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ABSTRACT

We examine different policies for systematic service closure in messaging service systems. The system
is modeled as an M/UHP/1 queue, where service times follow a history-based Hawkes cluster process.
We propose and examine stopping-time rules that balance between queue length and the probability of
prematurely closing conversations. In a simulation study, we compare two families of systematic closure
policies: the first relies on predictive information regarding service progress, i.e., the conversation’s activity
levels, while the second relies on elapsed time without activity. When restricted to static threshold policies,
both families provide similar performance. However, when allowing the threshold to vary with the system
state, activity-level policies outperform the inactive-time policies. Moreover, a large difference is observed
between static and dynamic threshold policies. We therefore conclude that state-dependent (i.e., dynamic)
activity-based policy is the most promising candidate to achieve optimal closure rules.

1 INTRODUCTION

Recent years have seen a tremendous growth in text-based services offered by an increasing number of
companies across various platforms (e.g., WhatsApp, or even the company’s own mobile app). This growth
can be attributed in part to customer preferences (RingCentral 2012) and partially to the financial advantages
of on-platform sales promotion (Tan et al. 2019). However, many of the operational policies for managing
such contact centers are not well understood. One such policy is the closure policy of conversations: if the
customer does not say goodbye, under what conditions should a service interaction be closed? Castellanos
et al. (2022) reported that many companies establish a fixed time threshold, ranging from 2 minutes in
fast-paced services to 2 hours in longer ones, allowing customers to have time to reply and at the same
time limiting the customer’s span of inactivity before conversations are automatically closed.

However, by connecting closure policies to routing policies, Daw et al. (2024) suggest that such a policy
may not be optimal. Specifically, they prove that under the widely-used “lightest-load” routing policy, the
closure policy should be based not on the time of inactivity, but instead on the space of the probability
of future activity, where conversations are closed only if the predicted probability that the conversation
has ended is sufficiently high. If the closure policy does not precisely control for this closure success
probability, then Daw et al. (2024) shows that lightest-load routing cannot be optimal. While Daw et al.
(2024) proposed a prediction method by fitting Hawkes processes to messaging data, they did not consider
how the target probability itself should be determined and how this choice impacts the system at large.

In this paper we explore two families of closure policies: those based on activity level, which allow
the lightest-load routing to be optimal, and those based on inactivity time, which are commonly used in
practice. We expand on the work of Daw et al. (2024) by suggesting that the closure policy problem
presents a new service reliability trade-off: when the closure threshold is too high, the service efficiency
is compromised by prolonging customers’ length of stay (LOS), while if the closure threshold is too low,
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the company risks angering customers by prematurely closing their conversations. To understand why this
is the case, let us delve into the operational dynamics of text-based services.

A text-based service comprises a series of text messages exchanged between a customer and an agent.
The agent can be a live agent, a bot, or some combination of both. With the quality improvements of large
language models and the rise in agent costs, many service providers try to automate as much of the service
dialog as possible — this is done mostly for the initiation and the conclusion parts of the conversation,
since they are more standardized. Service conclusion is a common example of automation: a computerized
system monitors customer activity, and if no activity is detected for a pre-determined period, the system will
send a series of messages confirming that the customer does not need anything and close the conversation.
We refer to such an intervention as an systematic closure policy.

The problem lies in deciding when to activate this procedure. If done too early or too frequently, it can
be very annoying to the customer, thus reducing service quality. If done too late, the agent might appear
busy while they have finished serving the assigned customer. This inactive customer keeps the agent in a
“busy” state and prevents a queued customer from starting service (Tezcan and Zhang 2014). It’s worth
noting that even when service is not automated, live agents may not always be sure whether the customer is
present, has concluded service, or has abandoned the interaction silently (i.e., without indicating that they
have left) (Castellanos et al. 2022). Hence, systematic closure policies are implemented even in “simple”
contact center platforms that have no bots for managing standard tasks.

