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ABSTRACT

Analytical and simulated queuing models are useful for understanding and improving healthcare systems,
including emergency departments (EDs), which serve as vital access points to healthcare systems inter-
nationally. EDs face challenges such as long waiting times, ambulance queuing, and bed-blocking, and
simulation can be used to test strategies for improving these problems. Despite the widespread use of
simulation, there is a lack of literature addressing the validity of queuing theory assumptions underpinning it,
particularly the assumption of independence between the arrival and service processes. This paper employs
semi-experiments to test these assumptions using real ED data. The results indicate that a correlation
structure is present between the arrival and service processes in this data. The implications for simulation
studies and directions for future work are discussed.

1 INTRODUCTION

Queuing theory (both analytical and simulation models) has been used extensively to model the dynamics
of healthcare systems and experiment with improvement strategies. Emergency departments (EDs) are
the most common component of healthcare systems studied in the simulation literature (Giinal and Pidd
2010). EDs form a critical point of access to health care systems internationally. They frequently attract
negative media attention in relation to long waiting times, ambulance ramping (queuing outside ED with
paramedic staff caring for patients), and bed-blocking (queuing which arises from a lack of available beds
in downstream health care facilities) (Vanberkel 2023).

In queuing theory, the arrival and service processes are assumed to be independent of each other. Despite
the popularity of ED queuing models, there is a lack of literature that gives attention to the appropriateness
of this assumption. Developing models that violate queuing theory assumptions could lead to incorrect
conclusions being drawn about the real system. This paper contributes to the literature on ED simulation
modelling through using semi-experiments (Ridoux et al. 2006) to test queuing assumptions on a motivating
dataset, interpreting the experimental results, and discussing future research directions.

The rest of the paper is set out as follows. Section 2 discusses the relevant literature to this work and
Section 3 sets out the semi-experiment method proposed for testing the feasibility of queuing assumptions
in ED data. Section 4 presents information about the motivating data, results of the semi-experiments
applied to the motivating data, and a semi-experiment with simulated data. Section 5 summarizes the
implications of these results and suggests directions for future research.

2 BACKGROUND
2.1 Data-driven Queuing Models of Emergency Departments

There is a large volume of literature on emergency department (ED) queuing models (Salmon et al. 2018).
The majority of papers use simulation over analytic methods due to the complex stochastic behavior present
in EDs. There are two main approaches to developing ED simulation models.
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The first approach focuses on creating a model that is specific to the ED being studied. Models commonly
involve modelling entities (patients) as they progress through a sequence of activities, such as assessment
by a nurse, medical testing, and treatment in a cubicle (Furian et al. 2018). Models which are specific to a
particular ED are sometimes necessary to fulfil the simulation study objectives, for example if the aim is to
optimize the use of the ED medical imaging facilities. The main disadvantages of this approach are that the
model (i) will become outdated as processes change or the activity timing changes (Sinreich and Marmor
2004), (ii) cannot be used in another ED without carrying out clinical interviews and/or time-and-motion
studies (Boyle et al. 2022), and (iii) it is difficult to adequately model the ‘external’ components (e.g.,
pharmacy, pathology, radiology) without also building a complete model of their behaviour, as they are
subject to additional demands other than just those from the ED.

The second approach is data-driven, where the simulation model is developed using the data commonly
collected in hospital electronic medical records. Examples of this approach include: Hoot et al. (2008) who
developed a data-driven discrete event simulation that can be initialized in real-time and used to forecast
several hours into the future; Boyle et al. (2022) who presented a data-driven framework for generalizable
ED simulation modelling; and Heib et al. (2023) who presented a generalizable symbiotic simulation
approach for EDs. The advantages of this approach are that the simulation can be updated with new data
as it becomes available, and it is generalisable for use in most hospital EDs (Boyle et al. 2022; Heib
et al. 2023). However, ED electronic medical record data presents several difficulties, further discussed in
Section 2.2.

2.2 The Validity of Assumptions in Data-driven Healthcare Queuing Models

Simulation models in healthcare generally follow an M/G/. queuing structure. There are fundamental
differences between an M/G/1 queue and an M /G/n queue, in that the output rate of an M/G/n queue
will appear to get faster with occupancy, while that of an M /G/1 queue will not. This does not carry over
to service time, where they all still require their service time. But in a processor-sharing M/G/1 queue,
everyone’s service time will be significantly inflated because we can’t tell when each arrival is getting (or
not) service.

