essential 
motion state information along with information on vessel types and related distinct attributes (such as 
desired maximum speed and distance headway) (Wang et al. 2022). Our study assumes such a connected 
environment to be in place, in accordance with the COLREGs for the effective exchange of essential 
information between vessels. We suggest a collision avoidance framework for AVs where AVs exchange 
essential information on intended maneuvering decisions and ensure cooperative collision avoidance efforts 
with surrounding vessels. 
 

 
Figure 1: Waterway setup. 
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       (a) Same trajectory scenario              (b) Merging scenario            (c)  Shifting to same lane scenario 

Figure 2: Encounter scenarios. 

4.  DESCRIPTION OF COLLISION RISK AND SAFETY PARAMETERS 

The identification of risky encounters by AVs requires the assessment of varied risk perceptions of MVs to 
estimate collision risk parameters. This section discusses the details of the ship domain and collision risk 
estimation considered in the study.  

4.1 COLREG Compliant Ship Domain and Collision Risk Estimation in Mixed Traffic  

We consider COLREG-compliant asymmetric elliptical ship domain and quantitative measures of collision 
risk (CR) to describe the safety of maneuvering decisions (Chun et al. 2021; Coldwell 1983).   

4.1.1 Ship Domain  

Each length of the ship domain is determined by considering the COLREGs, risk perceptions, and the 
maneuvering performance of the vessel (Ha et al. 2018, 2021). In a mixed traffic scenario, given the 
differences in autonomy levels, the risks perceived by MVs and AVs is expected to be different. This is 
considered using the varying sizes of the ship domain and the associated parameters (Table 1) for estimation 
of CR for each vessel type. In the ship domain, accounting for different risk perceptions, the lengths of A 
and D (Figure 3) are estimated to be equal to the desired distance headway preferred by the given vessel 
type. Lengths of B and C have defined dimensions (Chun et al. 2021). AVs are considered to be relatively 
less risk averse as compared to MVs and this is reflected in their smaller ship domain size due to relatively 
lower desired distance headway (Figure 3). 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 in Table 1 refer to the minimum and maximum 
acceleration considered in the study. 
 

 
(a) AV                                     (b) MV 

 
                                        Figure 3: Different ship domain sizes for AV and MV. 
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Table 1: Parameters for risk assessment. 
Parameters Values Parameters Values 

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 − 2 𝑚𝑚2/s A and D of ship domain for AV    940 m 

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚     6 𝑚𝑚2/s B and C of ship domain for AV and MV   314 m 

CR maximum    0.7 A and D of ship domain for MV   1500 m 

Allowable CR (𝐶𝐶𝐶𝐶𝑚𝑚𝑎𝑎)    0.3 Recognition distance (dr)   1000 m 

                

4.1.2 Estimation of Collision Risk Factor 

The closest point of approach (CPA) method evaluates CR factor (𝐶𝐶𝐶𝐶ij) using the closest point between the 
two vessels (that is vessel 𝑖𝑖 and vessel 𝑗𝑗) when vessels maintain current direction and current speed. In this 
study, the concepts of time at the closest point of approach (TCPA), and distance at the closest point of 
approach (DCPA) have been adapted from the existing study of Chun et al. (2021). 
                                                     

                 𝑇𝑇𝐶𝐶𝑇𝑇𝑇𝑇 =              0,                     𝑖𝑖𝑖𝑖 ||𝑉𝑉𝑖𝑖 − 𝑉𝑉𝑗𝑗|| = 0 

                            �𝑇𝑇𝑖𝑖 −𝑇𝑇𝑗𝑗�.(𝑉𝑉𝑖𝑖−𝑉𝑉𝑗𝑗)

||𝑉𝑉𝑖𝑖−𝑉𝑉𝑗𝑗||
2 ,       𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒 

 
              𝐷𝐷𝐶𝐶𝑇𝑇𝑇𝑇 = ||(𝑇𝑇𝑚𝑚  + 𝑉𝑉𝑚𝑚 .𝑇𝑇𝐶𝐶𝑇𝑇𝑇𝑇) − (𝑇𝑇𝑗𝑗  + 𝑉𝑉𝑗𝑗 .𝑇𝑇𝐶𝐶𝑇𝑇𝑇𝑇)|| 

 
                                                 𝐶𝐶𝐶𝐶𝑚𝑚𝑗𝑗 = 𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝑚𝑚
� . 𝑒𝑒𝑒𝑒𝑒𝑒 (−𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷

𝑏𝑏
)                                            (1) 

where,        
 𝑎𝑎 =  −𝑑𝑑𝑒𝑒/𝑙𝑙𝑙𝑙 (𝐶𝐶𝐶𝐶𝑚𝑚𝑎𝑎) 

𝑏𝑏 =  −
𝑑𝑑𝑒𝑒
𝑉𝑉𝑚𝑚

. 𝑙𝑙𝑙𝑙(𝐶𝐶𝐶𝐶𝑚𝑚𝑎𝑎) 

 
𝑇𝑇𝑚𝑚 and 𝑇𝑇𝑗𝑗 are position vectors and 𝑉𝑉𝑚𝑚 and 𝑉𝑉𝑗𝑗 are the speed vectors of vessel 𝑖𝑖 and vessel 𝑗𝑗 respectively. 𝑑𝑑𝑒𝑒 is 
the distance at which the vessel starts to recognize and monitor other vessels. 𝐶𝐶𝐶𝐶𝑚𝑚𝑎𝑎 is a collision risk value, 
which is set as a criterion to determine that the AVs should start to avoid other vessels.   
     A value of 𝐶𝐶𝐶𝐶𝑚𝑚𝑗𝑗 equal to one indicates that vessel 𝑗𝑗 is on the boundary of the ship domain of the vessel 
𝑖𝑖, resulting in collision.  𝐶𝐶𝐶𝐶𝑚𝑚𝑗𝑗 equal to zero indicates safe maneuvering. When the encounter scenario for 
an 𝑇𝑇𝑉𝑉𝑚𝑚,  includes more than one vessel, the collision risk factor for the vessel 𝑖𝑖,𝐶𝐶𝐶𝐶𝑚𝑚 is calculated as follows:   
                                         

                                                                       𝐶𝐶𝐶𝐶𝑚𝑚 = 𝑀𝑀𝑎𝑎𝑒𝑒 𝐶𝐶𝐶𝐶𝑚𝑚𝑗𝑗                                                                               (2) 
 

where 𝐶𝐶𝐶𝐶𝑚𝑚 denotes the maximum value of the collision risk factor between 𝑇𝑇𝑉𝑉𝑚𝑚  and the other vessels in the 
encounter scenario. Furthermore, the maximum CR threshold is defined as a threshold where collision risk 
is very high and AV would choose to give way (Table 1). 
 
5. MODEL DESCRIPTION 
 
We propose the application of cooperative game theory to intelligent autonomous vessels in a connected 
maritime environment to facilitate cooperative AVs to navigate through mixed traffic situations.  In the 
proposed scheme, 𝑂𝑂𝑚𝑚 is the set of vessels around 𝑇𝑇𝑉𝑉𝑚𝑚; all AV players in  𝑂𝑂𝑚𝑚 can connect and form coalition; 
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all the connected AVs and nearby MVs in a defined proximity area (represented as a dotted rectangle in 
Figure 1) influence the collision avoidance strategies of the AVs. The game played by vessel players in the 
coalition is a cooperative game, while the game played between any vessel player in coalition with any 
vessel player outside is a non-cooperative game (Fu et al. 2023). The game type is that of complete 
information.  
     The strategy in the proposed game theory model includes AVs in coalition to maneuver along their 
predefined trajectories while assessing the collision risks with evolving situations and dynamically taking 
evasive actions (change in acceleration and adapting the trajectories). These actions are determined using 
safety payoffs based on real-time information shared within the coalition. AVs in coalition reach the 
following agreements that satisfy individual and rationality conditions: (1) When there is a high collision 
risk conflict between two AVs, they adopt the cooperative game strategy, (2) For decisions on shifting 
trajectories, AV prioritize proximity to other AVs (over MVs), (3) When collision risk for AV is greater 
than maximum collision risk threshold, AVs choose to give-way.   
     The payoff of each player (𝑈𝑈𝑆𝑆𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) in the model is defined as the safety payoff for the chosen decision 
and is determined based on safety parameters including ship domain and collision risk factor (described in 
Section 4).  It is estimated as the difference between the collision risk after the decision and the collision 
risk before the decision.  It can be expressed as:  
 