In this paper, we aim to expand on these issues and examine the following: (1) What is the difference
between static policies based on a time window in which the service is inactive (referred to as an inactive
time policy), such as those reported above, and policies based on the probability of future activity (referred
to as an activity level policy), as suggested by Daw et al. (2024)? We note that the differences may not
only be in performance but also in implementation complexity. While an activity level policy requires
the company to track each conversation’s activity, the inactive time policy does not, making it easier to
implement. However, we will show that the activity level policy is much easier to interpret in terms
of premature closure probability, thus making it easier for managers to determine a specific level. (2)
How much can dynamic policies outperform the static policies mentioned above for systematic closure?
Naturally, a dynamic closure policy is better than a static policy, simply because it offers the company more
flexibility to keep conversations open for longer periods when there are no customers in the queue or to
close conversations earlier when there are too many customers waiting. The question is, to what extent do
dynamic policies outperform static ones, and more importantly, is there a difference between time-based
and level-based dynamic policies?

Given the inherent challenges in theoretical analysis of contact center systems and complex Hawkes
process models (e.g., history-driven service durations that mean that standard queuing analysis techniques
have to be modified), we employ simulation techniques to examine different threshold structures and explore
the trade-off between premature closure and wait. We present several policies that perform well numerically
and use simulation to analyze them and to draw insights about the characteristics of their strengths.

To the best of our knowledge, this paper is the first to formalize the study of closure policies by
leveraging this history-dependent modeling framework. Nevertheless, the problem we study certainly has
conceptual forebearers in the related literature. For instance, this service closure problem can be viewed
as a new variant of the speed-quality tradeoff in services (Anand et al. 2011; Kostami and Rajagopalan
2014). That is, faster services close sooner but may be more likely to end prematurely, and that would
create a low quality customer experience. This direction also connects to the literature on determining
healthcare service duration in response to capacity shortages (Chan et al. 2014; Armony and Yom-Tov
2024). By comparison to prior works, the scope of our model is more micro- than macroscopic, which also
distinguishes our framework from much of the previous stochastic modeling literature on contact centers
(Luo and Zhang 2013; Tezcan and Zhang 2014). Specifically, we draw upon the model proposed by Daw
et al. (2024), which is oriented and empirically calibrated at the level of intra-service time-stamps, rather
than system-level queueing metrics. In practice, companies typically employ time-based policies or fit
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specific machine learning models to determine when a conversation should be closed. To our knowledge,
this is the first paper that attempts to solve this service reliability problem using a stochastic model. Hence,
this work expands the opportunity for managerial insight.

The remainder of this paper is organized as follows. In Section 2 we define the history-driven stochastic
model of service, through which we formalize systematic closure as a stopping time. To prepare for the
analysis to follow, in Section 3, we specifically discuss two focal families of stopping times: those based on
thresholds for the duration of prior inactivity (§3.1.1 and §3.2.1), and those based on hitting times for the
probability of future activity (§3.1.2 and §3.2.2). These policies are presented in static (§3.1) and dynamic
(§3.2) variants. We compare the performance of these policies through simulation in Section 4, and the
paper closes with discussion and conclusions in Section 5. The code for all the simulations can be found
in the following [Gitub Repository].

2 MODEL FORMULATION AND SYSTEMATIC CLOSURE PRELIMINARIES

Following the observation from Daw et al. (2024) that Hawkes cluster models can effectively capture the
dynamics of contact center conversations, we utilize a univariate Hawkes process (UHP) cluster to model
the history-driven service interaction. Specifically, in this paper we use simulation to study a single-server
service system where customers arrive according to a Poisson process with rate λ > 0 and where service
durations are distributed according to the following systematically-closed Hawkes cluster process.
Definition 1 (Hawkes Service Model with Systematic Closure) With A0 = 0 as the initial message in the
service without loss of generality, let Nt be a point process for the number of messages sent up to time
t ≥ 0 (excluding the initial message), where this point process is driven by the intensity defined as

µt =
Nt

∑
i=0

αe−β (t−Ai), (1)

Aℓ is the epoch for the ℓth message for all ℓ ∈ Z+. That is,

P(Nt+s −Nt = n | Ft) =


µt +o(s) n = 1;
1−µt +o(s) n = 0;
o(s) n > 1,

(2)

where Ft is the natural filtration of the stochastic process. We will refer to α > 0 as the instantaneous
impact on the intensity upon each new message, and we will let β > α be the corresponding decay rate
of that impact. Finally, we will let the systematic closure time, τ , be defined as an almost surely finite
stopping time (i.e., P(τ < ∞) = 1) that is adapted to the filtration Ft .