M /G/. queueing models assume the arrival process to be Poisson-distributed and the arrival and service
processes to be independent of each other. The first assumption is normally checked but Varney et al.
(2019) highlighted that the second is often neglected. The authors present a semi-experiment approach
(outlined in Section 3) and showed the presence of a correlation structure between the arrival process and
length of stay distribution in 37 intensive care units, that could be attributed to occupancy management
behaviors (for example demand-driven discharge). The study demonstrated that neglecting to account for
dependence between the arrival and LOS processes in intensive care unit (ICU) simulation modelling leads
to over-estimation of turnaway rates. A ‘standard deviation ratio’ approach was proposed as a means of
accounting for this correlation structure, and was shown to improve simulation model result accuracy.

Occupancy management behaviors are well understood in the context of ICUs, where clinicians can
discharge patients early to make space for more acutely unwell patients (Mallor and Azcarate 2014).
In emergency departments (EDs) this type of behavior is less understood. A number of studies have
hypothesized that there is a relationship between ED length of stay (LOS) and ED occupancy levels.
McCarthy et al. (2009) used two approaches to study the effect of ED occupancy on each stage of ED
LOS. The first ‘static’ approach used logistic regression to model the relationship between LOS and ED
occupancy. The second ‘time-varying’ approach used a discrete-time survival model to investigate the
relationship of between time-varying ED occupancy (measured every 15 minutes) and LOS. It was found
that both the static and time-varying measures of occupancy were significant LOS predictors. Kao et al.
(2015) developed a ‘crowdedness index’ (CI) to represent overcrowding in a Taiwanese ED. The CI was
calculated as the ratio of ‘current loading’ to ‘full capacity’. A DES of the ED was developed, where
service times were modelled using gamma distributions. The authors indicated that the shape of these
gamma distributions could be adjusted during the simulation depending on ED occupancy, but it is unclear
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whether, and if so how, this was achieved. Both of these papers showed a relationship between occupancy
and LOS in EDs, but did not investigate whether the arrival and service processes are independent of each
other.

The mechanisms through which load impacts service time have been summarized in the ‘load effect on
service times’ (LEST) framework by Delasay et al. (2019). In the context of EDs it is natural to consider
dependence between the service time distribution and system state, which could manifest in one or more
of the following ways:

1. Server mechanisms include (i) ‘demand-driven discharge’ where patients are discharged at an
increased rate to create space at high occupancy (Chan et al. 2019), (ii) prioritising the service of
patients who are at risk of breaching time-based KPIs (Eatock et al. 2011), (iii) decrease in the
number of diagnostic tests ordered as the number of waiting patients in ED increases (Batt and
Terwiesch 2017) and (iv) reduction in productivity due to multitasking (simultaneous responsibility
for the treatment of multiple patients) (Kc 2014).

2. Network mechanisms in the form of (i) sharing of resources between ED and other hospital units,
for example radiology and pathology services, as well as specialist doctors (Hillier et al. 2009)
and (ii) the ED is one node in a network of hospital units through which patient flow can become
blocked by downstream congestion (Forster et al. 2003; Hillier et al. 2009).

3. Customer mechanisms for example (i) longer queue length in ED is associated with increased
numbers of patients who did not wait for treatment (Batt and Terwiesch 2015).

The major barrier to understanding the effect of load on service time in EDs is the manner in which
data is collected in hospitals. Administrative databases usually contain time stamps for arrival and/or triage,
time first seen by a doctor and/or nurse, the time at which a decision is made to admit the patient, and the
time of departure from ED. The patient journey through ED can then be separated into three LOS stages: (a)
waiting, (b) treatment and (c) extended care (boarding for admitted patients or observation for discharged
patients) (Boyle et al. 2022). Anecdotally, a further complication is a lack of accurate data recorded by
hospitals on the number and composition of staff who have worked in each ED shift, making it difficult
to understand and quantify the effect of service mechanisms without conducting empirical studies.

