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ABSTRACT

We consider a convex stochastic optimization problem where both the objective and constraints are convex
but possibly complicated by uncertainty and nonsmoothness. We present a smoothed sampling-enabled
augmented Lagrangian (AL) framework that relies on inexact solutions to the AL subproblem, obtainable
via a stochastic approximation framework. Under a constant penalty parameter, the dual suboptimality is
shown to diminish at a sublinear rate while primal infeasibility and suboptimality both diminish at a slower
sublinear rate.

1 INTRODUCTION

Consider the convex optimization problem with possibly nonsmooth expectation-valued constraints.

min
x∈X

{
f(x) , E[f̃(x, ξ)] | gi(x) , E [g̃i(x, ξ)] ≤ 0, i = 1, · · · ,m,

}
(NSCopt)

whereX ⊆ Rn is a closed and convex, ξ : Ω→ Rd is a d-dimensional random variable, (Ω,F,P) denotes the
probability space, Ξ , { ξ(ω) | ω ∈ Ω }, and for any ξ ∈ Ξ, f̃(•, ξ) and g̃i(•, ξ) are real-valued possibly
nonsmooth (but smoothable (see Def. 1)) convex functions on X for i = 1, · · · ,m. A host of applications in
engineering, economics and statistics can be formulated as (NSCopt); these include optimization problems
with risk constraints as well as a range of problems in statistical learning including Lasso regression and
Neyman-Pearson classification. In general, projection-based approaches cannot contend with such avenues;
inspired by the success of augmented Lagrangian (AL) techniques for constrained optimization problems,
we consider the development of a sampling-enabled AL framework.

1.1 Prior Research

Before proceeding, we briefly some relevant review prior research. (a). Augmented Lagrangian Methods
The AL Method originates from (Hestenes 1969) and (Powell 1969) in convex settings while subsequent
work by Rockafellar in the papers (Rockafellar 1973; Rockafellar 1976) provides a comprehensive theoretical
underpinning coupled with rate guarantees. In fact, AL schemes represented a basis for minos, a nonlinear
programming solver developed by Murtaugh and Saunders (Murtagh and Saunders 1978). Over the last
fifteen years, there has been a pronounced effort in developing inexact AL schemes with complexity
guarantees for addressing deterministic convex optimization problems with possibly composite objectives
and either conic or more general constraints (Aybat and Iyengar 2013; Lan and Monteiro 2013; Necoara
et al. 2019; Xu 2021). When f and g are expectation-valued, there has been far less research. The only
two available schemes are provided in (Zhang et al. 2023; Zhang et al. 2022) and both are equipped with
a rate of O( 1√

K
), but the first algorithm necessitates solving the AL problem exactly in finite time. Given

that the latter is a compositional expectation-valued problem in that subproblem objective is characterized
by the squared norm of the constraint expectation, this is generally not possible. Instead, in this paper,
we develop an inexact framework that requires approximate solutions of a smoothed AL problem, where the
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smoothing allows for employing first-order techniques for computing such an approximate solution in finite
time. Furthermore, our new algorithm attains sublinear convergence for constant penalty parameters and
linear convergence for geometrically increasing penalty parameters. (b) Alternate schemes. An alternate
cooperative stochastic approximation (CSA) framework for addressing convex optimization problems with
a single expectation constraint is adopted in (Lan and Zhou 2020), while in (Yan and Xu 2022), the authors
investigate an adaptive primal-dual stochastic gradient method (APriD). Both CSA and APriD obtain a rate
of O(1/

√
K) in terms of expected sub-optimality. (c). Smoothing techniques. In (Jalilzadeh et al. 2022),

the authors develop a smoothed, accelerated, and variance-reduced scheme that achieves the optimal rate
of O(1/k) and an optimal oracle complexity of O(1/ε2) for nonsmooth stochastic convex problems with
projection-friendly convex constraint sets. Related research on smoothing approaches may be found in the
same reference.

Gap: No efficient AL schemes for convex programs with nonsmooth expectation-valued constraints.

1.2 Contributions and Organization

Motivated by the aforementioned gap, we present a smoothed variance-reduced AL method (VR-AL) that
allows for expectation-valued objectives and constraints with nonsmooth (but smoothable) integrands. In
contrast with traditional AL schemes, the proposed scheme employs both penalty and smoothing parameter
sequences to develop a smooth AL subproblem and allows for inexact resolution of the stochastic AL
subproblem. In Section 2, we present the framework while in Section 3, under a constant penalty parameter,
we show that the dual suboptimality, primal suboptimality, and primal infeasibility diminish at the rate
of O(1/K), O(1/

√
K), and O(1/

√
K), respectively. Analogous geometric rates are provided when the

penalty parameter sequence grows at a geometric rate. The paper concludes in Section 4 where we comment
on flexibility of the framework in accommodating convex constraints and weakly convex objectives.

2 A SMOOTHED STOCHASTIC AUGMENTED LAGRANGIAN FRAMEWORK

In this section, we provide some preliminaries required for generalizing the augmented Lagrangian framework
to regimes with nonsmooth expectation-valued constraints. We begin by providing some background.
Corresponding to problem (NSCopt), we may define L0(x, λ) as L0(x, λ) , f(x) + λ>g(x) where
g(x) , E [ g̃(x, ξ) ] and λ ≥ 0. This allows for denoting the set of minimizers of L0(x, λ) by X∗(λ), the
dual function by D0(λ), and the dual solution set by Λ∗, each of which is defined next.

X∗(λ) , arg min
x∈X

L0(x, λ),D0(λ) , inf
x∈X

L0(x, λ), and Λ∗ , arg max
λ≥0

D0(λ).