The queueing model we study will associate one such stopping time with each customer as their end
of service time. Specifically, we will analyze the M/UHP/1 queueing model, meaning a single server
queue with homogeneous Poisson arrivals and service durations given by Definition 1. In this paper, we
are interested in the design of these stopping times, meaning the design of the policy for the systematic
closure of the stochastic process, and how it will impact the distribution of each customer’s duration of
service and, by extension, the performance of the service system overall as measured by wait and service
success. Following standard Hawkes process stability conditions, we will assume that α < β so that the
number of messages is guaranteed to be finite and that the intensity will converge to 0 almost surely as
time tends to infinity. (Let us note, though, that the stability of the Hawkes cluster model is not the same
concept as the stability of the queueing model, which we will discuss in more detail in Sections 3 and 4.)

To motivate both the general idea of systematic closure and the specific philosophies that it might
embody, consider the following sample path in Figure 1. This plot shows the full sample path of the
Hawkes cluster model, and it also shows two candidate closure policies. First, the blue curve is the value
of the intensity, µt , across time, and the red dots mark the message timestamps in the service. This
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sample path contains 16 messages, and each of these points “excites” the process and increases the rate of
future messages, as seen in the corresponding jumps within µt . If the last message announced the closure
of the service (e.g., if the customer says “goodbye”), then the service would be closed when this final
correspondence was sent at approximately time 85, which we will call the natural closure time. However,
many customers leave the service without a farewell (Ascarza et al. 2018), and thus we need a systematic
closure policy. Operating with the assumption that no messages indicate the end of service, the policies
will instead close based on observable stopping conditions in the Hawkes cluster model.

Figure 1: UHP sample path with α/β = 0.97; β = 8.15/60. If the closure policy closes the conversation
after ε = 10 time units of inactivity (green shaded area), the service will close at time τ ≈ 25 (green dashed
line). If we use a closure level policy with level ℓ= 0.04 (black dashed line), it will close at time τ ≈ 81.

Two such stopping times are demonstrated in Figure 1. First, let us consider a time-based policy like
what is often employed in practice. For some ε > 0, this policy would close at the first moment in the
service that ε time has elapsed without a new message, which occurs at time τε = inf{t ≥ ε | Nt −Nt−ε = 0}.
As an example, the shaded green area in Figure 1 shows the first time that ε passes without a message,
and the green dashed line shows when the service would be closed accordingly. Then, let us next consider
a level-based policy. For some ℓ ∈ (0,α), this policy would close at the first moment in the service that
µt reaches ℓ, which occurs at time τℓ = inf{t ≥ 0 | µt = ℓ}. The black dashed line shows the closure level,
ℓ, and the service would end when this first intersects µt .

Both of these policies carry the risk that the systematic closure may be premature. Indeed, Figure 1
shows that each type of closure policy missed messages in this example. However, we can also observe
that, although larger ε or lower ℓ could make it so that all messages occur in this example before systematic
closure, this would come at the cost of wasted time. For example, ε ≈ 15 would be longer than any gap in
the sample path’s message timestamps and thus would not close prematurely, but it would not do so until
approximately time 100, meaning 15 time units after the natural closure. The story is very similar under
level-based closure with ℓ≈ 0.02: no messages would be missed, but the service would not end until µt
reaches ℓ at approximately time 100. Notice that the natural closure time itself cannot be a systematic
closure policy; because it is defined relative to future information and thus is not adapted to the filtration,
it cannot be a stopping time.

Hence, both of these examples show the inherent tradeoff that managers face in designing systematic
closure: a longer time (or a lower level) means that the policy is less likely to miss messages, but only at the
cost of prolonged service and, by consequence, more waiting. Messaging service systems are designed to
deliver services that are both reliable and readily available. Premature closure of services can undermine the
system’s dependability. Furthermore, no finite time nor positive level can guarantee that all messages would
always be received. Because the gaps between timestamps are (dependent) continuous random variables,
any systematic closure policy can at best offer a strong likelihood that the closure is not premature. Thus,
this tradeoff presents a pair of salient performance metrics: the probability of premature closure and the
expected number of waiting customers (or, by Little’s Law, the mean waiting time) in steady-state.
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Let us now recognize that the time-based and level-based policy families essentially approach this same
tradeoff through the two different axes of Figure 1. First, the time-based policies are directly measured
along the horizontal axis of Figure 1, as the green elements show. Then, by the Markovian nature of the
UHP model, the probability that no messages remain in the service is a deterministic function of the current
intensity (Laub et al. 2021):

P
(

lim
s→∞

Ns −Nt = 0 | Ft

)
= P

(
lim
s→∞

Ns −Nt = 0 | µt

)
= e−µt/β . (3)

Hence, in some sense, the time-based policies reside on the horizontal axis, and the level-based policies
are defined on the domain of the vertical. Throughout this paper, we will focus on this contrast, as the
alignment of these policies allows us to highlight the tension of the tradeoff.

