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ABSTRACT 

This paper evaluates several measures of equipment uptime variability to determine which most closely 
track with the cycle time in a semiconductor wafer fab. The analysis is focused on a fleet of similar 
process tools performing the same function in parallel and the resulting cycle time of lots running through 
those tools. Discrete-event simulation is used to study the relationship between cycle time and several 
uptime variability metrics, including coefficient of variation (CV), A80, and A20-A80 for different 
combinations of fleet size (numbers of tools) and levels of uptime variability based on a range of tool 
mean time to fail (MTTF) and mean time to repair (MTTR) combinations. For the scenarios analyzed, the 
CV of shift uptime is found to correlate with cycle time as well or better than the other studied equipment 
uptime variability metrics. 

1 INTRODUCTION 

A semiconductor wafer fab processes thin disks, or wafers, of high-purity semiconducting material, 
typically Silicon, in highly specialized manufacturing plants with a large amount of floor space 
configured as a cleanroom environment with strict standards for particles and contaminants. The wafers 
move through many repeated sequential processing steps in order to produce integrated electronics or 
photonics circuits.  In leading-edge wafer fabs, the total number of steps in a single flow, including both 
process and measurement, can easily exceed 1,000 with cycle times measured in months. 

The manufacturing line is organized as a job shop with similar types of equipment grouped together 
in the same area of the factory. Large fabs, sometimes referred to as giga-fabs, can have 1,000 or more 
tools. Many different types of equipment are used depending on the exact type of processing or 
measurement required. Examples of processing steps include chemical vapor deposition (CVD), physical 
vapor deposition (PVD), plasma or wet etch, Ion Implant, thermal oxidation or deposition, chemical 
mechanical polish (CMP), surface clean, and photolithography. 

The wafers are stored in special containers to isolate them from the environment as they move 
between the equipment groups, and often revisit the same tools multiple times. The containers holding the 
wafers are either carried by humans or transported by automated vehicles between equipment groups.  A 
typical wafer will travel several miles before it completes all processing and measurement steps. 

Wafer fabs are very capital intensive, with leading edge factories requiring investments of USD($) 20 
– 40 billion or more over the first ten years of construction and operation depending on the fab size and 
process complexity.  The primary driver of the spending is the cost of the processing and measurement 
tools, which drives certain operational behaviors, including round-the-clock operation of the factory in 
order to maximize the return on the capital investment. 
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2 BACKGROUND 

2.1 Background 

Variability is a key challenge to the successful operations of many manufacturing systems, including 
semiconductor wafer fabs.  There are many sources of variability in a manufacturing line, including 
unpredictable arrivals of work-in-process (WIP) from upstream operations, variation in the service times 
for jobs, and unreliable equipment that is down 15% of the time or more. Managing each of these sources 
of variation is crucial to enabling the factory to consistently meet its output targets with reasonable cycle 
times. 

 Attempts to quantify the influence of variability on manufacturing indicators such as cycle time can 
be traced to queueing theory, where an approximation for steady-state wait time (CTq) for systems with a 
single server and with general interarrival and process times was first investigated by Kingman (1961) 
and is given in (1) from Hopp and Spearman (2001). The wait time separates into three terms: a 
dimensionless variability term V, a utilization term U, and a time term T.  The variability term uses the 
coefficient of variation (CV) of both the interarrival (ca) and process time (ce) distributions, the utilization 
term uses the server average utilization (ρ), and the time term uses the average process time (te). For 
stations with no downtime or setup time or rework, te is assumed to be the natural process time (t0) and ce 
is the coefficient of variation of the natural process time. This equation is sometimes referred to as 
Kingman’s equation or as the VUT equation. 

 
  (1) 
 

The formula in (1) can be extended to systems with multiple parallel machines as in (2) based on 
Sakasegawa (1977) and appearing in Hopp and Spearman (2001), where an additional factor (m), is added 
for the number of stations. Note that (2) reduces to (1) in the special case where m is set equal to 1. 

