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ABSTRACT

The wood supply chain is complex, involving numerous stakeholders, processes, and logistical challenges
to ensure the timely and accurate delivery of wood products to customers. Variation in road accessibility
caused by weather further compounds operational complexity. This paper delves into the challenges
faced by forestry managers and explores how simulation and optimization techniques can address these
challenges. By integrating simulation with multi-objective optimization algorithms, this research aims
to optimize harvest scheduling, addressing multiple conflicting objectives including maximizing service
level and throughput, while minimizing lead time and delivery deviation measured as a loss function.
The findings underscore the potential of such a simulation-based multi-objective optimization approach to
enhance both delivery performance and robustness in wood supply chains, providing valuable insights for
decision-making. Ultimately, this research contributes to advancing the understanding of how simulation
and optimization techniques can bolster the efficiency and resilience of the forestry industry to face evolving
challenges.

1 INTRODUCTION

Wood Supply Chains (Wood-SCs) are inherently complex, involving numerous nodes and processes that
must seamlessly collaborate to ensure the timely and accurate delivery of wood products. Various service
providers, stakeholders, information sources, customers, forest owners, and logistics providers are involved
along the supply chain. Efficient supply chain management, capable of managing stochastic variations, is
crucial for ensuring the precise delivery of wood products in terms of on-time delivery and service level,
while maintaining the demanded quality. These products, sourced from private forest owners, company-
owned forests, state forests, municipal forests, and other public owners, are used in sawmills, pulp mills,
as well as heat and power industries. Forest managers must maintain a high service level (SL), ensuring
timely delivery of requested products with minimal variation in backorders (BOs) defined as a loss function
in deliveries, E[ιBO]. Simultaneously, they aim to shorten the lead time (LT) to ensure the quality of wood
products while maximizing the production throughput (TH) of the Wood-SC, all striving to achieve the
highest possible delivery performance (DP).

The scheduling of wood flows to industry begins with the sequencing of harvesting sites for harvesting
teams. Monthly delivery quotas for different wood products are expected to be consistently met. Each
harvesting site has specific conditions such as estimated product volumes, thinning or final felling, and
the accessibility to the forest roadside buffers (RBs) dependent on the time of the year. Each site is
harvested by a harvesting operations team, comprising a harvester and a forwarder, transporting the wood
to the RB. At these buffers, the wood is stored in product piles for pickup and transportation to customers
by truck. RBs are strategically placed along forest roads, each with different classifications of bearing
capacity based on road construction. Access to these RBs depends on weather conditions, including freezing
temperatures, rain, or thawing periods, facing a growing challenge due to climate changes (Lehtonen et al.
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2019; Jönsson and Lagergren 2017). These conditions affect road accessibility and the accessibility of
RBs throughout the year, necessitating careful consideration in the harvest scheduling. Each harvesting
site is assigned the estimated product volumes and in what time periods the RB is accessible (weekly)
based on weather and the bearing capacity of the forest roads. During winter, frozen ground allows for
transportation on certain roads, whereas thawing periods limit accessibility, affecting wood pickup from
some sites. A typical harvesting operation yields lumber that is destined for several different customers
for use in different products. Transports from harvesting sites are typically carried out by trucks directly
to mills or to terminals for transshipment to boats or trains for long-distance transportation.

Apart from the on-time delivery, the transported products must also meet the required quality, as wood
products are particularly sensitive to the time between harvesting and delivery (Rauch et al. 2022). This is
especially important in case of warm weather, when the wood quality is sensitive to a prolonged LT. A long
LT in the RB can impact wood quality, potentially leading to degradation and failure to meet the customers’
quality specifications. For example, the LT is crucial for high-value pine saw logs in warm weather periods,
where a prolonged LT can cause blue stains in the logs, degrading them to low-value products such as
conifer pulp. Furthermore, the production rate quantified as TH, serves as an indicator of the productivity
of the Wood-SC. It indicates how effective the harvest scheduling is for the wood flow in the chain, for a
configuration of its constituent parties such as the number of harvesting teams, available trucks, and process
times. Therefore, forest managers evaluate the performance of their harvest scheduling based on a number
of objectives which are conflicting with each other. Additionally, the harvesting schedule must also be
evaluated based on its alignment with the robustness of the deliveries, subject to various uncertainties due
to weather and road conditions as discussed above.