3 CLOSURE POLICES

In this section, we will further specify and inspect the two families of static policies we sketched in
Section 2, and then we will introduce dynamic variants of each.

3.1 Static Policies

Following Section 2, we will study two static-threshold policies for terminating conversations based on
certain conditions reached from the last message. The first policy employs a fixed closing time rule (§3.1.1),
while the second utilizes a fixed closing level rule (§3.1.2). In each setting, we will discuss further properties
of the policies, with a particular attention to the stability of the queueing system.

3.1.1 Inactive time policy

In a static time-based policy, a conversation is closed when ε time units have elapsed since the last message,
which we have denoted as τε = inf{t ≥ ε | Nt −Nt−ε = 0}. Intuitively, this policy is straightforward to
automate because the system only needs to track the time of the last message in each conversation. Moreover,
the implementation is “model-free” and conveniently requires no other parameters.

In the model, though, it can be difficult to obtain closed-form expressions for the focal performance
metrics or even for first-order statistics such as the mean service duration. This follows from the fact that
the distributions of τε and µτε

are not readily available. However, we can recognize two key facts. First,
the service duration must be at least as long as the threshold time: τε ≥ ε almost surely by definition.
Hence, it is possible that if ε is too large the system will not be stable: ε being less than 1/λ is necessary
but not sufficient for the stability of the queue. On the other hand, for any arrival rate, there will exist
an ε low enough such that the queue will be guaranteed to be stable. To recognize this, notice that (3)
implies that the probability that there are no messages before ε time has elapsed since the start of service is
P(τε = ε) = P(Nε = 0) = exp(−α(1− e−βε)/β ). Hence, P(τε = ε)→ 1 as ε → 0, meaning that the time
of systematic closure will grow arbitrarily small as the threshold does. Notice, then, that these policies can
be designed so that a service system that is unstable under the natural closure time of the true last message
can actually be stable under systematic closure. However, this will require that a large fraction of services
will be ended prematurely. Given the difficulty of analytically studying the way that the time-based policy
manages this tradeoff, we will investigate this through simulation in Section 4.

3.1.2 Activity level policy

Our second proposed static policy closes a conversation when the correspondence rate intensity falls below
ℓ, where ℓ is defined as some positive threshold below the initial level µ0 = α . In Section 2, we denoted
this as τℓ = inf{t ≥ 0 | µt = ℓ}. By Definition 1, µt only decreases between the jumps at each message,
and it does so continuously according to exponential decay at rate β . Hence, we could equivalently define
this stopping time as τℓ = inf{t ≥ 0 | µt ≤ ℓ}, as the intensity will first cross ℓ whenever it first hits it.
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Furthermore, by Lemma 1 of Daw et al. (2024), we know that level-based policies are the only systematic
closure policies that both are almost surely finite and prescribe the closure probability exactly; any other
finite stopping time would induce a non-trivial distribution across these closure probabilities. Following (3),
we can see that by closing according to the proposed activity level policy, the successful closure probability
will be precisely e−ℓ/β (i.e., the premature closure probability is 1− e−ℓ/β ).

According to Proposition 1 below, one can also interpret τℓ in terms of the expected number of messages
in a conversation. That is, relative to the expected natural number of messages in the conversation, these
level-based closure policies are expected to contain a fixed proportion of the overall messages.
Proposition 1 For some level ℓ∈ (0,α), let τℓ = inf{t ≥ 0 | µt = ℓ} be the associated level-based systematic
closure time. Then, E [Nτ ] = (β − ℓ)(β −α), meaning E [Nτ ] = (1− l/β )E [N].

Proof. First, let us notice that Nt +µt/(β −α) is a martingale. From expressions for the mean of the
Hawkes process (Laub et al. 2021), we can notice that the expectation of this quantity at time t, given its
value at time 0, is E

[
Nt +

µt
β−α

]
=N0+

µ0
β−α

(
1− e−(β−α)t

)
+ µ0

β−α
e−(β−α)t =N0+

µ0
β−α

, and this verifies the
claim. Then, by the optional stopping theorem (Daley et al. 2003, Theorem A3.4.VII) and the fact that the
service model starts with N0 = 1 and µ0 =α , we have E [Nτ ]+

ℓ
β−α

= E
[
Nτ +

µτ

β−α

]
=N0+

µ0
β−α

= 1+ α

β−α
,

and this simplifies to the stated result.

