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ABSTRACT 
 
With the ever-growing threat of school shootings, modeling these tragedies is crucial to mitigate or reduce 
casualties in future events. However, agent-based models traditionally instruct agents to act based on 
theoretical behavior rather than actual human behavior. We present the results of 81,000 simulations of a 
school shooting where agent behavior is modeled after actual human behavior from a similar virtual 
scenario. Agents' reaction time and movement speed are drawn from probability distributions based on 
human data. The pathways assigned to agents are based on the human behavior exhibited in response to 
three social influence conditions: where the non-player characters all ran, all hid, or both ran and hid. 
Additionally, we manipulate law enforcement dispatch time, shooter accuracy, and magazine capacity. 
Results show mixed agent behavior and lower dispatch times had the largest influence on casualties. The 
methodology demonstrates the power of empirically defining agent behavior in ABMs. 
 
1  INTRODUCTION 
 
School shootings in the U.S. continue to be a rampant problem, with 2022 recording the most school 
shootings since 1999 (Cox et al. 2024). The Federal Bureau of Investigation (FBI) currently instructs 
victims of an active shooter scenario to practice the Run, Hide, Fight model (FBI 2022). This model 
proposes running when there is an active shooter, hiding if escape is impossible, and fighting only as a last 
resort. However, while individuals can be trained to follow these principles in low-consequence conditions, 
their behavior often changes from the stress endured in an unanticipated situation (Worthington et al. 2021; 
Zhu et al. 2020; Drury et al., 2009). To better understand behavior during an active shooter scenario, multi-
agent crowd simulation models have increasingly been used to predict outcomes based on various factors 
(Sharma et al. 2020). However, the agents in these models must follow a predetermined set of behavior 
patterns, such as taking the shortest route to an exit without colliding with other agents (Manley et al. 2016). 
While these frameworks produce reliable crowd simulation behavior, the underlying framework is the same 
for all agents. Some systems, such as MomenTUM, allow agents based on different models, but these agents 
cannot interact with objects in the environment (Kielar et al. 2016). Therefore, we introduce a multi-agent 
simulation model where agent behavior is based on real human behavior in a similar school shooting 
experience. We draw data from three samples that varied in the number of non-playable characters (NPCs) 
who ran or hid to inform our agents' pathways, speed, and reaction time. We also manipulate additional 
factors in the agent-based model to evaluate their impact on the number of casualties, including shooter 
accuracy, magazine size, and law enforcement dispatch time. From this data, we hope to better inform 
training guides on how individuals should respond to a school shooting based on the variables mentioned 
previously.  

 
2  BACKGROUND 
 
2.1  Prevalence of School Shootings  
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According to the K-12 School Shooting Database (2024), there were 348 incidents where a firearm was 
discharged on school property, resulting in the deaths of 71 individuals and injuries to a further 178 people. 
Furthermore, the number of annual incidents has risen dramatically since 2020. Before 2020, there was no 
year with more than 125 incidents; however, since 2021, the average number of incidents per year has been 
257. Equally concerning is that 73.9% of school shootings ended when the shooter fled the scene, 
suggesting the number of casualties could be higher if shooters desired to create more victims (Haghani et 
al. 2023a; Haghani et al. 2023b). With the recent dramatic increase in the number of shootings occurring at 
schools, there is a growing need to study and understand the factors that contribute to a decrease in the 
lethality and duration of the events (Kerlin et al. 2021; Schildkraut and Martaindale 2023; Leija 2023).  
 
2.2  Run, Hide, Fight  
 
The "Run, Hide, Fight" program, devised to respond to active shooter situations, has received mixed 
reviews for its efficacy in minimizing casualties (Lu et al. 2023; Schildkraut and Nickerson 2020). 
Advocates highlight its straightforwardness, enabling quick decision-making in life-threatening scenarios 
by promoting running to safety, hiding, or fighting as a last resort (Lian et al. 2023; Jonson et al. 2020). 
Nonetheless, critics doubt its adaptability across diverse settings such as schools, workplaces, and public 
areas (Zhu et al. 2019; Zhu et al. 2020; Zhu et al. 2022). Concerns include the practicality of implementation, 
adequacy of training, and potential for panic (Awada et al. 2021; Carvalhais et al. 2024). Some argue it 
oversimplifies complex dynamics and fails to address the root causes of violence (Becerik-Gerber et al. 
2022a; Becerik-Gerber et al. 2022b; Lin et al. 2020). Research on active shooter incidents often relies on 
sparse and potentially unreliable data (Bahmani et al. 2023). Our model offers a cost-effective means to 
simulate various scenarios, assessing how individuals respond to others running, hiding, or both. Its 
adaptability to different settings depends on the accuracy of behavioral data characterizing agent behavior. 
 