                                               𝑈𝑈𝑆𝑆𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  = 𝐶𝐶𝐶𝐶𝑆𝑆= 𝑆𝑆𝑎𝑎𝑎𝑎 −  𝐶𝐶𝐶𝐶𝑆𝑆=0                                                                 (3)         
                                                                                                                

where 𝐶𝐶𝐶𝐶𝑆𝑆= 𝑆𝑆𝑎𝑎𝑎𝑎  is the CR factor after the decision, 𝐶𝐶𝐶𝐶𝑆𝑆=0   is the CR factor at a given time, 𝑂𝑂𝑚𝑚𝑎𝑎  is the time 
required to carry out the decision. The objective of the model is to maximize coalition safety payoffs, 
defined as overall safety payoffs of the AVs in the coalition. Coalition safety payoff is estimated as the 
sum of individual safety payoffs of all the vessels in the coalition across time t. It can be expressed as: 
 

                                                           𝑈𝑈(𝑂𝑂) =  ∑ 𝑈𝑈𝑚𝑚
𝑆𝑆𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑂𝑂)𝑚𝑚

𝑚𝑚=1                                                            (4)  
                                                
      The safety payoffs, CR threshold and trajectory intersection conditions across the encounter scenarios 
(discussed in Section 3) identify multiple two-vessel conflicts in the environment. The resolution of these 
conflicts in these scenarios is described below (Figure 4).  

                                          
(a)                                                        (b)                                                (c)  

                                                         Figure 4: Potential conflicts across scenarios. 
 
      Figure 4a illustrates the same trajectory scenario, where vessels maneuver in the same lane as other 
vessels, and conflicts may arise when a vessel 𝑖𝑖 (AV-3) is in close proximity to the ship domain of the 
vessel in front (AV-1) (that is when CR factor for AV-3 becomes greater than max CR threshold). When 
such 'beyond threshold' CR conflicts arise between two AVs in the coalition, the game is cooperative while 
if such conflict emerges between an AV and an MV, it is solved using non-cooperative game. If the AV 
finds the safety payoff associated with shifting to the adjacent trajectory to be higher (representing a safer 
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mobility alternative), the AV may consider shifting the trajectory after checking for the conflicts related to 
trajectory intersection that may result in merging or same lane change encounter scenario (Figure 2b, 2c).  
      Merging conflict arises when two vessels find shifting to a common trajectory to be a safer alternative 
in comparison to their current path at the same time (that is when safety payoffs associated with a common 
adjacent trajectory for both vessels are higher in comparison to their current path). Figure 4b describes the 
scenario resulting in merging conflict between the two vessels (AV-4 and AV-1). Such a conflict needs to 
be resolved before AVs implement the decision. Both vessels being AVs in coalition, exchange intended 
behavior and resolve conflict using cooperative game solutions.  
     Another possible encounter that an AV needs to consider before switching trajectory for safer 
alternatives, is the same lane change encounter (Figure 4c). The conflict arises when the preferred trajectory 
by AV is the same as the current trajectory of an existing vessel (that is, there exist vessels maneuvering in 
the preferred trajectory). Figure 4c illustrates AV-1 considering changing paths to another lane with an 
existing vessel on the lane (MV-4). This necessitates AV to resolve conflicts (if any) with those existing 
vessels before it decides to implement the change in trajectory decision. In this scenario, there may exist 
two possible types of conflicts: the high collision risk conflict with the vessel in the front and the vessel in 
the rear (MV-4 in this case) in the desired lane. AV compares the associated CR with both vessels and 
prioritizes resolving the high-risk conflict first, thus resolving the potential conflicts and ensuring proactive 
assessment of safety levels and effective collision avoidance. 
     Furthermore, based on the assumptions of the study, collision avoidance decision-making by AVs 
involves prioritizing the proximity to AVs over MVs due to their smaller ship domains and similar risk 
perceptions. Besides, in high-risk collision scenarios (when CR is greater than Max 𝐶𝐶𝐶𝐶𝑖𝑖𝑗𝑗 ), the AV chooses 
to be the give-way vessel (opting for speed adjustment or choosing to not opt for path change) to avoid 
collisions.  
     The conflicts identified are resolved using cooperative and non-cooperative games. The solution for a 
non-cooperative game (between AV and MV) is derived by maximizing the minimum payoff (Yu et al. 
2018). However, when two vessels cooperate, the game solution includes maximizing the sum of payoffs 
of the vessels in conflict while ensuring that individual payoffs for vessels, in this case, are not less than 
the payoffs associated with a non-cooperative game. Each AV in a coalition chooses the decision 
(combination of acceleration values and the decision to shift trajectory) with the highest individual payoff, 
resulting in greater overall safety payoffs for the coalition. This decision combination of acceleration value 
and the decision to shift trajectory represents the collision avoidance game solution, derived from solving 
the cooperative and non-cooperative game between the vessels (Fu et al. 2023).  