Implementing this policy requires the company to estimate α and β using historical data and track
µt in real-time. However, by the Markovian property of the Hawkes process with exponential decay as
employed in Definition 1, this can be achieved by simply maintaining a state for the value of µt at the last
message (either before or after), along with the last message timestamp (Laub et al. 2021). For instance,
for a state of the post-jump levels, the recursive calculation is µA+

i
= µA+

i−1
e−β (Ai−Ai−1)+α . With α and β

estimated from data, the company can thus obtain the ℓ that guarantees the desired closure probability.
Like the time-based policies, these level-based policies can also achieve stability for an otherwise

unstable natural service duration. In a similar fashion, we can recognize that the time of deterministic
decay from µ0 = α to ℓ is an almost sure lower bound on the systematic service duration: τℓ ≥ log(α/ℓ)/β .
Then, the probability that this lower bound is tight is P(τℓ = log(α/ℓ)/β ) = exp(−(α − ℓ)/β ). Thus, as
ℓ→ α , this probability likewise tends to 1. Hence, like the time-based policies, both artificial instability
and artificial stability are possible if the level is too low or too high, respectively.

3.2 Dynamic Policies

Let us now propose six dynamic policies, which, like the static policies, terminate conversations based on
either some time of inactivity or some activity level target. However, in the dynamic setting, we will now
allow these conditions to vary depending on the state of the queueing system. In an attempt to find the best
dynamic policy, we will examine several candidates of state-dependent functions for each type of rule.

3.2.1 Dynamic inactive time policy

With q ∈ N as the (known) number of customers presently waiting, let us now consider policies in which
the ongoing service will be closed after time ε(q) has elapsed from the last message if no new message
was written. Hence, this is again a time-based policy, but now we will allow ε(q) to be updated at every
change of the queue length (i.e., at arrival or service completion).

Generally, we would like the family of policies to be such that the queue-length dependence of
dynamic level, ε : N→R+, has the following properties: no service is closed when there is no one waiting
(limq→0 ε(q) = ∞), the maximum inactivity time decreases as the queue length increases (ε(q)≥ ε(q+1)),
and any service would be closed as the queue becomes infinitely long (limq→∞ ε(q) = 0). Notice that,
unlike the static time-based policy, this structure will imply that the queue should be stable under any
stationary arrival rate. That is, whenever the queue length grows to large, ε(q) will tend towards 0.
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To observe the effects of this queue-length dependence in a variety of settings, we will consider the
following triplet of functional forms: (i) linear: ε(q) = ∆/q, (ii) quadratic: ε(q) = ∆/q2, and (iii) square
root: ε(q) = ∆/

√
q. The ∆ > 0 coefficient need not be chosen to be the same in each case. Notice that

cases (ii) and (iii) allow us to respectively consider convex and concave queue length dependence.

3.2.2 Dynamic activity level policy

Similarly, we will also consider a family of policies in which ℓ(q) is updated at every change of the queue
length. In a manner similar to the time-based policies, we consider policies in which the queue-length
dependence of dynamic level, ℓ : N→R+, has the following properties: no service is closed when there is
no one waiting (ℓ(0) = 0), the closure level increases as the queue length increases (ℓ(q)≤ ℓ(q+1)), and
any service would be closed as the queue becomes infinitely long (limq→∞ ℓ(q) = ∞). We can now again
notice that, because the closure level rises arbitrarily high with the queue length, this family of dynamic
level-based policies will also guarantee stability of the queue for any stationary arrival rate.