Distributions (b) and (c) contain both time spent waiting and time spent in service, with no way to
decompose the amalgamated distributions. It is therefore difficult to identify and quantify the mechanisms
through which load affects service and waiting times in ED using a data-driven approach. It is also difficult
to determine because the state changes and so there is no clean way to measure the effect - effectively
there is no clean definition of the server and hence of load.

Harper (2020) demonstrated that the service time distribution in a UK ED is related to the number of
patients waiting for service, and proposed an analytical queueing model with switching thresholds to allow
for a two-speed service time as a function of the number of waiting patients, defined here as the number of
patients waiting in the emergency department for service at the time the patient starts service. It would be
practically difficult to implement this model in a data-driven ED simulation, because data is not collected
on the number, type, or tasks of servers in an ED.

In summary, some research has been conducted to explore the relationship between ED occupancy and
service time distributions. However, there is no research which seeks to test the assumption of independence
between ED arrival and service time processes. This will be tested using the semi-experiment method
presented in Section 3.

3 METHODS
3.1 The Semi-experiment Method

The semi-experiment method was first introduced by Hohn et al. (2002) to investigate long-range dependence
in time series of IP bytes and packets Hohn et al. (2002). The method of semi-experiments extended the
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concept of blockwise-shuffling, developed by Erramilli et al. (1996) to analyse long-range dependence in
packet traffic. Ridoux et al. (2006) explained ‘Typically, a semi-experiment involves replacing a single
specific aspect of the real data with a simple, neutral model substitute. One then compares the statistics
before and after, drawing conclusions on the role played by the structure removed by the manipulation’.

Varney et al. (2019) proposed the use of semi-experiments in a healthcare setting to investigate
dependence between the arrival process and the length of stay (LOS) distribution in data from hospital
Intensive Care Units (ICUs). The steps of this method are as follows:

1. Keep the arrival process stream of data exactly as it occurred.
Replace the original LOS data stream with a random permutation of the data.

3. Calculate the occupancy distribution of the hospital unit both before and after the manipulation
was made.

4. Compare the statistics of the original and permuted occupancy distribution.

No significant change in the statistics of the original and permuted occupancy distributions indicates that
there is no correlation structure between the arrival process and the LOS distribution. If the semi-experiment
does show a change in the occupancy distribution statistics then ‘these can only be attributed to the random
permutation of the LOS stream of the semi-experiment, and thus the destruction of the delicate correlation
structure between the arrival process and LOS stream’ (Varney et al. 2019).

In EDs, the time between arrival and first seeing a doctor is waiting time. In this paper we consider the
remaining time between first seeing a doctor and leaving the emergency department to be the service time.
Therefore for the purpose of the semi-experiments we consider the time at which the patient first sees a
doctor as the arrival process and the length of stay until they depart the ED as the service time process.

3.2 Patient Cohorts for Semi-experiments

In queuing theory, the series of inter-arrival times and service times are assumed to be independent and
identically distributed (iid). This is often not a feasible assumption in healthcare data, but is adequately
true when patients are categorized into appropriate ’cohorts’ (Varney et al. 2019). To account for this
as a possible source of correlation, the data can be segregated into patient cohorts before performing the
semi-experiment. For example, triage category (representing different urgency levels) was used to divide
the data into five cohorts. The semi-experiment is then performed by permuting LOS only within each
patient cohort, recalculating the occupancy distributions, and comparing the statistics before and after the
manipulation was made.

One important source of correlation could arise where the service time varies as a function of the queue
length, as in Harper (2020). In our motivating dataset there is no information on the server rate or the
service effort, so we cannot directly ascertain this information. We use ED occupancy and waiting room
occupancy as a method of accounting for this source of correlation in the semi-experiments, as Varney
et al. (2019) noted that ‘assuming that the beds are the servers, and healing time and treatments are the
service effort, then service effort should not be correlated to arrival rate other than through occupancy’.

* ED occupancy - calculate the total occupancy at each time point in the simulation. Create a variable
that indicates the ED occupancy level at the time-point each patient arrived in the ED.

*  Waiting room occupancy - calculate the number of patients in the waiting room at each time point in
the simulation. Create a variable that indicates the waiting room occupancy level at the time-point
each patient arrived in the ED.