This paper explores the role of simulation and optimization techniques in addressing these challenges
and enhancing the efficiency and robustness of Wood-SC management. By integrating simulation with
multi-objective optimization (MOO) algorithms, this paper aims to optimize Wood-SC operations amid
transportation uncertainties due to various weather and road conditions. The present study uses a simulation
model developed in an EU project for the Swedish forestry industry to demonstrate the application of
such a simulation-based multi-objective optimization (SMO) approach to address conflicting objectives in
Wood-SC management, including maximizing SL and TH while minimizing LT and delivery variations.
The findings highlight the potential of how SMO can be used to improve both delivery precision and ensure
its robustness in order to guide decision-making in planning and operating Wood-SCs.

The remainder of the paper is organized as follows. Section 2 is the literature review, which justifies
the research gaps. In essence, any simulation-based optimization approach requires the development of
simulation models. Therefore, Section 3 provides details on how a simulation model developed specifically
for a Wood-SC can be used to generate multiple objective function evaluations readily connected to MOO
algorithms. An SMO framework with the MOO problem formulation for the aforementioned optimization
objectives is introduced in Section 4. Initial SMO experiment results, in terms of the Pareto front and
its analysis using various visualizations on a dashboard designed for forestry managers, are presented in
Section 5, followed by the conclusions and an outline of future work in Section 6.

2 LITERATURE REVIEW

Supply chain planning in forestry for wood procurement spans a wide time horizon, with the majority of
examples focusing on long-term planning over several years (Wikström et al. 2011; Forsberg et al. 2013)
to daily operational planning (Andersson et al. 2008; D’Amours et al. 2009; Bredström et al. 2010;
Bredström et al. 2013; Frisk et al. 2016; Acuna et al. 2019). This planning predominantly employs a
variety of optimization methods. Transitioning from a long-term perspective of planning to a more operative
scheduling poses a significant challenge. Yet few studies have tackled operational-level planning (Atashbar
et al. 2016), particularly when complicated by weather variations affecting the accessibility of the RBs.
Within a Wood-SC, scheduling deliveries to customers is intricate. Forest managers are assessed by their
DP, which reflects their ability to deliver the right wood products at the right quality and time to customers
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while maintaining the highest possible production levels in wood flows. One major challenge is to evaluate
how different harvesting schedules meet the delivery demands. Effective balancing and prioritization of
multiple DP objectives is a crucial task for a forest manager.

Existing research underscores the critical role of DP in supply chains, as evidenced by key performance
indicators highlighted by Stewart (1995), Gunasekaran et al. (2001), and Gunasekaran et al. (2004). On-
time deliveries are particularly vital in order-to-delivery supply chains, ensuring timely delivery of products
while maintaining high production rates. Forslund et al. (2009) emphasize the importance of timely delivery
in such supply chains. While the DP indirectly reflects customer satisfaction, the TH directly indicates
the supply chain productivity and the impact of scheduling on production and transportation efficiency.
Harvest scheduling involves managing divergent product flows and prioritizing the SL for certain customers,
potentially impacting the BO and, hence, the DP for others. Thus, optimizing scheduling in the wood
supply chain poses a complex optimization challenge to balance these objectives. Storing wood at RBs
can expedite deliveries and enhance delivery robustness, but also carries risks of quality degradation. For
a forest manager, keeping wood at RBs and increasing the LT to ensure prompt deliveries (low BO and
high SL) always entails the risk of reduced accessibility due to adverse weather conditions, potentially
leading to degraded wood quality and reduced product value. This risk must be balanced against the risk
of delayed deliveries and fluctuating delivery targets, which may incur penalties. Moreover, as discussed
in Section 1, the LT performance has to be considered seriously for ensuring quality requirements.