By adding a slack variable v ∈ Rm, we may recast (NSCopt) as
{

minx∈X,v≥0 { f(x) | g(x) + v = 0 }
}
,

where λ ∈ Rm denotes the Lagrange multiplier associated with the constraint g(x) + v = 0. Then the
augmented Lagrangian (AL) function, denoted by Lρ, is defined as

Lρ(x, λ) , min
v≥0

{
f(x) + λ>(g(x) + v) + ρ

2‖g(x) + v‖2
}
. (1)

Similarly the dual problem corresponding to minimizing Lρ(•, λ) (the augmented dual problem) is defined
as Dρ(λ) , infx∈XLρ(x, λ). The next result derives the∇λLρ(λ) and∇λDρ(λ), where Π+ and d− denote
the Euclidean projection onto Rn+ and the distance to the Rn−, respectively.
Lemma 1 ((Zhang et al. 2024) Lemma 1,2) Consider Lρ defined in (1) for ρ > 0, x ∈ X and λ ≥ 0. Then
the following hold.
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(i) Lρ and ∇λLρ can be expressed as follows.

Lρ(x, λ) =

(
f(x) + ρ

2

(
d−

(
λ
ρ + g(x)

))2
− 1

2ρ‖λ‖
2

)
and ∇λLρ(x, λ) =

(
−λ
ρ + Π+

(
λ
ρ + g(x)

))
.

(ii) Dρ is a C1, concave, and the Moreau envelope of D0, defined as Dρ(λ) , max
u∈Rm

[
D0(u)− 1

2ρ‖u− λ‖
2
]
.

Furthermore,∇λDρ(λ) = 1
ρ (qρ(λ)− λ) , where qρ(λ) , arg max

u

[
D0(u)− 1

2ρ‖u− λ‖
2
]
.

To address nonsmoothness. we consider a smoothing fη and gη corresponding to f and g, defined next.
Definition 1 (Beck and Teboulle 2012) Consider a closed, convex, proper function h : Rn → R. A convex
function is said to be (α, β)-smoothable if for any η > 0, there exists a convex C1 function hη such that

‖∇zhη(z1)−∇zhη(z2)‖ ≤ α
η ‖z1 − z2‖, ∀z1, z2 ∈ Rn

hη(z) ≤ h(z) ≤ hη(z) + ηβ, ∀z ∈ Rn.

Remark When h(x) , E[h̃(x, ξ)], then smoothed function hη is defined as hη(x) = E[h̃η(x, ξ)], where
h̃η(•, ξ) denotes the smoothing of h(•, ξ).

We now present our main assumption.
Assumption 2 (a) The function f̃(•, ξ) is an (α, β)-smoothable real-valued function for any ξ. (b) For
i = 1, . . . ,m, the constraint function g̃i(•, ξ) is an (α, β)-smoothable real-valued function. (c) There exists
a point (x∗, λ∗) satisfying the KKT conditions. (d) The set X ⊆ Rn is a convex and compact set. (e) There
exists a vector x̄ ∈ X such that gi(x̄) < 0 for i = 1, . . . ,m.

The above assumption ensures that f and gi are (α, β) smoothable for i = 1, · · · ,m. We now consider
the smoothed counterpart of (NSCopt), given by (NSCoptη) and defined as

min
x∈X,v≥0

{fη(x) | gη(x) + v = 0} . (NSCoptη)

The resulting smoothed Lagrangian function Lη,0 and the dual function Dη,0(λ) are defined as follows.

Lη,0(x, λ) ,

{
fη(x) + λ>gη(x) λ ≥ 0

−∞, otherwise
and Dη,0(λ) , inf

x∈X
Lη,0(x, λ).

where gη(x) , E[g̃η(x, ξ)]. Then the smoothed augmented Lagrangian function Lη,ρ is defined as

Lη,ρ(x, λ) , min
v≥0

{
fη(x) + λ>(gη(x) + v) + ρ

2‖gη(x) + v‖2
}
.

We may now define Dη,ρ and qη,ρ as follows where qη,ρ(λ) , argmaxu

[
Dη,0(u)− 1

2ρ‖u− λ‖
2
]
.

Dη,ρ(λ) = max
u∈Rm

[
Dη,0(u)− 1

2ρ‖u− λ‖
2
]

and ∇λDη,ρ(λ) = 1
ρ (qη,ρ(λ)− λ) .

Next, we presented some important results about the smoothed Lagrangian, dual, and augmented dual to
their nonsmooth counterparts from (Zhang et al. 2024, Lemma 3-4, Proposition 21).
Lemma 3 Suppose Assumption 2 holds. For any λ ∈ Rm+ and x ∈ X, any η, ρ > 0.
(i) Lη,0(x, λ) ≤ L0(x, λ) ≤ Lη,0(x, λ) + η (‖λ‖m+ 1)β;
(ii) |Dη,0(λ)−D0(λ)| ≤ η (‖λ‖m+ 1)β;
(iii) |Dη,ρ(λ)−Dρ(λ)| ≤ η (‖λ‖m+ 1)β.
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(iv) (Slater condition) For any η > 0, there exists x̄ ∈ X such that gη(x̄) < 0;
(v) The set of optimal multipliers Λ∗ for (NSCopt) is bounded as per

Λ∗ ⊆

{
λ ≥ 0

∣∣ m∑
i=1

λi ≤ bλ

}
where bλ ≥

f(x̄)−D∗0
minj{−gj(x̄)} ;

(vi) For any η > 0, the set of optimal multipliers Λ∗η for (NSCoptη) is bounded as per

Λ∗η ⊆ Bλ,η =

{
λ ≥ 0

∣∣∣ m∑
i=1

λi ≤ bλ,η

}
where bλ,η ≥

f(x̄)−D∗0+η(β+C̃∗)
minj{−gj(x̄)} ;

(vii) ‖qη,ρ(λ)− qρ(λ)‖ ≤
√

4ρη (‖λ‖m+ Cm)β, where Cm is a constant;

(viii) ‖∇λDη,ρ(λ)−∇λDρ(λ)‖ = 1
ρ‖qη,ρ(λ)− qρ(λ)‖ ≤

√
4η(‖λ‖m+Cm)β

ρ .