2.3  Agent-Based Models in School Shooting Simulations 
 
Agent-based models (ABMs) simulate complex systems by representing individual entities (agents) and 
their interactions (Aghalari et al. 2021; Arteaga and Park 2020; Lu et al. 2021; Vilar et al. 2014). In the 
context of school shootings, ABMs have been utilized to explore various factors contributing to such tragic 
events (Bott 2021; Haghani, 2020). Notable studies include Towers et al. (2015) examination of social 
contagion effects in school shootings, which highlighted the role of media coverage and peer influence on 
the likelihood of subsequent incidents. Additionally, Anklam III et al. (2015) integrated ABMs with data 
on school demographics and firearm access to analyze the impact of policy interventions on preventing 
school shootings. ABMs offer a nuanced understanding of the dynamics underlying school shootings, 
incorporating factors ranging from individual psychology to societal influences, thereby aiding in 
developing more effective preventive strategies (Scott et al. 2021). 

 
3  METHODS 
 
3.1  Model Overview 
 
Our simulation was conducted in NetLogo Version 6.4. The model is based on code from Stewart (2017), 
which formed the basis for the variables manipulated, and the school layout from Zhu (2022). The scenario 
simulated a school shooting during lunchtime when students were all in the cafeteria. Each simulation 
begins when the shooter enters through the front entrance of the school and begins firing. The simulation 
ends either when all students have escaped, become casualties, or law enforcement has eliminated the 
shooter. Student behavior, reaction time, and running speed are based on probability distributions generated 
by real human behavior in a similar behavioral experience scenario. Shooter behavior follows the general 
path taken by the shooter in the behavioral experience but allows for deviations based on agent interactions. 
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Law enforcement was not included in the behavioral experience, so agent behavior is driven solely by agent 
interactions. Figure 1 shows the school layout along with the starting positions of the students and shooter 
(red). Law enforcement arrives from the east exit after a specified number of minutes.  

 
Figure 1: The school layout used in NetLogo simulations. 

 
3.2  Behavioral Experience 
 
The behavioral experience was conducted to characterize the range of actual human behaviors in reaction 
to an immersive virtual active school shooting scenario. A 3D model of the school with the same layout as 
Figure 1 was constructed in the Unity game engine. A total of 545 Participants were recruited from 
Prolific.com, a well-validated source of online participants for behavioral research (Douglas et al. 2023). 
Participants were randomly assigned to one of nine conditions capturing all combinations of the gunman’s 
closeness to the participant located in the cafeteria (front entrance, east exit, and cafeteria) and the behavior 
of 37 non-player 3D characters (NPCs) (all run from the shooter, all hide from the shooter, half run, and a 
50-50 mix of running and hiding). In the 50-50 mixed condition, the same 18 NPCs are assigned to hide 
and the same 19 are assigned to run. Participants began the experience by practicing moving using their 
mouse/trackpad and keyboard. After they passed this stage, participants were given 7 locations to navigate 
to help familiarize them with the school's layout. Only if participants completed both training sessions in 
15 minutes did they participate in the actual school shooting experience. The experience lasted a maximum 
of 70 seconds but could end early if participants escaped beyond the boundaries of the school and were 
marked safe. The experience had a maximum of 70 seconds because, beyond that time, participants' 
behavior often changed from their initial reaction (for example, to hide in the kitchen) to exploring the 
school. Participants were free to go where they wanted but could not pass through boundaries or NPCs and 
were not targeted by the shooter, avoiding data censoring resulting from the incapacitation of the agent. 
Data from the behavioral experience from each social influence condition in our study (NPCs run, hide, or 
a mix of running and hiding) is used to inform agents’ movement speed, latency to begin movement, and 
the probability of a student's behavior.  
 