Then use each occupancy level as a cohort in the semi-experiment by permuting LOS only within each
patient group (e.g., LOS can only be swapped between patients who arrived when ED occupancy was 43,
or LOS can only be swapped between patients who arrived when the waiting room occupancy was 12).
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Note that both of these variables can be ‘binned’ e.g. ED occupancy could grouped into bins of size 5 to
achieve 14 patient cohorts or size 10 to achieve 7 patient cohorts.

4 RESULTS
4.1 Motivating Data

The presence of a correlation structure between arrival and service processes was investigated using
motivating data from the ED of a large teaching hospital in South Australia. The data contains information
on the 119,306 patients who presented to the ED over the period of 20 months (Boyle et al. 2022). Clinical
information (including triage category, primary disease classification and arrival method) were recorded
in addition to time-stamps marking the progression of each patient through ED: triage, first occasion seen
by doctor, admission and outcome. The work presented in this section was coded using R (R Core Team
2024).
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Figure 1: Emergency department length of stay in hours distribution between ‘first seen by doctor’ and
departure (left); arrival process to ‘first seen by doctor’ timestamp by hour of day (right).

Figure 1 (left) shows the length of stay distribution between the ‘first seen by doctor’ and ‘departure’
timestamps. The distribution is strongly skewed. Figure 1 (right) shows the arrival process to the ‘first
seen by doctor’ timestamp. The majority of arrivals occur during the day between 10am and 8pm with a
drop in activity overnight. Both distributions exhibit typical ED behavior.
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Figure 2: Distribution of emergency department occupancy.

Figure 2 displays the distribution of ED occupancy. The occupancy counts patients who have been
seen by a doctor and have not yet departed from the ED. It excludes patients in the waiting room. The
occupancy distribution is symmetric with a mean of 36.31 and a standard deviation of 7.64. Regression
analysis was performed to investigate the relationship between both the ED occupancy and service time,
and between waiting room occupancy and service time. ED occupancy and waiting room occupancy were
both significant predictors of service time with a p-value of less than 0.01. However, the models explained
less than 0.05% of the variation in service times.

4.2 Semi-experiments

The results of semi-experiments 1-5 are presented in Table 1 along with the statistics from the original
data. Each of the semi-experiments was performed 20 times and a 95% confidence interval is included.
Figure 3 shows the results from one run of semi-experiment 1 compared to the original data. Note that for
semi-experiments 3 and 4 the data was not binned to achieve larger patient groups. This was tested during
the analysis and did not change the conclusion of the semi-experiments.

For each of the five semi-experiments, a Kolmogorov-Smirnov (KS) test was applied to determine if the
original occupancy distribution and the permuted occupancy distribution come from the same underlying
distribution. The KS test calculates the maximum difference between the empirical cumulative distribution
functions of the two samples under the null hypothesis Hy that the two samples come from the same
distribution. In all five cases, the KS test returned a p-value of less than 0.001%. There is therefore
significant evidence to reject the null hypothesis and conclude that the semi-experiment results in a different
distribution of occupancy than the original data stream.
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Table 1: Statistics of the original occupancy distribution compared to five semi-experiments. 95% confidence
intervals are indicated in brackets.

Semi-experiment Mean Standard deviation
Original data stream (no permutation) 36.31 7.64
Semi-experiment 1: permutation with no cohorts 36.31 (36.31,36.31) 9.48 (9.44,9.52)
Semi-experiment 2: permutation within triage category 36.31 (36.31,36.31)  9.46 (9.42,9.49)
Semi-experiment 3: permutation within ED occupancy level — 36.31 (36.31,36.31)  8.87 (8.81,8.92)
Semi-experiment 4: permutation within waiting room occ 36.31 (36.31,36.31) 8.96 (8.94,8.98)

Semi-experiment 5: permutation within departure destination 36.31 (36.31,36.31)

9.20 (9.13,9.27)
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Figure 3: Occupancy distribution from 1 run of semi-experiment 1 compared to the original occupancy
distribution from the data. The darker colour indicates where the two histograms overlap.

Table 1 and Figure 3 demonstrate that:

In all semi-experiments the mean of the resulting occupancy distribution matched the mean of the

original data.

Figure 3 and the Kolmogorov-Smirnov test results demonstrate that the semi-experiment results in

a different shape of occupancy distribution to the original data.

The standard deviation of the occupancy after performing semi-experiments is approximately 16-24%

greater than the standard distribution of the occupancy in the data.