We now present our scheme which enjoys two key distinctions with deterministic variants.
(i) The Lagrangian subproblem is a compositional stochastic optimization problem and an inexact (random)
solution is available in finite time via stochastic approximation schemes by using Nk evaluations of a
suitable first-order oracle defined in the next subsection. The inexactness is captured by an error sequence
{εk} which is driven to zero at a suitable rate, a consequence of raising Nk to infinity.
(ii) The traditional update of the Lagrange multiplier requires an exact evaluation of g(x). Since g is an
expectation-valued function, an exact update is unavailable in finite time. Instead, we employ a sampled
update reliant on Mk evaluations of a zeroth-order oracle, leading to an error wk. By driving Mk to infinity
at a suitable rate, the bias captured by wk is driven to zero.

Our framework requires access to a stochastic first-order oracle SOfir associated with ∇xf̃η(x, ξ) and
∇xg̃i,η(x, ξ) for i = 1, · · · ,m and a stochastic zeroth-order oracle SOzer for gi,η(x, ξ) for i = 1, · · · ,m.
To clarify the nature of the stochastic zeroth and first-order oracles, we present three nonsmooth random
functions f̃(•, ξ) in Table 1 for which smoothings are defined and analyzed.

Table 1: Bounding the second moments for certain smoothings.

f̃(x, ξ) f̃η(x, ξ) ∇f̃η(x, ξ) E[‖∇xf̃η(x, ξ)−∇xfη(x)‖2]
f̃1(x, ξ) = λ(ξ)‖x‖1

∑n
i=1 hη(xi, ξ), where [∇xihη(xi, ξ)]

n
i=1 , where

hη(xi, ξ) = λ2(ξ)
x2i
2η
, λ(ξ)|xi| < η

λ(ξ)|xi| − η/2, o.w.


∇xihη(xi, ξ) =

{
λ2(ξ)

xi
η
, λ(ξ)|xi| < η

λ(ξ)xi/|xi|, o.w.

}
4nE[λ2(ξ)]

f̃2(x, ξ) = λ(ξ)‖x‖2
√
λ2(ξ)‖x‖2 + η2 − η λ2(ξ)x√

λ2(ξ)‖x‖2+η2
4E[λ2(ξ)]

f̃3(x, ξ) = max
1≤i≤n

{hi(x, ξ)}

where hi(x, ξ) = vi + sic(ξ)
T x

η log
(∑n

i=1 exp(hi(x, ξ)/η)
) ∑n

i=1∇xhi(x,ξ) exp(hi(x,ξ)/η)∑n
i=1

exp(hi(x,ξ)/η)
4E
[(

max
1≤i≤n

‖sic(ξ)‖
)2]

,

Definition 2 (First and zeroth-order oracles) Given an x ∈ X and η > 0, SOzer returns a random vector
g̃η(x, ξ); (ii) Given x ∈ X, the SOfir returns ∇xf̃η(x, ξ) and ∇xg̃i,η(x, ξ), i = 1, . . . ,m.

We now formally state the variance-reduced augmented Lagrangian scheme where Fk is defined as

F0 , {x0},Fk , Fk−1 ∪ {g̃ηk(xk, ξj)}Mk
j=1 ∪

{
∇xf̃ηk(x, ξj) ∪ {∇xg̃i,ηk(x, ξj)}mi=1

}Nk
j=1

, k ≥ 1.

Variance-reduced augmented Lagrangian scheme (VR-AL). Given x0, λ0 and sequences
{ρk, εk, ηk, Nk,Mk}. For k = 1, · · · ,K,

[1] xk+1 satisfies E[Lηk,ρk(xk+1, λk)−Dηk,ρk(λk) | Fk] ≤ εkηbk a.s. with Nk evals of SOfir;

[2] λk+1 = λk + ρk (∇λLηk,ρk(xk+1, λk) + wk) , where wk requires Mk evals of SOzer.
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In (VR-AL), step [1] requires inexactly solving an stochastic optimization problem such that the sub-
optimality is within εkηbk by leveragingNk samples of the first-order oracleSOfir (equivalently requiring taking
Nk steps of a stochastic gradient scheme). The “a.s.” requirement is introduced since the suboptimality
metric is a conditional expectation. Step [2] captures a Lagrange multiplier update which employs a
mini-batch of Mk samples of the ZO oracle.
Lemma 4 Consider the sequence generated by Algo. VR-AL. Then for any k > 0, step [2] is equivalent to

λk+1 = Π+ (λk + ρkḡηk,Mk
(xk)) .

Proof. We may observe that

λk+1 = λk + ρk (∇λLηk,ρk(xk+1, λk) + wk)) = λk + ρk

(
−λk
ρk

+ Π+

(
λk
ρk

+ gηk(xk+1)
)

+ wk)
)

= ρkΠ+

(
λk
ρk

+ gηk(xk+1)
)

+ ρkwk = Π+ (λk + ρkgηk(xk)) + ρkwk. (2)

Suppose wk is defined as

wk ,
(

Π+

(
λk
ρk

+ [ḡηk,Mk
(xk+1)]

)
−Π+

(
λk
ρk

+ gηk(xk+1)
))

. (3)

Then by substituting (3) in (2), we obtain that λk+1 = Π+ (λk + ρkḡηk,Mk
(xk)) .