3.3  Student Running Speed and Reaction Time 
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Using data from the behavioral experience, students’ speed of movement and latency to begin movement 
following the first shot are stochastic parameters assigned to each student and vary with each trial. For 
speed, a total of 43,952 observations of speed sampled at half-second intervals were used to estimate a 
probability distribution in the three conditions in which NPCs run (N=12,163), hide (N=18,024), or a 
combination of running and hiding (N=13,765). The data suggest that observed speeds follow a mostly 
discrete distribution with probabilities concentrated at three speed values (0, 2, and 3.5 yards per second), 
with some probability distributed between these speed values. The discrete values suggest that the 
simulation hardware and software artificially constrained movement in the behavioral experience. Given 
that human movement is continuous and not constrained by mouse hardware, we fitted more realistic 
Exponential distributions for each social influence condition. We used @RISK, an add-in for Excel, to fit 
the speed data for each of the three social influence conditions from the behavioral experience, resulting in 
Exponential distributions defined by bias-corrected maximum likelihood estimates. Exponential 
distributions provided suitable fits based on minimum (best) values of the Bayesian Information Criterion 
(BIC) for all three conditions. Complementary Cumulative distributions (CCDs) for speed are plotted for 
all three conditions in Figure 2 for both the observed data (blue) and fitted Exponential distributions (red). 
Since the estimated shift parameter = 0 for all three distributions, the Exponential lambda parameters equal 
the indicated means. 

 

Figure 2: Complementary Cumulative probability distributions, i.e., probability (Y) human agent speed 
exceeds X. Blue represents the observed data, and the red curve is the fitted Exponential distribution.  

Response latencies for the first movement following the first shot were fitted for six different 
distributions, conditional on the NPCs in the behavioral experience (Running, Hiding, or Mixed) and 
whether the human in the behavioral experience escapes outside the building or remains in the building. 
Sample sizes for the six conditions ranged from 46 to 140. Parameters were estimated for Exponential 
distributions using the same software and procedure described above for speed distributions. In all six cases, 
the Exponential distribution had the lowest or very nearly the lowest BIC compared to other distributions. 
We chose to use Exponential distributions for all cases given ease of implementation in the NETLOGO 
software. Complementary Cumulative distributions CCDs for latency are plotted for all six conditions in 
Figure 3 for both the observed data (blue) and fitted Exponential distributions (red). The estimated shift 
parameter is positive in all six cases and the displayed mean for each case is the sum of the Exponential 
lambda parameter and the shift parameter. Consistent with the BICs and nearly coincidental CCDs in Figure 
3, the Exponential distributions are a good approximation to the empirically observed latency data. 
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Figure 3: Complementary cumulative probability distributions, i.e., probability (Y) human agent movement 
delay exceeds X. Blue represents the observed data, and the red curve is the fitted Exponential distribution. 

3.4  Agent Characteristics  
 
Unlike other models that define agent characteristics based on theory, our model assigns agent 
characteristics to students based on probability distributions from real humans. Sixty students in this model 
had their behavior (whether the student runs or hides and to where), speed (yards per second), and reaction 
latency (seconds) to the shooting drawn from each of the social influence conditions from the behavioral 
experience described earlier. The variation in agent characteristics is represented by probability 
distributions summarized in Table 1, conditional on both manipulated NPC behavior and measured human 
behavior (escaped or remained in the building). The starting location of each of the 60 students was arranged 
as students would sit in a cafeteria during lunchtime, similar to the behavioral experience. Each student was 
assigned a behavior pathway based on a discrete probability distribution using the probabilities in Table 1 
and depicted by the green lines in Figure 4. Students would follow their assigned behavior as closely as 
possible but could not run into other students. The discrete probability distribution of behavior pathways is 
generated from the percentage of participants in the behavioral experience who engaged in each of the 
following behaviors. Each student was assigned a constant running speed from the Exponential distribution 
described in Table 1. Students' response latency following the first shot was assigned from one of the 
Exponential distributions defined in Table 1, conditional on their assigned behavior (running or hiding). If 
students were shot by the shooter, they were marked as casualties and the shooter would no longer target 
them. We do not distinguish between students injured and those who die from being shot as this often 
depends on external factors (location of wounds, emergency medical response time, size of the victim, etc.) 
that are outside the scope of this simulation. If students managed to reach the outer boundaries of the school 
or enter a classroom, they were marked as safe from the shooter. Students were marked as safe when 
entering classrooms, as many classrooms have bulletproof doors preventing the shooter from entering, 
which is not true of other rooms such as the kitchen or office rooms. Furthermore, the classrooms in our 
simulation had no internal windows. Finally, any student who did not reach safety or become a casualty 
was considered at risk when the simulation ended. . 
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Table 1: Student behavior probability distributions from behavioral experiences. The first Exponential 
parameter is the distribution mean and the 2nd is the shift parameter, which is the minimum value with non-
zero density.  