6. RESULTS AND DISCUSSION  

The tests were designed as three simulation scenarios using Python to verify the significance of cooperative 
decision-making in collision risk mitigation. The simulation was allowed to proceed to compare the 
robustness and the safety payoffs of the coalition, in situations of collision risk exceeding one. 

6.1. Simulation Setup 

The simulation setup, consisting of four AVs and four MVs with predefined risk parameters (Table 2) is 
displayed using Figure 5.  
 

Table 2: Risk parameters. 

 Desired distance headway (m) Expected maximum speed (Knots) 

AV 940 15 

MV 1500 10 
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Figure 5: Simulation setup. 

    Simulation scenario 1 tests cooperative behavior among AVs based on the proposed cooperative game 
theory model, encouraging coalition formation and adaptive strategies for safe passage; Simulation scenario 
2 explores non-cooperative (independent behavior), where AVs operate independently without forming a 
coalition, maximizing their own safety payoffs. In simulation scenario 3, AVs demonstrate cooperative 
behavior while encountering variable risk perceptions of MVs (with three MVs adhering to conservative 
risk perception and MV4 displaying different risk perceptions (Table 3). Simulation scenario 3 highlights 
the challenges posed by mixed traffic dynamics.  Furthermore, MVs were considered to navigate with a 
risk-averse approach, maneuvering along predefined trajectories (without considering path changing). The 
simulations, conducted for over 20 iterations, compare the safety and risk parameters of a coalition of AVs, 
offering insights into the effectiveness of cooperative versus independent collision avoidance strategies in 
mixed-traffic environments.            

Table 3: Details of simulation scenarios. 

 Behavior of AVs Risk parameters from MVs 

Scenario 1 Cooperative Desired distance headway = 1500m, Max expected speed = 10 knots 

Scenario 2 Independent Desired distance headway = 1500m, Max expected speed = 10 knots 

Scenario 3 Cooperative 
For MV-4, Desired distance headway = 1000m, Max expected speed =12 
knots (Others, same as before)  

6.2. Collision Avoidance by AVs in Different Scenarios 

In scenario 1, all four AVs in the cooperative game theory model effectively avoided collisions during the 
simulation with the lowest maximum collision risk and highest coalition payoffs. Scenario 2 recorded the 
least coalition payoffs across iterations with maximum collision risk. Scenario 3 demonstrated the impact 
of the differential risk perceptions among MVs on the cooperative decision-making capability of the AVs-
led coalition. Due to space restrictions, we restrict our explanation on the collision avoidance strategy for 
simulation scenario 1.  

6.2.1. Analysis of Scenario 1 

At the beginning of the simulation, AV-1 was on trajectory one (represented using y =1000) (Figure 6a). 
The proximity of AV-1 to MV-3’s ship domain resulted in collision risk conflict between the two vessels. 
AV-1 played a non-cooperative game with MV-3 and chose to reduce the acceleration to ensure a safe 
distance, thus resolving the conflict and ensuring a safer state. Since MV-2 on trajectory 2 (y=2000) was 
far from AV-1 and the rear vessel MV-4 on trajectory two was outside the ship domain of AV-1, AV-1 had 
a higher payoff to shift the path to trajectory 2 to minimize collision risk with vessel MV-3. Considering 
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the shift in trajectory, AV-1 played a non-cooperative game with MV-4 and could shift to a relatively safer 
position resulting in a reduced risk of collision (Figure 6b) It continues to maneuver in trajectory 2, while 
AV-2, AV-3, and AV-4 follow their predefined trajectories within coalition using cooperative games, 
ensuring minimum collision risk and safer mobility (Figure 6c). As the simulation proceeds, AV-1 plays a 
non-cooperative game with MV-2 due to the high collision risk from the same trajectory conflict between 
the vessels. On finding a relatively higher safety payoff for trajectory 3 with MV-1, AV-1 plays a non-
cooperative game with MV-1 and succeeds in shifting trajectory to ensure reduced collision risk and higher 
safety payoffs (Figure 6d). Later, AV-3 and AV-4 consider shifting to trajectory 2 for higher safety payoffs 
at the same time, resulting in a possible merging conflict between the vessels. They resolve the conflict 
using the cooperative game and AV-3 decides to stay back, while AV-4 chooses to shift the trajectory, thus 
ensuring maximum total payoffs for the two vessels in the given scenario while minimizing collision risks 
(Figure 6e). AV-3 follows suit after AV-4 has successfully changed the trajectory (Figure 6f), thus ensuring 
effective collision avoidance and smooth maneuvering by AVs in the shared environment. 
 