We now impose moment assumptions on the ZO oracle and a requirement on the parameter sequences.
Assumption 5 [ZO oracle, Parameter sequences] (i) For any j ∈ [m] and x ∈ X, E[‖g̃η,j(x, ξ)−gη,j(x)‖2] ≤

ν2
j ; (ii) Suppose {ρk, εk, ηk,Mk, Nk} be such that

{√
2ρkεkη

b
k +

νgρk√
Mk

+ 2
√
ηkρk

}
be summable.

While we do not impose an assumption on the FO oracles, to ensure that step [1] in (VR-AL) is well-
defined, we implicitly need suitably conditional unbiasedness requirement and a bound on the conditional
second moments. This will be clarified when the complexity analysis is carried out in future work. We
may now derive the following bound.
Lemma 6 Suppose Assumption 5 holds. For any k, E[‖wk‖2 | Fk] ≤ ν2

G/Mk with a constant νG.

Proof. By empploying the nonexpansivity of the Euclidean projection,

E[‖wk‖2 | Fk] ≤ E
[∥∥∥Π+

(
λk
ρk

+ [ḡηk,Mk
(xk+1)]

)
−Π+

(
(λkρk + gηk(xk+1)

)∥∥∥2
| Fk

]
≤ E

[
‖ḡηk,Mk

(xk+1)− gηk(xk+1)‖2 | Fk
]
≤ ν2G

Mk
.

Unless mentioned otherwise, Assumptions 2 and 5 hold throughout this paper.

3 RATE ANALYSIS OF STOCHASTIC AUGMENTED LAGRANGIAN SCHEME

3.1 Preliminary Results

We begin by deriving the following bound, an extension of the result proved in (Rockafellar 1973).
Lemma 7 Consider the sequence {(xk, λk)} generated by (VR-AL). Suppose xk+1 satisfies E[Lρk(xk+1, λk)−
Dρk(λk) | Fk] ≤ εkηbk with b ≥ 0. Then the following holds a.s. for any k ≥ 0.

E
[
‖∇λLηk,ρk(xk+1, λk)−∇λDηk,ρk(λk)‖2 | Fk

]
≤ 2εkη

b
k

ρk
.
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Proof. We employ the arguments in (Rockafellar 1976; Zhang et al. 2024) that

Dηk,ρk(λ) +∇λDηk,ρk(λ)>(u− λ) ≥ Dηk,ρk(u) ≥ Dηk,ρk(λ) + (u− λ)>∇Dηk,ρk(λ)− 1
2ρk
‖u− λ‖2.

Next, by the concavity of Lηk,ρk(x, •), we have that

Lηk,ρk(xk+1, λk) + (w − λk)>∇λLηk,ρk(xk+1, λk) ≥ Lηk,ρk(xk+1, w) ≥ Dηk,ρk(w)

≥ Dηk,ρk(λk) + (w − λk)>∇Dηk,ρk(λk)− 1
2ρk
‖w − λk‖2

=⇒ Lηk,ρk(xk+1, λk)−Dηk,ρk(λk) ≥ (w − λk)>(∇Dηk,ρk(λk)−∇λLηk,ρk(xk+1, λk))− 1
2ρk
‖w − λk‖2

= u>(∇Dηk,ρk(λk)−∇λLηk,ρk(xk+1, λk))− 1
2ρk
‖u‖2.

But since this inequality holds for all u, we have that

Lηk,ρk(xk+1, λk)−Dηk,ρk(λk) ≥ sup
u∈Rm

{
u>(∇Dηk,ρk(λk)−∇λLηk,ρk(xk+1, λk))− 1

2ρk
‖u‖2

}
= ρk

2 ‖∇Dηk,ρk(λk)−∇λLηk,ρk(xk+1, λk)‖2.

Recall that xk+1 satisfies E [Lηk,ρk(xk+1, λk)−Dηk,ρk(λk) | Fk] ≤ εkη
b
k in an a.s. sense, implying that

E
[
‖∇λLηk,ρk(xk+1, λk)−∇λDηk,ρk(λk)‖2 | Fk

]
≤ 2εkη

b
k

ρk
holds in an a.s. sense.

We now derive a bound on the multiplier sequence {λk} in an expected-value sense.
Lemma 8 (Bound on λk) Suppose {(xk, λk)} is generated by (VR-AL). Then the following hold.
(a) {λk} is a convergent sequence in an a.s. sense; (b) For any K, we have that

E [‖λK − λ∗‖] ≤
K−1∑
k=0

(√
2ρkεkη

b
k +

νgρk√
Mk

+ 2
√
ηkρk(‖λ∗‖m+ 1)B

)
+ ‖λ0 − λ∗‖ ≤ Bλ.

Proof. We begin by deriving a bound on ‖λk+1 − λ∗‖ as follows

‖λk+1 − λ∗‖ ≤ ‖λk+1 − qηk,ρk(λk)‖+ ‖qηk,ρk(λk)− qηk,ρk(λ∗)‖+ ‖qηk,ρk(λ∗)− qρk(λ∗)‖+ ‖qρk(λ∗)− λ∗‖
≤ ‖λk+1 − qηk,ρk(λk)‖+ ‖λk − λ∗‖+ ‖qηk,ρk(λ∗)− qρk(λ∗)‖+ 0,

where the first inequality is a result of the triangle inequality while the second inequality is a result of the
non-expansivity of qη,ρ(•) and by noting that λ∗ = qρ(λ

∗).We now derive a bound on ‖λk+1−qηk,ρk(λk)‖.