 

  (2) 
 
For stations with downtime, setup, rework, or any other sources of variability besides arrival times 

and natural process time of the job, the definitions of te and ce can be expanded.  The effective process 
time (te) is defined by adjusting the natural process time (t0) to account for the fraction of time the 
machine is available (A) as in (3), where A is then defined as in (4) based on Mean Time to Fail (MTTF) 
and Mean Time to Repair (MTTR) exponential distributions. Similarly, the coefficient of variation of 
effective process time (ce) is also calculated based on the effective process times of each unit processed. 

 
   (3) 

 
The calculation of the coefficient of variation of effective process time requires knowledge of the 

effective process time of each individual unit, or lot, processed. Jacobs et al. (2003) provide a general 
algorithm for calculating effective process times for a multiple machine workstation using job start times 
and end times from factory manufacturing execution systems (MES) databases. This algorithm provides 
the logic for calculating the effective process time of each job and combines the effects of both job actual 
process times and tool-driven delays in job completions. 

 
  (4) 
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While effective process time has been a useful metric for accurately forecasting cycle time, 
alternative measures of variability focusing only on equipment uptime have emerged. While these 
equipment uptime variability measures may not be able to be directly incorporated into the queueing 
formulas for predicting cycle time, they are useful for factory and operations managers as indicators for 
measuring relative performance and tracking improvement. Cunningham and Babikian (1998) initially 
proposed the application of the A80 metric to quantify variation in daily fleet uptime and the resulting 
impact to predictability of capacity. A80 is defined as the best availability reached in 80% of the time 
periods in a consecutive set of periods, with shifts or days being the most common time period. They 
track daily fleet uptime over a recent period and then take the 80th percentile of that set of data points. 
They use the resulting value to monitor and drive improvements in equipment capacity stability. 

The concept of using percentiles of the uptime distribution is extended to include A20 in Gaboury 
(2001). A20 is the best availability achieved in at least 20% of the time periods. The difference between 
A20 and A80 can then be used as a direct measure of the variation, or spread, in equipment uptime. 

In addition to the A80 KPI, another measurement of the spread is the coefficient of variation (CV), 
which is a standardized measure of dispersion of a frequency distribution. CV is a dimensionless number 
that is defined as the ratio of the standard deviation () to the mean () of the data population, where the data 
set is composed of a distribution of uptimes of equal time periods such as 12 or 24 hours. Note that the 
CV discussed here should not be confused with the coefficients of variation referenced in (1) and (2) and 
cannot be directly substituted into the queueing equations. To help graphically illustrate the differences in 
uptime variability, Figures 1 and 2 show two scenarios reflecting both high and low variability of uptime 
based on a daily average. Figure 1 shows daily uptime with a grand average of 88%, CV of 0.07, A80 of 
83%, and A20 – A80 of 11.4%. Note in Figure 1 that the daily value of uptime is frequently at or near 
100% and rarely below 80%. Figure 2 shows a distribution of values with the same average uptime of 
88% but with a higher amount of variability as measured by CV with a value of 0.15, A80 of 77%, and 
A20 – A80 of 23%. In Figure 2 there are not only more data points at 100% compared to Figure 1, but 
also many more data points below 80%, reflecting the increase variability in the distribution. While both 
data sets have the same average uptime of 88%, Figure 1 shows a much tighter spread and would likely 
result in shorter cycle times. 

 

Figure 1: Low uptime variability (uptime CV = 0.07) example. 
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Figure 2: High uptime variability (uptime CV = 0.15) example. 

 

3 STUDY METHODOLOGY 

For the study, a discrete-event simulation model was built using AutoSchedAP® due to the availability of 
the software and familiarity of the analysts with the software. To study the impact of different fleet sizes 
(e.g. numbers of parallel tools) and levels of variation in the aggregated fleet uptime distributions, a single 
group of tools running similar steps in parallel was created. The simulation parameters were set as 
follows: 

 
• Tools were set to process one lot of 25 wafers at a time, with the process time for each lot set to a 

normal distribution with an average process time of 1 hour and standard deviation of 0.1 hours, 
resulting in a natural process time CV of 0.10. Note that actual tool data typically shows higher 
variation, or CV, values but a lower value of CV was used to minimize the probability that the 
variation from tool process times would overwhelm and drown out the variation from equipment 
uptime, which was the focus of this study. 