  Run Condition Mixed Condition  Hide Condition 
Reaction Time (number 

of seconds) 
Assigned Probability Distribution 

for Runners 
Exponential 
(3.63) + 0.98 

Exponential 
(3.68) + 0.97 

Exponential 
(4.02) + 0.96 

Assigned Probability Distribution 
for Hiders 

Exponential 
(4.62) + 1.45 

Exponential 
(5.84) + 0.92 

Exponential 
(4.88) + 0.96 

Running Speed (yards 
per second) 

Assigned Probability Distribution  Exponential 
(1.53)  

Exponential 
(1.29)  

Exponential 
(1.21)  

Percent of Participants 
Assigned to Pathway 

Run to North Exit 55.36% 57.41% 38.71% 

Run to East Exit 16.07% 9.26% 0.00% 

Run to Courtyard Exit 16.07% 3.70% 6.45% 

Hide in Kitchen 5.36% 14.81% 12.90% 

Hide inside Cafeteria 5.36% 9.26% 24.19% 

Hide outside Cafeteria and 
Kitchen 

1.79% 5.56% 17.74% 

 
The shooter’s behavior in the simulation is modeled after the shooter’s behavior in the behavioral 

experience. The shooter moves at a constant speed of 0.25 yards per second as the shooter in the behavioral 
experience moves slowly, keeping his weapon ready at all times. The shooter will follow a default path 
depicted by the red path in Figure 4, where he gains entrance to the school building through the front 
entrance, enters the cafeteria, exits into the top hallway, and walks toward the east exit. It should be noted 
the shooter in this simulation never reaches the east exit before law enforcement arrives. This was done 
intentionally to keep the simulation within the bounds of the school.  If any other agent is within 30 yards 
and 180 degrees of the direction the shooter is facing, the shooter will target that agent until the agent 
becomes a casualty, the agent escapes, or the shooter dies. The shooter will target the closest agent if 
multiple agents are within this range. If no agents are within this range, the shooter will follow the default 
path previously described until all agents are marked safe or the shooter dies. The shooter targets an agent 
by first orienting in the direction of the agent and then firing one round per second until the agent becomes 
a casualty, a closer agent is identified, or the shooter dies. The shooter can move while shooting at an agent. 
The shooter’s accuracy varies between a 25%, 50%, and 75% chance of creating a casualty. Each time the 
shooter fires a round, the remaining rounds in his magazine decrease by one. Magazine capacity is varied 
between 10, 20, and 30 rounds. When the shooter’s magazine reaches zero, he will pause for three seconds 
to reload, during which he will not move or target any other agents. The shooter has unlimited ammo as the 
number of rounds the shooter carries and switching to a secondary weapon were outside the scope of this 
simulation.  

There was no law enforcement in the behavioral experience, so the law enforcement officers arrived at 
the east exit after either 1 minute, 3 minutes, or 5 minutes. Dispatch times are low because in this scenario 
we assume the two officers responding are school resource officers (SROs) already on school grounds when 
the shooting begins. After arriving, law enforcement walks in the opposite direction students are running, 
which corresponds to the blue path in Figure 4. Law enforcement officers move at a speed of 0.75 yards 
per second and avoid running into students. When the shooter is within 30 yards and 180 degrees of the 
direction law enforcement is facing, the officers will fire at the shooter, always turning the shooter into a 
casualty. Specifics regarding law enforcement training, equipment, willingness to confront the shooter, and 
other contextual variables are outside the scope of this study.  
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Figure 4: Student, shooter, and police default pathways. 

 
3.5  Simulation Procedure  
 
Data for this study was collected in the following manner. Each of the three social influence conditions (run, 
hide, mixed) received its own model. In each model, the magazine capacity (10, 20, 30), shooter accuracy 
(25%, 50%, 75%), and dispatch time (1 minute, 3 minutes, 5 minutes) were crossed to create a total of 27 
combinations. 1000 trials were conducted for each combination, resulting in 27,000 trials per model and 
81,000 trials overall. The primary dependent variable was the average number of casualties per trial. Figure 
5 summarizes the agent-based model study design, showing which variables were included in each model.  

 

 
Figure 5: Agent-based model study design. 