‖λk+1 − qηk,ρk(λk)‖ = ‖λk + ρk (∇λLηk,ρk(xk+1, λk) + wk))− qηk,ρk(λk)‖
= ‖λk + ρk (∇λLηk,ρk(xk+1, λk) + wk))− ρk∇λDηk,ρk(λk)− λk‖
≤ ρk‖∇λLηk,ρk(xk+1, λk))−∇λDηk,ρk(λk)‖+ ρk‖wk‖. (4)

Recall by the conditional variant of Jensen’s inequality, we have that(
E
[
‖∇λDηk,ρk(λ̃)−∇λLηk,ρk(xk+1, λ̃))‖ | Fk

])2
≤ E

[
‖∇λDηk,ρk(λ̃)−∇λLηk,ρk(xk+1, λ̃))‖2 | Fk

]
≤ 2εkη

b
k

ρk

=⇒ E
[
‖∇λDηk,ρk(λ̃)−∇λLηk,ρk(xk+1, λ̃))‖ | Fk

]
≤
√

2εkη
b
k

ρk
.
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Taking expectations conditioned on Fk on both sides of (4),

E [‖λk+1 − qηk,ρk(λk)‖ | Fk] ≤ ρkE [‖∇λLηk,ρk(xk+1, λk))−∇λDηk,ρk(λk)‖ | Fk] + ρkE [‖wk‖ | Fk]

≤
√

2ρkεkη
b
k + νGρk√

Mk
.

From Lemma 3, ‖qηk,ρk(λ∗)− qρk(λ∗)‖ ≤ 2
√
ρkηk(‖λ∗‖m+ Cm)B. Consequently, we obtain that

E [‖λk+1 − λ∗‖ | Fk] ≤
√

2ρkεkη
b
k + νGρk√

Mk
+ 2
√
ρkηk(‖λ∗‖m+ Cm)B + [‖λk − λ∗‖] .

It follows from the Robbins-Siegmund Lemma that if
√

2ρkεkη
b
k + νGρk√

Mk
+ 2
√
ρkηk(‖λ∗‖m+ Cm)B is

summable, then {‖λk − λ∗‖} converges almost surely to a nonnegative random variable. It follows that
{λk} is convergent almost surely and is therefore bounded almost surely.
(b) Taking unconditional expectations and summing from k = 0, · · · ,K−1, we obtain that E [‖λK − λ∗‖] ≤∑K−1

k=0

(√
2ρkεkη

b
k + νGρk√

Mk
+ 2
√
ηkρk(‖λ∗‖m+ 1)B

)
+ ‖λ0 − λ∗‖ ≤ Bλ.

3.2 Rate Analysis Under Constant ρk
Proposition 9 (Dual sub-optimality) Consider the sequence {(xk, λk)} generated by (VR-AL). Suppose

ρk = ρ for every k ≥ 0. Then the following holds for λ̄K ,
∑K−1
i=0 λi
K and for any K > 0.

E
[
f∗ −Dρ(λ̄K)

]
≤ 1

KE[‖λ0 − λ∗‖2 + 1
K

K−1∑
k=0

((
νG√
Mk

+

√
2εkη

b
k√

ρ + ηkmβ

)
Bλ + 2ηk(bλm+ 1)β

)
.

Proof. Recall that Dηk,ρ is the Moreau envelope of Dηk,0. Consequently, ∇λDηk,ρ is 1
ρ -Lipschitz. We

may then claim the following.

−Dηk,ρ(λk+1) ≤ −Dηk,ρ(λk)−∇λDη,ρ(λk)
>(λk+1 − λk) + 1

2ρ‖λk+1 − λk‖2

≤ −Dηk,ρ(λ
∗)−∇λDηk,ρ(λk)

>(λk+1 − λ∗) + 1
2ρ‖λk+1 − λk‖2,

where −Dηk,ρ(λ
∗) ≥ −Dηk,ρ(λk)−∇λDηk,ρ(λ)>(λ∗ − λk). It follows that

−Dηk,ρ(λk+1) ≤−Dηk,ρ(λ
∗)−∇λLηk,ρ(xk+1, λk)

>(λk+1 − λ∗) + 1
2ρ‖λk+1 − λk‖2

−(∇λDηk,ρ(λk)−∇λLηk,ρ(xk+1, λk)
>(λk+1 − λ∗)

≤−Dηk,ρ(λ
∗)− 1

ρ(λk+1 − λk)>(λk+1 − λ∗)− w>k (λk+1 − λ∗) + 1
2ρ‖λk+1 − λk‖2

− (∇λDηk,ρ(λk)−∇λLηk,ρ(xk+1, λk)
>(λk+1 − λ∗)

≤−Dηk,ρ(λ
∗)− 1

ρ(λk+1 − λk)>(λk+1 − λ∗) + ‖wk‖‖λk+1 − λ∗‖+ 1
2ρ‖λk+1 − λk‖2

+ ‖∇λDηk,ρ(λk)−∇λLηk,ρ(xk+1, λk)‖‖λk+1 − λ∗‖
=−Dηk,ρ(λ

∗) + 1
2ρ(‖λk − λ∗‖2 − ‖λk+1 − λ∗‖2) + ‖wk‖‖λk+1 − λ∗‖

+ ‖∇λDηk,ρ(λk)−∇λLηk,ρ(xk+1, λk)‖‖λk+1 − λ∗‖
≤ −Dp(λ

∗) + ηk(‖λ∗‖m+ 1)β + 1
2ρ(‖λk − λ∗‖2 − ‖λk+1 − λ∗‖2) + ‖wk‖‖λk+1 − λ∗‖

+ ‖∇λDηk,ρ(λk)−∇λLηk,ρ(xk+1, λk)‖‖λk+1 − λ∗‖.
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From Lemma 3, it follows that

−Dρ(λk+1) ≤ −Dρ(λ
∗) + ηk(‖λk+1‖m+ 1)β + ηk(‖λ∗‖m+ 1)β + 1

2ρ(‖λk − λ∗‖2 − ‖λk+1 − λ∗‖2)