To form a direct comparison with the time-based policies, we will also examine three versions of the
level-based policy: (i) linear: ℓ(q) = θq, (ii) quadratic: ℓ(q) = θq2, and (iii) square root: ℓ(q) = θ

√
q,

where the θ > 0 coefficient need not be chosen to be the same in each case.
Remark 1 The linear policy, ℓ(q) = θq, can also be motivated through a notion of virtual abandonment.
That is, if we artificially supposed that customers may abandon the service system, and that each patience
time follows an independent and identical exponential distribution, we exactly obtain the linear closure
policy. Specifically, we can define the following pseudo-objective function f (ℓ) = e−θ ·q·log(α/ℓ)/β · e−ℓ/β .
Given the system has q customers waiting and closes conversations at level ℓ, the probability of successful
closure is e−ℓ/β , and e−θ ·q·log(α/ℓ)/β is the probability of no virtual abandonment happening from time 0 to
the time that ℓ would be reached if no messages occur first. We thus wish to maximize f (ℓ). If we solve
for the optimal ℓ given system parameters (µt ,β ,θ), we get that ℓ = θq. In addition to reproducing the
linear policy we have defined, it is interesting to observe that although the pseudo-objective, f (ℓ), allows
for dependence on µt , this does not appear in the optimal level. Hence, the optimal virtual abandonment
policy updates at every queue length change, but it does not change upon each intra-service message.

4 EXPLORING POLICY PERFORMANCE USING SIMULATION

As discussed in Section 2, we examine two measures of performance motivated by the core tradeoff inherent
to systematic closure: the probability of premature closure and the average number of customers waiting.
Because of the complexity of the models, we approach this investigation through simulation. Let us now
outline the respective sampling methodologies we employ for the static and dynamic policy settings.

To obtain the steady-state values of these performance measures when using the static policies, we
can simply simulate service durations in a vacuum. For each customer, we generate one sample path of
the Hawkes cluster model with corresponding closure stopping time, and we then count the number of
conversations that are prematurely closed to compute the probability. For the mean number of customers
waiting, we leverage the Pollaczek–Khinchine (PK) formula for an M/G/1 queue (Khintchine 1932), and
with the simulated conversations we obtain two of its required components, mean and variance of the
service times under each stopping time rule. To simulate the UHP message timestamps, Ai, and calculate
its intensity rate at time t, µt , we follow the approach outlined by Dassios and Zhao (2013), yet modify it to
account for our systematic closure policies. The simulation works in the following way: at time t we generate
two event times, S1 and S2, where the subscript 1 represents a new message and the subscript 2 a service
closure. New message event time S1 = − log(D)/β , where D = 1+β log(U1)/µt , and U1 ∼ Uni(0,1), if
D > 0, and S1 = ∞, otherwise. This is based directly on the Dassios and Zhao (2013) procedure, where
the random variable D manages the fact that S1 has a degenerate distribution, in that (3) shows that it
has a positive probability of being equal to infinity. If and only if D > 0, then S1 is finite and there is a
next message. Determining the service closure event time, S2, depends on the specific static policy. For
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the level policy, S2 is set to log(µt/ℓ)/β and for the time policy S2 = ε − (t −A−), where A− is the most
recent message time and t ≥ A− is the current time. If S1 < S2, then the next event of the conversation
will be a new message being sent, and the current time and the intensity will be adjusted to t = t +S1 and
µt+S1 = µt ·e−βS1 , respectively. But if S1 ≥ S2, then the service will be closed and the time will be updated
accordingly. Additionally, in the case that D > 0, the service will be prematurely closed (and counted as
such). We simulate 220 independent and identically distributed (i.i.d.) conversations for both static policies
and for each parameter combination.

For dynamic policies, we cannot leverage the PK formula since the service durations are state-
dependent, and thus the durations are not i.i.d. Therefore, we perform a full system simulation of the
M/UHP/1 queue. Specifically, at time t we generate three event times S0, S1 and S2, where subscript 0 is
arrival, 1 is new message, and 2 service closure. S0 is an interarrival time of a Poisson process with rate λ ,
S0 =− log(U0)/λ for U0 ∼ Uni(0,1). Then, S1 is drawn using the same procedure we used for the static
policy. To draw S2 in the level-based policies, we use the state-dependent closure function ℓ(q), such that
S2 = (log(µt/ℓ(q))/β )+; in the time-based policies, we determine the inactivity time according to the ε(q)
function, and set S2 = (ε(q)− t +A−)+. As in the static vacuum-based simulation, the next event occurs
at the minimum of these times, at which point we update the time, intensity, and queue length accordingly.
The simulation finishes when we reach the simulation horizon T , which we set to be 213 in our experiments.
We run the described system simulation with 214 repetitions for each parameter combination.