 
4  RESULTS 
 
4.1  Number of Casualties  
 
The following ANOVA model includes only the main effects and two-way interactions between the 
condition and the other variables to account for differences in student characteristics between each 
condition. A 3 (condition) x 3 (dispatch time) x 3 (shooter accuracy) x 3 (magazine capacity) ANOVA for 
the number of casualties found a significant main effect for condition (F(2,80977)=37578.98, partial 
η2=.28), a significant main effect for dispatch time (F(2,80977)=41736.64, partial η2=.31), a significant 
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main effect for shooter accuracy (F(2,80977)=12930.07, partial η2=.10), a significant main effect for 
magazine capacity (F(2,80977)=30.68, partial η2=.00), a significant interaction between condition and 
dispatch time (F(4,80975)=1248.54, partial η2=.02), a significant interaction between condition and shooter 
accuracy (F(4,80975)=381.45, partial η2=.01), and no significant interaction between condition and 
magazine capacity (F(4,80975)=1.50, partial η2=.00). Table 2 summarizes the follow up pairwise t-tests 
using Holm’s correction (ɑ = 0.05).  
 

Table 3: Follow up pairwise t tests predicting number of casualties. 
Factor Variable Level 1 Level 2 Mean 1 SD 1 Mean 2 SD 2 η2  

Condition Hide Mixed 10.79 3.86 5.76 2.52 1.54 
Condition Hide Run 10.79 3.86 9.18 3.65 0.43 
Condition Run Mixed 9.18 3.65 5.76 2.52 1.09 

Dispatch Time 5 min 3 min 11.28 3.83 8.59 3.43 0.74 
Dispatch Time 5 min 1 min 11.28 3.83 5.87 2.59 1.66 
Dispatch Time 3 min 1 min 8.59 3.43 5.87 2.59 0.90 

Shooter Accuracy 75% 50% 9.91 4.19 8.89 3.95 0.25 
Shooter Accuracy 75% 25% 9.91 4.19 6.94 3.17 0.80 
Shooter Accuracy 50% 25% 8.89 3.95 6.94 3.17 0.54 

Magazine Capacity 30 20 8.65 4.03 8.58 3.98 0.02 
Magazine Capacity 30 10 8.65 4.03 8.50 3.96 0.04 
Magazine Capacity 20 10 8.58 3.98 8.50 3.96 0.02 

 
Figure 6 summarizes the student status at the end of each simulation by the percentage of casualties, 

percentage of students who did not reach safety (risk), and percentage of students who reached safety for 
each of the main effects included in the preceding ANOVA model. The difference in the percentage of 
casualties for each main effect is the same as described by the pairwise t-tests above. For all main effects 
except dispatch time, the percentage of students at risk is relatively the same. As dispatch time increases, 
the percentage of students at risk decreases.  Figure 7 summarizes the same student status categories for the 
two significant interactions between condition and dispatch time and between condition and shooter 
accuracy. As dispatch time increases, the percentage of casualties increases faster in the hide condition 
compared to the run and mixed conditions. Similarly, as shooter accuracy increases, the percentage of 
casualties increases at a higher rate in the hide condition compared to the other two and at a higher rate in 
the run compared to the mixed.  

 

 
Figure 6: Student status by social influence condition, dispatch time, shot accuracy, and magazine capacity. 
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Figure 7: Student status by dispatch time by social influence condition and by shooter accuracy by social 
influence condition. 
 
4.2  Shooter and Law Enforcement Casualties 
 
In Table 4, we report the percentage of trials in which the shooter or a law enforcement officer became a 
casualty for each of the three dispatch times in our simulation. Only dispatch time was reported because 
this was the only variable of interest with significant results. A chi-square test of association found a 
significant relationship between the percentage of trials law enforcement became a casualty and dispatch 
time (X2(2, N = 81000) = 6155.50, p < 0.001, V = 0.28). Similarly, a chi-square test of association found a 
significant relationship between the percentage of trials in which the shooter became a casualty and dispatch 
time (X2(2, N = 81000) = 80.33, p < 0.001, V = 0.03). The correlation between dispatch time and duration 
of the simulation was 0.96. There was a strong association between shooter casualty rates and dispatch time, 
with higher dispatch times resulting in a lower shooter casualty rate. In contrast, there was only a weak 
association between law enforcement casualty rates and dispatch time. The high correlation between 
dispatch time and simulation duration suggests law enforcement arrival plays an important role in bringing 
active shooter scenarios to an end.  
 