+ ‖wk‖‖λk+1 − λ∗‖+ ‖∇λDηk,ρ(λk)−∇λLηk,ρ(xk+1, λk)‖‖λk+1 − λ∗‖
≤ −Dρ(λ

∗) + ηk(‖λk+1 − λ∗‖m)β + 2ηk(‖λ∗‖m+ 1)β + 1
2ρ(‖λk − λ∗‖2 − ‖λk+1 − λ∗‖2)

+ ‖wk‖‖λk+1 − λ∗‖+ ‖∇λDηk,ρ(λk)−∇λLηk,ρ(xk+1, λk)‖‖λk+1 − λ∗‖
≤ −Dρ(λ

∗) + 2ηk(‖λ∗‖m+ 1)β + 1
2ρ(‖λk − λ∗‖2 − ‖λk+1 − λ∗‖2)

+ ‖wk‖‖λk+1 − λ∗‖+ (‖∇λDηk,ρ(λk)−∇λLηk,ρ(xk+1, λk)‖+ ηkmβ) ‖λk+1 − λ∗‖.

By summing from k = 0 to K − 1 and defining f∗ = f(x∗), we obtain the following inequality.

K−1∑
k=0

(−Dρ(λk+1) + f∗) ≤ 1
2ρ(‖λ0 − λ∗‖2 − ‖λK − λ∗‖2) +

K−1∑
k=0

2ηk(bλm+ 1)β

+

K−1∑
k=0

(‖wk‖+ ‖∇λDηk,ρ(λk)−∇λLηk,ρ(xk+1, λk)‖+ ηkmβ) ‖λk+1 − λ∗‖.

Dividing by K, invoking the concavity of Dρ, and by taking expectations on both sides,

E
[
f∗ −Dρ(λ̄K)

]
≤ E

[
1
K

K−1∑
k=0

(f∗ −Dρ(λk+1))

]
≤ 1

ρKE[‖λ0 − λ∗‖2 + 1
K

K−1∑
k=0

2ηk(bλm+ 1)β

+ 1
K

K−1∑
k=0

E [(‖∇λDηk,ρ(λk)−∇λLηk,ρ(xk+1, λk)‖+ ‖wk‖+ ηkmβ) ‖λk+1 − λ∗‖]

≤ 1
KE[‖λ0 − λ∗‖2 + 1

K

K−1∑
k=0

((
νG√
Mk

+

√
2εkη

b
k√

ρ + ηkmβ

)
Bλ + 2ηk(bλm+ 1)β

)
≤ CD

K ,

where boundedness of λk follows from Lemma 8 and CD is a constant.

Next, we derive a rate statement on the infeasibility.
Proposition 10 (Rate on primal infeasibility) Consider the sequence {(xk, λk)} generated by (VR-AL).

Suppose ρk = ρ for every k ≥ 0. Then the following holds for x̄K =
∑K−1
i=0 xi
K and for any K > 0.

E [d_(g(x̄K))] ≤

√√√√m
K

K−1∑
i=0

(
6εiη

b
i

ρ + 3m2η2
i β

2
)

+ 6mCD
ρK + CB

ρK

K−1∑
i=0

ηi,
√

C̃d
K

where C̃d is a constant.

Proof. We begin by noting that gηk(xk+1) can be expressed as

gηk(xk+1) = ∇λLηk,ρ(xk+1, λk) +
(

Π−

(
λk
ρ + gηk(xk+1)

))
Recall that d−(u+ v) ≤ d_(u) + ‖v‖ for any u, v ∈ Rm. Consequently, we have that

d_(gηk(xk+1)) ≤ ‖∇λLηk,ρ(xk+1, λk)‖+ d_

(
Π−

(
λk
ρ + gηk(xk+1)

))
︸ ︷︷ ︸

=0

= ‖∇λLηk,ρ(xk+1, λk)‖. (5)
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By definition of d_(•), convexity of max{gj(•), 0}, and ‖u‖2 ≤ ‖u‖1 ≤
√
m‖u‖2,

d_ (g(x̄K)) = inf
u∈Rm−

‖g(x̄K)− u‖1 ≤
m∑
j=1

inf
uj≤0
|gj(x̄K)− uj | =

m∑
j=1

max{gj(x̄K), 0}

≤ 1
K

K−1∑
i=1

m∑
j=1

max{gj(xi+1), 0} ≤ 1
K

K−1∑
i=1

m∑
j=1

max{gj,ηi(xi+1) + ηiβ, 0} = 1
K

K−1∑
k=0

inf
u∈Rm−

‖gηi(xi+1) + ηiβ1− u‖1

≤ 1
K

K−1∑
i=0

inf
u∈Rm−

√
m‖gηi(xi+1) + ηiβ1− u‖2 =

√
m
K

K−1∑
i=0

d_ (gηi(xi+1) + ηiβ1)

≤
√
m
K

K−1∑
i=1

(‖∇λLηi,ρ(xi+1, λ)‖+mηiβ)

≤
√
m
K

K−1∑
i=0

(‖∇λLηi,ρ(xi+1, λ)−∇λDηi,ρ(λi)‖+ ‖∇λDηi,ρ(λi)‖+mηiβ) .

By squaring both sides and taking unconditional expectations, we obtain the following.

E
[
(d_ (g(x̄K)))2

]
≤ E

(√m
K

K−1∑
i=0

(‖∇λLηi,ρ(xi+1, λ)−∇λDηi,ρ(λi)‖+ ‖∇λDηi,ρ(λi)‖+mηiβ)

)2


≤ m
K2

K−1∑
i=0

KE
[
(‖∇λLηi,ρ(xi+1, λ)−∇λDηi,ρ(λi)‖+ ‖∇λDηi,ρ(λi)‖+mηiβ)2

]
≤m
K

K−1∑
i=0

E
[
3‖∇λLηi,ρ(xi+1, λ)−∇λDηi,ρ(λi)‖2 + 3‖∇λDηi,ρ(λi)‖2 + 3m2η2

i β
2
]

≤m
K

K−1∑
i=0

(
6εiη

b
i

ρ + 3m2η2
i β

2
)

+ m
K

K−1∑
i=0

E
[
3‖∇λDηk,ρ(λi)‖

2
]
.