As explained, there is a trade-off between the two performance measures; as one increases, the other
decreases. Therefore, we will explore a Pareto frontier of the performance measures, where the better policy
is one with lower values on both measures. When simulating the static policies, we vary the value of the
level or time threshold between all possible values such that the system remains stable. In all simulations,
the arrival rate is set to λ = 1 without loss of generality. To ensure stability, the systematic closure policy
should ensure that the average service time is smaller than one. Specifically, for the static level policy, for
every (α ,β ) combination we perform a simple binary search to find the minimum ℓ that will keep an upper
bound of the average service time smaller than λ = 1. For the static time policy, we simply increase ε

with a fixed step size until the mean service time is close to one.

4.1 Comparing Static Policies

Figure 2 presents Pareto frontier graphs with the two performance measures for the static policies outlined
in Section 3.1. The vertical axis represents the probability of premature closure among conversations that
are not trivially inactive. That is, a trivially inactive conversation is defined as one that includes only the
one initial message, as we assume that service requires at least one response. Therefore, by definition, a
one-message conversation cannot be prematurely closed. As such, in the following figures, we normalize
the premature closure probability by the probability of no responses to the initial message, 1− e−α/β .
Then, the horizontal axis depicts the mean number of customers waiting in the queue. Because λ = 1, this
is also equal to the mean waiting time per customer via Little’s Law.

We vary the system conditions between subfigures by changing α and β , such that the average number
of messages in a conversation until natural closure, E [N], varies across a range of service cluster sizes. In
particular, we set α/β values to be in {0.8,0.9,0.95,0.99} so that E [N] = 1/(1−α/β ) ranges from 5 to 100.
These represent upper bounds of the mean number of messages that we would get for each configuration; by
Proposition 1 we know that this is directly proportional to the mean number of messages in the level-based
policy. Each subfigure in Figure 2 corresponds to one combination. Within each subfigure, we choose
three values of β (β ∈ {4,8,16}), so that the Hawkes process varies from a slow-paced process (low β )
to a condensed or fast-paced process (high β ). For example, changing β from 4 to 8 doubles the rate of
messages while keeping the overall mean number of messages fixed. For the above parameter combinations,
the natural service durations (calculated via Daw (2024)) and the corresponding queue lengths (assuming
natural closure) are given in Table 1. As α/β → 1, the service becomes more active and, consequently
longer. A long service duration can lead to system instability since the system utilization exceeds one.
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Table 1: Natural closure duration and M/UHP/1 average queue length for each parameter combination.

E [N] Natural closure - Avg. (ST D) Avg. queue length

β = 4 β = 8 β = 16 β = 4 β = 8 β = 16

5 0.91 (0.98) 0.54 (0.49) 0.31 (0.25) 9.83 0.58 0.12
10 1.24 (1.59) 0.71 (0.79) 0.40 (0.40) ∞ 1.91 0.26
20 1.57 (2.45) 0.87 (1.22) 0.48 (0.61) ∞ 8.51 0.58

100 2.35 (6.08) 1.26 (3.01) 0.67 (1.52) ∞ ∞ 4.21
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(b) E [N] = 10 (α/β = 0.9)
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(c) E [N] = 20 (α/β = 0.95)
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Figure 2: Pareto frontiers comparing static level and time policies (logarithmic scale).

From Figure 2, we observe that, in general, the differences between the two static policies are very
small. The inactive time policy is slightly better if management is interested in keeping the queue low,
while the activity level policy has a slight advantage when management is focused on reducing premature
closures. The top left corner, where the premature closure probability is close to 1, corresponds to the
smallest values of ε or the largest values of ℓ. In these cases, the company is the least patient with the
customer and closes the service after a very short period of inactivity.

Lastly, regarding the influence of the UHP parameters on the performance, we observe that bigger β

values allow us to push the stability bound (i.e., decrease the level ℓ and increase the time threshold ε) and
therefore reduce the minimal achievable premature closure probability. This is because, as we can see in
Table 1, increasing β values means increasing the speed of the service and reducing load.
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4.2 Comparing Dynamic Policies

Figure 3 presents the Pareto frontier for the same two performance measures for the six dynamic policies
presented in Section 3.2. We use the same parameter combinations as in Section 4.1.