Table 4: Percent of trials shooter or either law enforcement officer became a casualty. 
Dispatch Time Percent of Trials Shooter 

Became Casualty 
Percent of Trials Either Law 

Enforcement Became Casualty 
Average Simulation Duration 

(Seconds) 
1 Minute 98.15% 43.44% 201.76 
3 Minutes 96.64% 46.70% 296.15 
5 Minutes 81.76% 43.24% 387.29 

 
5  DISCUSSION 
 
5.1  Relationship Between Condition and Casualties 
 
Agents based on the mixed condition were significantly less likely to become casualties compared to the 
run and hide conditions. Despite a similar percentage of agents running to the North Exit as the run 
condition, agents in the run condition running to other exits likely contribute to clogging in the top hallway 
near the lounge and bathrooms, similar to a chokepoint in a real building. Agents in the hide condition were 
the most likely to become casualties because they tried to hide in the cafeteria or kitchen and did not have 
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enough time to escape from the shooter. Even when the dispatch time was 1 minute, approximately 12% of 
agents became casualties in the hide condition. While no one simulation can be used to inform policy,  based 
on the performance from each of our social influence conditions, victims of shooting should aim to run 
away as quickly as possible with a preference for routes with fewer people, even if they are a longer distance. 
Furthermore, our simulation provides evidence for building planners ensuring that high-capacity rooms 
such as cafeterias and auditoriums, have sufficient exit locations and wide enough egress lanes to prevent 
bottlenecks.  
 
5.2  Relationship Between Model Parameters and Casualties 
 
In our simulation, we varied the dispatch time, shooter accuracy, and magazine capacity. Dispatch time had 
by far the largest effect, with twice as many casualties in 5-minute dispatch time conditions compared to 1 
minute on average. While the dispatch times in the study were short, any dispatch time over 6 minutes 
meant the simulation ended before law enforcement showed up. This result is consistent with previous 
research showing approximately one-third of shootings end within 2 minutes and more than two-thirds 
within 5 minutes FBI (2022). The presence of school resource officers (SROs) or armed staff can help 
dramatically reduce the time it takes to confront a shooter and reduce casualties. Shooter accuracy had a 
linear impact on the number of casualties. We do not provide any broad policy recommendations, as this 
variable was primarily intended to verify our simulation results. Finally, magazine capacity had no 
meaningful effect on the number of casualties.  
 
5.3  Shooter and Law Enforcement Casualties 
In the majority of trials in our simulation, the shooter became a casualty. A shooter casualty was particularly 
likely when the dispatch time was 3 minutes or less. In contrast, the percentage of trials in which a law 
enforcement officer became a casualty was consistently around 45% for all dispatch times. It should be 
noted that this means the officer was struck somewhere on the body, including body armor, where little or 
no injury may have occurred. In our model, law enforcement had the upper hand in targeting the shooter as 
the shooter was typically targeting students who were closer, allowing law enforcement to fire the first shot. 
Law enforcement casualty rates were so high in our model because both shooter agents and law enforcement 
agents had the same firing range, accuracy, and tactical skills. In actual active shooter situations, law 
enforcement casualty rates will depend on law enforcement training and available equipment, as well as 
exogenous factors related to shooter tactical skills and weaponry.  
 
5.4  Limitations 
 
While our agent-based simulation is the first to model agent behavior on observations from a behavioral 
experience of a school shooting, several improvements could be made to enhance the realism. Real-life 
outcomes will depend on many exogenous variables that are not modeled in our simulation. Additionally, 
we do not know the extent to which contextual variables embedded in the agent assumptions would 
moderate the outcomes. While these limitations prevent us from believing the exact number of casualties 
reported, we can still observe the relative effects of the manipulated factors. Our model serves as a 
methodological demonstration that can be expanded to make accurate predictions in particular situations.  
 
5.5  Conclusions 
 
Our agent-based model used observed human behavior to inform agent decision-making latency to act, how 
to respond, and how quickly to respond.  Results indicate that agent behavior and law enforcement dispatch 
time were the most important factors in reducing the number of casualties in a school shooting. Using 
behavioral data from a virtual simulation to inform agents’ behavior provides an empirical basis for defining 
agent behavior in response to a stressful event such as a school shooting. This methodology can be applied 
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and tailored to better inform policymakers’ decisions related to planning, mitigation, training, training 
guides, and design choices to minimize vulnerability and the severity of an attempted school shooting.  
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