The addition of cohorts in semi-experiments 2-5 did not substantially reduce the standard deviation

of the occupancy.

Including ED occupancy as a cohort did not substantially reduce the standard deviation of the

occupancy distribution.

Table 2 displays a closer look at semi-experiment five (permutation within departure destination) broken
down by category into the discharged and admitted groups. Examination of the data by group shows that
the standard deviation increases by 21% in the admitted group but decreases by 2% in the discharged group.
Therefore, the standard deviation effect is much stronger in the admitted group.
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Table 2: Statistics of the original occupancy distribution compared to semi-experiment five. 95% confidence
intervals are indicated in brackets.

Original data Semi-experiment
Mean Standard deviation Mean Standard deviation
All data 36.31 7.64 36.31 (36.31,36.31) 9.20 (9.13,9.27)
Discharged group 10.96 5.03 10.96 (10.96,10.96) 4.92 (4.90,4.94)
Admitted group 25.35 5.31 25.35(25.35,25.35) 6.43 (6.37,6.48)

4.3 Semi-experiments on a Simulated Queue

The semi-experiments presented in Section 4.2 were performed with real ED data. We also performed
semi-experiments on a simulated queue for comparison. For simplicity, and considering the difficulty with
defining and measuring servers in EDs, an M /M /o queue was used. Parameters were chosen to be a relatively
close match to the data; the service time distribution was modelled as an exponential distribution with rate
parameter 0.0038 and the inter-arrival time distribution was modelled as an exponentially distribution with
rate parameter 0.1370. The number of observations generated was 10,000 and the semi-experiment was
performed 20 times with confidence intervals.
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Figure 4: Occupancy distribution from 1 run of the semi-experiment compared to the occupancy distribution
of the simulated M /M /o queue.

Table 3 and Figure 4 demonstrate that both the mean and the standard deviation of the original
simulated occupancy distribution are recovered in the semi-experiments. The results presented here show
one realisation of a simulated M /M /e queue, but simulating from different random number seeds yields
the same conclusion.

Table 3: Statistics of the simulated M /M /oo occupancy distribution compared to the semi-experiment. 95%
confidence intervals are indicated in brackets.

Semi-experiment Mean Standard deviation
Original data stream 36.41 6.24
Permutation with no cohorts 36.41 (36.41,36.41)  6.21 (6.19,6.24)
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S CONCLUSIONS AND FUTURE WORK

The semi-experiments presented in Section 4.2 show that keeping the emergency department (ED) arrival
data stream fixed and randomly permuting the service times results in different occupancy distribution to
the original data - the mean is recovered but the standard deviation is inflated. When the service time data
is only permuted within cohorts (e.g., triage category, departure destination, occupancy level), the standard
deviation is still inflated. This demonstrates that the arrival and service time processes are not independent.
It also shows that the average of the distribution is captured but not the variability. Semi-experiments 3
(permutation within ED occupancy level) and 4 (permutation within waiting room occupancy) show that
this correlation structure is not simply a function of service time varying with queue length.

A closer look at semi-experiment 5 (permutation within departure destination) in Table 2 shows that
the inflation in standard deviation exists only in the admitted group of patients. This suggests that the
correlation structure between the arrival and service time processes is present in the admitted group of
patients and not the discharged group. As a comparison, Section 4.3 shows the results of semi-experiments
on data from an M/M /e queue. The semi-experiments here show that both the mean and the standard
deviation of the occupancy distribution were recovered. This is further evidence that the inflation in standard
deviation is present.

Failing to account for this correlation structure in designing queuing models can result in inaccurate
outcome measures and subsequent errors in drawing conclusions from scenario analysis (Varney et al.
2019). A limitation of this study is that it was isolated to data from one ED. Future work will seek to apply
the semi-experiment method to multiple case study EDs for comparison. Although the study is limited to
one ED, similar results have been detected in intensive care units (Varney et al. 2019) and this correlation
structure is likely to exist in many healthcare systems. Finding a method to accurately detect, interpret,
and model it is crucial. The next steps in this project will be to (i) perform further semi-experiments and
hypothesize the source of the correlation, (ii) conduct a simulation study with this correlation structure
to draw conclusions about the results, and (iii) develop methods to model this dependency structure in
healthcare simulation models.
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