Unlike the static case, here we observe a significant difference between the level- and time-based
policies. It is clear that the level-based policies are much better, especially in moderate- or fast-paced
services where β is moderate to high. We also observe that the level-based policies are particularly
advantageous when one aims to create a balance between the two performance measures. Interestingly,
the linear, quadratic, and square root dynamic level policies largely perform similarly. On the other hand,
the dynamic time policies exhibit a significant difference between the linear, quadratic, and square root
policies, where the quadratic outperforms the linear, which outperforms the square root policy. This is
most apparent for moderate to low probabilities of premature closure.

When comparing Figure 3 to Figure 2, we observe the large advantage of dynamic policies over the
static ones. (To facilitate the comparison, we include in Figure 3 the best performance achievable by a
static policy under each β ). The fact that there is a difference in itself is not surprising, as dynamic policies
include the static ones by setting constant ℓ(q) and ε(q). However, the magnitude of the difference is
surprisingly large. The dynamic policies don’t exceed more than 10–50% premature closure (depending
on the system parameters) even with a long queue. This fact reveals a big difference between the static and
dynamic policies. Static policies can achieve no queue only by setting the threshold so that conversations
close almost immediately, while dynamic policies allow conversations to continue as long as there is no
one waiting in the queue, reducing premature probabilities dramatically.

Next, we want to explore the influence of the UHP parameters on performance. When β = 4 the
service is slow-paced relative to the arrival rate of 1. This means that the natural closure time is long and
the system is overloaded (see Table 1). In this case, we observe that the closure probability has a low
range of achievable values, while the queue length may vary from ≈ 0 to 103. The reason is twofold:
first, in overloaded systems, there is little possibility of reducing conversation duration, and second, queue
length is highly sensitive to that duration in high load conditions according to the PK formula. For this
reason, when we examine the case of β = 8, where the service is twice as fast, we have higher flexibility
to determine the policy threshold and can get a larger range of premature closure probabilities. When
β = 16, the process is fast-paced, and the system remains stable even when the service duration is close
to the natural closure time. Hence, we can achieve low premature closure probabilities.

5 DISCUSSION AND CONCLUSIONS

In this paper, we employed simulation to examine eight systematic service closure policies. Our findings
indicate that the dynamic policies not only guarantee system stability, but they also outperform static
policies. Both the time-based and level-based dynamic policies have their merits. If a company seeks low
wait, a time-based policy might be suitable, albeit at the cost of a higher risk of prematurely ending services.
If the company instead seeks to minimize the probability of premature closures (and therefore increase
satisfaction), a level-based policy is better suited. Intuitively, the advantage of the level-based policies is
that there is no degree of separation between the managerial decision of choosing a premature closure
probability and choosing a level. To this end, this directness of control may explain why the magnitude of
the level-based policy advantages exceeds that of the time-based policies, as seen in Figure 3.

In our search for best performing policies, we considered more than those presented here. This includes
extensions such as extensions of the “virtual” abandonment policy in 3.2.2 (e.g., partial abandonments,
different “virtual patience” distributions), and other pseudo-objective functions. However, these were not
noticeably better than the presented policies, and were therefore not included due to space constraints. The
optimal closure policy remains an open question that requires theoretical analysis.

While this paper was motivated by contact center services, the systematic closure policy can be
implemented in other contexts too. For example, premature service termination is referred to in healthcare
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(a) E [N] = 5 (α/β = 0.8)
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(b) E [N] = 10 (α/β = 0.9)
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(c) E [N] = 20 (α/β = 0.95)
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(d) E [N] = 100 (α/β = 0.99)

Figure 3: Pareto frontiers comparing dynamic level and time policies (logarithmic scale)

as service speedup, which was shown to reduce patient quality-of-care, and increase patient readmissions
and mortality (Delasay et al. 2019, and references therein). Therefore, analyses of queues with service
speedup were analyzed to increase efficiency and minimize risks (e.g., Chan et al. (2014)), but this literature
has not considered history-dependent service models, nor the policies that arise from them.

Our simulation study concentrated on single-server systems, but we hypothesize that the advantages
revealed here of the dynamic level-based policies will follow to multi-server systems, as well. Notably, in the
multi-server setting, level-based policies retain the Markovian property, facilitating simulation. In contrast,
time-based policies require tracking the last message across all conversations, which may complicate
analysis at scale. However, it is not immediately obvious how one should design level-based or time-based
policies in the multi-server setting, as it is not clear if, for instance, the same dependence on the queue
length in the single server would remain appropriate. Similarly, it is not clear if the same time or level
targets should be used in all parallel services. We look forward to pursuing these inquiries in future work.
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