Recall that if Dηk,ρ is a 1/ρ−smooth concave function, then for any λ ∈ Rm, we have that ‖∇λDηk,ρ(λ)‖2 ≤
2
ρ(Dηk,ρ(λ

∗)−Dηk,ρ(λ)), where λ∗ is a maximizer of Dρ. By leveraging the concavity of the
√
• function,

E
[
(d_(g(x̄K)))2

]
≤ m

K

K−1∑
i=0

(
6εiη

b
i

ρ + 3m2η2
i β

2
)

+ m
K

K−1∑
i=0

E
[

6
ρ

(
Dηi,ρ(λ

∗
ηi)−Dηk,ρ(λi)

)]
≤m
K

K−1∑
i=0

(
6εiη

b
i

ρ + 3m2η2
i β

2
)

+ E

[
6m
ρK

K−1∑
i=0

(Dρ(λ
∗)−Dρ(λi))

]
+ 6m

ρK

K−1∑
i=0

ηiβ ((Bλ + 2bλ,η)m+ 2)

≤m
K

K−1∑
i=0

(
6εiη

b
i

ρ + 3m2η2
i β

2
)

+ 6m
ρ E

[(
Dρ(λ

∗)−Dρ

(
1
K

K−1∑
i=0

λi

)])
+ CB

ρK

K−1∑
i=0

ηi

≤m
K

K−1∑
i=0

(
6εiη

b
i

ρ + 3m2η2
i β

2
)

+ 6mCD
ρK + CB

ρK

K−1∑
i=0

ηi,
C̃d
K ,

where C̃d and CB are constants. By Jensen’s inequality, E [(d_(g(x̄K)))] ≤
√

E
[
(d_(g(x̄K)))2

]
,
√

C̃d
K .
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Proposition 11 (Rate on primal sub-optimality) Consider the sequence {(xk, λk)} generated by (VR-AL).

Suppose ρk = ρ and Mk = 1
k2+δ

for k ≥ 0 and δ > 0. If x̄K =
∑K−1
i=0 xi
K , for any K > 0,

f(x∗)− E[f(x̄K)] ≤ ηKβ + ρC̃d
2K +

bλ,η
√
C̃d√

K
≤ Cf√

K

f(x∗)− E[f(x̄K)] ≥ −‖λ0‖
2

2ρK −
1
K

K−1∑
k=0

(
(Bλ + bλ) νG√

Mk
+

(ρ+1)ν2G
Mk

+ εkη
b
k + ηkβ

)
≥ − C̃f

K

where Cf , C̃f are non-negative constants.

Proof. Recall that since xk is not necessarily feasible with respect to the constraints, we derive upper and
lower bounds on the sub-optimality. Let x∗ ∈ arg minLρ(x, λ

∗) and x∗ηk ∈ arg minLηk,ρ(x, λ
∗
ηk

).
(i) Lower bound. A rate statement for the lower bound can be constructed as follows. Since max

λ
Dρ(λ) =

min
x∈X

Lρ(x, λ
∗) = f∗, we have the following sequence of inequalities.

fηK (x∗ηK )≤ LηK ,ρ(x̄K , λ
∗
ηK

) = fηK (x̄K) + ρ
2

(
d_

(
λ∗ηK
ρ + gηK (x̄K)

))2
− 1

2ρ‖λ
∗
ηK
‖2

≤ fηK (x̄K) + ρ
2

(
d_ (gηK (x̄K))2 + 2

∥∥∥λ∗ηKρ ∥∥∥ d_ (gηK (x̄K))
)
.

Taking expectations on both sides, we obtain

fηK (x∗ηK )− E [fηK (x̄K)] = ρ
2E
[
(d_ (gηK (x̄K)))2

]
+ E

[∥∥λ∗ηK∥∥ d_ (gηK (x̄K))
]

≤ ρ
2E
[
(d_ (gηK (x̄K)))2

]
+ bλ,ηE [d_ (gηK (x̄K))]≤ρC̃d

2K +
bλ,η
√
C̃d√

K

=⇒ f(x∗)− E[f(x̄K)] = E
[
f(x∗)− f(x∗ηK )︸ ︷︷ ︸

≤0

+ f(x∗ηK )− fηK (x∗ηK )︸ ︷︷ ︸
≤ηKβ

+
(
fηK (x∗ηK )− fηK (x̄K)

)
+ fηK (x̄K)− f(x̄K)︸ ︷︷ ︸

≤0

]
≤ ηKβ + ρC̃d

2K +
bλ,η
√
C̃d√

K
≤ Cf√

K

(ii) Upper bound. Let x∗ηk,λk∈ arg min
x∈X

Lηk,ρ (x, λk). Based on the definition of x∗ηk,λk and x∗ηk ,

Lηk,ρ(xk+1, λk)− Lηk,ρ(x
∗
ηk,λk

, λk) ≤ εkηbk and Lηk,ρ(x
∗
ηk,ρk

, λk) ≤ Lηk,ρ(x
∗
ηk
, λk)

=⇒ Lηk,ρ(xk+1, λk)− Lηk,ρ(x
∗
ηk,
, λk) ≤ εkηbk.

By Lemma 1, we have that

E
[
fηk(xk+1)− fηk(x∗ηk)

]
≤ E

[
ρ
2

(
d_

(
λk
ρ + gηk(x∗ηk)

))2
− ρ

2

(
d_

(
λk
ρ + gηk(xk+1)

))2
]

+ εkη
b
k.