• The queue discipline was set to First-In-First-Out (FIFO), where lots were processed in the order 
of their arrival. 

• System capacity for the number of lots accommodated either in service or queue is set to infinity. 
• The number of tools was varied across three levels: 5 tools, 10 tools, and 20 tools. 
• In order to maintain an expected value of 85% uptime across different levels of uptime variation, 

we established the following three combinations of tool-level MTTF and MTTR with exponential 
distributions. The low and medium variability levels were chosen to be consistent with levels of 
MTTR observed in typical tools in the semiconductor industry, with Figure 3 showing a 
representative histogram of downtime distributions with MTTR equal to 10 hours. The high 
variability MTTF and MTTR values were included as an extreme case that is occasionally 
observed with new tools running leading-edge process nodes.  

o Low variability: MTTF of 45.5 hours and MTTR of 8 hours 
o Medium variability: MTTF of 3.9 days and MTTR of 16 hours 
o High variability: MTTF of 15 days and MTTR of 2.55 days 

• Material was started in front of the tools with an exponential inter-arrival time in order to achieve 
a target of 80% average utilization.  The average lot inter-arrival time for each tool count was as 
follows: 5 tools – 0.249 hours, 10 tools – 0.12384 hours, and 20 tools – 0.06192 hours. 
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• For each combination of tool count (5, 10, and 20) and tool-level variability (low, medium, and 
high), a 365-day simulation warm-up period was used, after which the model was run for another 
810 days and data from that time period was used for the KPI calculations. 

• For calculating the independent variables, 12-hour time periods (shifts) were established and the 
average uptime of all tools during that shift was calculated. 

• For the dependent variable, the average cycle time was calculated over the entire simulation 
period. This cycle time was then normalized to X-factor by dividing the cycle time by the process 
time. 

 
Note the need to distinguish between the variability used as an input to the simulation based on tool-level 
MTTF and MTTR inputs versus the resulting variability of the fleet uptime as measured by the various 
KPI. The low and medium levels of  

 

Figure 3: Downtime frequency for exponential distribution with MTTR of 10 hours. 

Lastly, for each of the nine scenarios, three fleet-level uptime variability KPI were calculated based 
on the 1620 data points of the average uptime on each shift over the 810-day period. The KPI were CV, 
A80, and A20-A80. 

4 STUDY RESULTS 

For each of the nine scenarios, three uptime variability KPI were calculated based on the last 800 days of 
the simulation run. Figure 4 summarizes the key dependent variable (cycle time as measured by X-factor) 
and independent variables (uptime variability KPI) for all 9 simulation runs. As expected, for a given tool 
count increased levels of tool-level variability based on MTTF and MTTR lead to increasing cycle time as 
measured by X-factor. Additionally, for a given fleet size of tools, the cycle time increases as the 
machine-level variability level (low, medium, high) increases. The first question is, how does each uptime 
variability metric track the cycle time. For all cases, the CV of the shift uptime tracks well with the 
measured cycle time. 

This relationship between cycle time and CV for each of the nine scenarios is shown graphically in 
Figure 5. Figure 5 illustrates the impact of variability pooling as the number of tools increases as 
illustrated by the fact that a high CV on a fleet of 10 tools can result in the same cycle time as a lower CV 
value with a fleet of 5 tools.  Figure 6 shows the scatterplot of cycle time versus A80, and Figure 7 plots 
the cycle time versus A20-A80 values. 
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Scenario Tool Count Tool 
Variability 

Level 

Cycle Time 
(X-Factor) 

Uptime 
CV 

A80 A20-A80 

1 5 Low 6.62 0.14 74.9% 22.4% 

2 5 Medium 10.33 0.16 74.9% 25.1% 

3 5 High 27.2 0.18 77.6% 22.4% 

4 10 Low 4.10 0.10 77.9% 14.7% 

5 10 Medium 5.03 0.12 77.5% 16.7% 

6 10 High 14.54 0.13 76.4% 21.0% 

7 20 Low 2.54 0.07 79.7% 10.0% 

8 20 Medium 2.71 0.08 79.8% 11.2% 

9 20 High 6.12 0.09 79.3% 12.7% 

Figure 4: Summary of simulation outputs for each scenario. 