 
(a)                               (b)                                                 (c) 

 
                            (d)                                               (e)                                                  (f) 
                                         Figure 6: Simulation scenario 1: Collision avoidance analysis. 

6.3. Comparison of Collision Avoidance Performance  

Collision avoidance performance was compared based on maximum collision risk and minimum distance 
recorded between vessels across three scenarios. Maximum collision risk was observed in scenario 2, 
followed by scenario 3, while scenario 1 outperformed the other scenarios, recording the lowest maximum 
risk. This indicates that proactive communication and cooperative behavior led coalition formation by AVs 
significantly reduced the collision risks as compared to other scenarios. Non-cooperative behavior among 
vessels (Scenario 2) resulted in higher collision risk with the smallest minimum distance among the vessels, 
displaying high collision risks and overall reduced safety levels. The minimum distance between vessels 
was the maximum for scenario 1, emphasizing the positive performance of the cooperative game theory 
model in ensuring safe navigation in mixed traffic situations.  

6.4. Overall Payoff of the Coalition  

The coalition payoff for scenario 1 was higher than that of its initial state at t = 0 indicating that cooperative 
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collision avoidance strategies had a positive effect on the safety levels of the AVs in the coalition. Scenario 
3 recorded relatively lower coalition payoffs in comparison to scenario 1, displaying the complexity in 
navigation in the presence of the differential risk parameters of the MVs. Scenario 2 where AVs 
independently chose to avoid collisions while prioritizing their own safety recorded the least coalition 
payoff (the sum of safety payoffs for all AVs in the cooperative area was considered), indicating reduced 
safety and efficiency levels of the AVs.  

6.5. Robustness  

Simulation tests across iterations displayed the validity of the cooperative game theory model with 
cooperative collision avoidance strategies outperforming the independent risk mitigation behavior. (Figure 
7a, 7b).  To test the applicability of the model under different speed parameters (initial speed and expected 
maximum speed), we tested the model for predefined five different levels of initial speeds (8, 10,12,14, and 
18 Knots) using the same simulation setup. The results were compared using coalition payoffs and 
maximum collision risk recorded across scenarios (Figure 7c, 7d). The results indicate the validity and 
superiority of cooperative behavior among AVs for all levels of different speeds, thus reflecting the 
robustness of the model. 

                 
                                     (a)                                                                                  (b)                                    

                   
                                    (c)                                                                                    (d)     
Figure 7: (a), (b) Coalition Payoffs and Maximum collision risk across Iterations; (c), (d) Coalition payoff 
and Maximum collision risk for simulation scenarios with different speeds. 

7. CONCLUSION 

This study proposed a cooperative collision avoidance decision-making framework based on the 
cooperative game theory model to improve the overall safety of AVs in mixed-traffic environments. We 
assumed that MVs in maritime are risk averse and uncontrollable (hence non-cooperative) and that the AVs 
in the model are cooperative. The payoffs of the players were determined using the COLREG-compliant 
ship domain and CPA method, considering the varied risk parameters in mixed traffic situations. Three 
broad maritime scenarios of the same trajectory, same lane changing, and merging conflicts among vessels 
were assessed under multiple two-vessel conflicts. Adaptive and cooperative trajectory shifts by AVs while 
addressing the potential conflicts are considered to be a fundamental collision avoidance strategy by AVs 
in mixed scenarios. The simulation results displayed a cooperative game model outperforming an 
independent decision-making framework. This emphasizes the significance of collective proactive behavior 
among AVs to mitigate potential collision risks in mixed maritime scenarios and contribute towards the 
overall safety and effective integration of AVs in maritime waters. Future scope of work includes extending 
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the model to three and more player conflicts, introducing varied levels of perceived risks among MVs while 
allowing for random behavior and testing for complex scenarios.  
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