We observe that d_(u) = ‖Π−(u)− u‖ = ‖Π+(u)‖. It follows that

d_

(
λk+1

ρ

)
= d_

(
Π+

(
λk
ρ + gηk(xk+1)

)
+ wk

)
≤ d_

(
Π+

(
λk
ρ + gηk(xk+1)

))
+ ‖wk‖

≤ d_

(
λk
ρ + gηk(xk+1)

)
+ ‖wk‖

=⇒ −
(
d_

(
λk
ρ + gηk(xk+1)

))2
≤ −

∥∥∥λk+1

ρ

∥∥∥2
+ 2d_

(
λk
ρ + gηk(xk+1)

)
‖wk‖+ ‖wk‖2.
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Furthermore, d_

(
λk
ρ + gηk(x∗ηk)

)
≤ d_

(
gηk(x∗ηk)

)︸ ︷︷ ︸
= 0, since gηk (x

∗
ηk

) ≤ 0

+d_

(
λk
ρ

)
=
∥∥∥λkρ ∥∥∥ . This allows us to claim that

E
[
fηk(xk+1)− fηk(x∗ηk)

]
≤ ρ

2E
[∥∥∥λkρ ∥∥∥2

−
∥∥∥λk+1

ρ

∥∥∥2
]

+ ρE
[
d_

(
λk
ρ + g(xk+1)

)
‖wk‖+ ‖wk‖2

]
+ εkη

b
k.

In addition, we have that

E [f(xk+1)− f(x∗)] = 1
K

K−1∑
k=0

E [f(xk+1)− fηk(xk+1)]︸ ︷︷ ︸
≤ηkβ

+E
[
fηk(xk+1)− fηk(x∗ηk)

]

+ 1
K

K−1∑
k=0

E
[
fηk(x∗ηk)− fηk(x∗)

]︸ ︷︷ ︸
≤0

+E [fηk(x∗)− f(x∗)] .︸ ︷︷ ︸
≤0, since smoothness

Consequently, summing from k = 0 to K − 1, there exists a constant C̃f such that the following holds.

E[f(x̄K)− f(x∗)] ≤ 1
K

K−1∑
k=0

E [f(xk+1)− f(x∗)] ≤ 1
K

K−1∑
k=0

E
[(
fηk(xk+1)− fηk(x∗ηk)

)
+ ηkβ

]
≤‖λ0‖

2−‖λK‖2
2ρK + 1

K

K−1∑
k=0

E
[
ρd_

(
λk
ρ + gηk(xk+1)

)
‖wk‖

]
+ 1

K

K−1∑
k=0

E
[
‖wk‖2 + εkη

b
k + ηkβ

]
≤‖λ0‖

2

2ρK + 1
K

K−1∑
k=0

E [(‖λk+1‖+ ρ‖wk‖) ‖wk‖] + 1
K

K−1∑
k=0

E
[
‖wk‖2 + εkη

b
k + ηkβ

]
≤‖λ0‖

2

2ρK + 1
K

K−1∑
k=0

E
[
‖λk+1‖‖wk‖+ (ρ+ 1)‖wk‖2 + εkη

b
k + ηkβ

]
≤‖λ0‖

2

2ρK + 1
K

K−1∑
k=0

(
(Bλ + bλ) νG√

Mk
+

(ρ+1)ν2G
Mk

+ εkη
b
k + ηkβ

)
≤ C̃f

K .

3.3 Rate Analysis Under Increasing ρk
We now briefly describe the setting where {ρk} is an increasing sequence. If ηk = O(1/ρk) and
Mk = O(1/ρ2

k), then it can be shown that the expected suboptimality and infeasibility diminish at the rate of

O(1/ρk). Proof Sketch. (i) By the update rule of λk+1, d− (gηk(xk+1)) ≤ d−
(

Π−

(
λk
ρk

+ gηk(xk+1)
))

+∥∥∥λk+1−λk
ρk

∥∥∥+‖wk‖ =
∥∥∥λk+1−λk

ρk

∥∥∥+‖wk‖.Therefore, d− (g(xk+1)) ≤ d_(gηk(xk+1)+ηkB1) ≤ d_(gηk(xk+1))+

ηkB‖1‖+
∥∥∥λk+1−λk

ρk

∥∥∥+ ‖wk‖, and then we derive the results by taking expectations on both sides.
(ii) The key steps are as follows, with the remaining proofs similar to those outlined in Proposition 11.

fηk(x∗ηk) ≤ Lηk,ρk(xk+1, λ
∗
ηk

) ≤ fηk(xk+1) + ρk
2

(
‖λk+1‖
ρk

+ ‖wk‖+
‖λ∗ηk−λk‖

ρk

)2

− 1
2ρk
‖λ∗ηk‖

2;

fηk(xk+1) ≤ fηk(x∗ηk) + ρk
2

(
d_

(
(λkρk + gηk(x∗ηk))

))2
− ρk

2

(
d_

(
λk
ρk

+ gηk(xk+1)
))2

+ εkη
b
k.
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4 CONCLUDING REMARKS

In this paper, we present an efficient inexact sampling-enabled AL framework for convex programs with
possibly nonsmooth expectation-valued constraints. By overlaying a smoothing framework with diminishing
smoothing parameters and a constant penalty parameter, we derive rate guarantees for dual suboptimality,
primal suboptimality, and primal infeasibility. Future work will consider developing an overall complexity
analysis with extensions to compositional constraints. The latter can be accommodated with relative ease
since much of the convergence analysis persists but the overall complexity analysis is impacted by the
emergence of the multi-level compositional term in the objective of the augmented Lagrangian subproblem.
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