 
For Figures 6 and 7, the pattern of increasing cycle time with either higher A80 or lower A20-A80 is 

not supported in all scenarios.  Specifically, the scenario with 5 tools and high tool-level uptime 
variability shows higher cycle time and higher A80 as in Figure 6 and higher cycle time and lower A20-
A80 in Figure 7 (both scenarios are circled to help with identification). Investigation of the potential 
reasons for this led to a review of the actual shift uptime histogram for the scenario with 5 tools and high 
variability as shown in Figure 8. The histogram shows a clear multi-modal distribution with the peaks 
corresponding to the fractional values associated with three (60%), four (80%), or five (100%) of the tools 
being up for a given 12-hour shift. It seems likely that the A80 and A20 indicators may not be robust for 
distributions with numerous distinct peaks. 

 
Figure 5. Cycle time x-factor versus CV for 9 scenarios. 
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Figure 6: Cycle time x-factor versus A80 for 9 scenarios. 

 
 

 
Figure 7: Cycle time x-factor versus A20-A80 for 9 scenarios. 
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Figure 8: Histogram of shift uptimes for simulation with 5 tools and high variability. 

 

5 CONCLUSIONS 

The study demonstrates that under typical conditions in semiconductor wafer fabs for tool counts and 
tool-level variability that several of the uptime variability indicators identified track well with cycle time. 
For the nine scenarios analyzed, the CV of shift uptime is found to correlate with cycle time as well or 
better than other studied variability metrics based on visual examination of the scatterplots. It also shows 
that not only is the measured uptime variability predictive of cycle time but also that for a given level of 
measured uptime variability, cycle time can vary based on the number of tools running in parallel. We 
assume this is due to the pooling of the process time variation across a greater number of tools per 
equations (1) and (2), but that is left for future work. 

Understanding the relationship between uptime variability and cycle time can be helpful in guiding 
decision making, leading to improved productivity and reduced cycle times. By identifying the uptime 
variability metrics that most closely relate to cycle time, fabs can not only implement targeted strategies 
and allocate resources judiciously, but also have reliable indicators to track the amount of improvement 
and the impact of these actions on both uptime variability and cycle time. 

Proposed strategies for reducing the variability of uptime would fall into one of two categories: first, 
those that would reduce variability but either not change or even reduce the average uptime, and second 
those that would both reduce variability and increase uptime. Examples of the first group include 
proactive scheduling of preventive maintenance to minimize the overlap between unscheduled and 
scheduled downtime and also the use of predictive maintenance to enable proactively taking tools down 
for maintenance before premature failures. For the second group, any engineering or operations-driven 
activities that increase average uptime, such as reducing maintenance green-to-green (GtG) time, 
increasing parts availability, improving troubleshooting, or increased maintenance staffing and training 
would also likely lead to reduce variability of uptime.  

6 FUTURE WORK 

There are several opportunities to extend and improve on the study methodology. First would be to 
modify the tool-level variability from a simple MTTF and MTTR framework to include downtime 
distributions that are more reflective of actual tools, such as having separate distributions for equipment 

1884



Keith, Anvar, and Arturo 
 

 

failures versus preventive, or scheduled, maintenance. Another option for downtime distributions would 
be to use actual equipment downtimes and employ a bootstrap sampling methodology. 

Second would be to simulate fleets with other tool counts, either less than five or more than 20. There 
are many fabs that have groups of equipment with either fewer than five tools running in parallel or 40 or 
more tools running similar operations. 

Third would be attempt to further understand the observation that for a given level of fleet uptime 
variability (CV, A20-A80), why the cycle time of smaller fleets is longer than the cycle time of fleets with 
more tools.  As mentioned previously, the current assumption is that this is at least due in part to the 
pooling of the process time variability across more tools, but future work would be required for testing. 

Last would be to simulate under different levels of utilization (ρ) of the available uptime, giving the 
ability to construct operating curves of cycle time versus utilization for different combinations of tool 
count and tool-level variability. The resulting operating curves might provide additional insight into how 
the utilization impacts the extent to which the uptime variability metrics track with cycle time and how 
the level of uptime variability affects the utilization at which the cycle time curve starts to rise 
dramatically. 
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