Apart from the DP, customers also expect consistent and robust flows, meaning that variations in
deliveries relative to demand should be minimized. Wood flows should remain consistent between months,
as sawmills or pulp mills typically maintain a constant production rate. Addressing robustness in deliveries
in the Wood-SC context – ensuring that BO variations are minimized – can be accomplished by incorporating
a DP objective that minimizes the variations of BO when calculating a Wood-SC harvest schedule. Various
approaches are considered for handling uncertainty within supply chain modeling, including scenario-based
modeling, sensitivity analysis, stochastic optimization, and robust optimization (Shabani et al. 2013). While
deterministic models are deemed effective for modeling forest biomass supply chains, they struggle to
incorporate uncertainty parameters. Therefore, the approach presented here is distinguished by embedding
robust optimization within the harvest scheduling phase, directly addressing variability in deliveries.

Schmitt and Singh (2009) and Lawson and Leemis (2008) state that Monte Carlo simulation is suited
for static systems when the focus of time progression is irrelevant, but discrete event simulation (DES) is
ideal for dynamic systems when studying system performance over time is critical. For experimenting with
the supply chain parameters, DES is also an appropriate tool for the interpretation of a complex supply
chain, like the Wood-SC. The advantage of DES is the possibility to use descriptive input parameters that
can vary stochastically with separate probability distributions, as described in the review study by Shabani
et al. (2013) in using deterministic and stochastic mathematical models for optimizing forest biomass
supply. Sanchez (2000) and Sanchez and Sanchez (2020) discuss the importance of a robust design using
the design of experiments and decribe a loss function formulation based on the standard deviation of the
target performance index. Examples of combining optimization and simulation remain scarce in Wood-SC
scheduling research (Malladi and Sowlati 2017), especially regarding robustness in terms of loss function
as an objective (Sanchez 2000).

Wood-SC planning studies often focus on single-objective optimization, mainly cost-oriented, neglecting
multi-criteria decisions (Atashbar et al. 2016). Combining DES with optimization offers a way to generate
optimal solutions for complex problems, complementing the evaluative nature of simulation with the
solution-searching capability of optimization. Kogler and Rauch (2018), Malladi and Sowlati (2017), and
Shahi and Pulkki (2013) note the scarcity of studies combining simulation and optimization, and particular
multi-objective optimization techniques in Wood-SC planning, stressing the need for further research.
Acuna et al. (2019) discuss the potential of multi-objective decision support systems for evaluating
various choices, emphasizing the integration of optimization and simulation techniques in operational
planning. They argue that such systems can significantly aid decision-making in forestry contexts by

1589



Westlund, and Ng

enabling assessment across diverse objectives. Despite recommendations for integrating DES with MOO to
address conflicting objectives in DP, this approach remains underexplored and few studies have pursued this
approach for the Wood-SC (Kogler and Rauch 2018; Malladi and Sowlati 2017; Shahi and Pulkki 2013).
The application of multi-objective optimization in the Wood-SC is limited, despite the necessity for forest
managers to engage in multi-criteria decision making for a robust DP. To address this research gap, the
present study further develops the simulation-based multi-objective framework proposed by Westlund et al.
(2024b) by incorporating a robustness objective to address variations in deliveries. This approach enhances
the capability of the framework to present Pareto-optimal solutions that effectively balance multiple DP
objectives, ensuring both optimal and robust harvest schedules.

3 A SIMULATION MODEL FOR THE WOOD-SC

A DES model is developed using the FACTS Analyzer based on an earlier version of a Wood-SC DES model
developed in the Greenlane project (Westlund et al. 2024a) (Figure 1), which encompasses all major forestry
activities described earlier in this paper. Unlike any mathematical modeling, such a DES model enables
the logging of data at various points in the flow: SL for deliveries, TH for wood flows, LTs for harvesting,
forwarding, RB, and transport are logged and aggregated to determine the total LT. Variant-dependent BO
is tallied for each product assortment and aggregated monthly for assessing the scheduling performance.
Unmet product order volumes are recorded as monthly BO; BO and LT are measured separately for different
wood products to track and analyze the performance on individual product types.

Figure 1: The DES model in the FACTS Analyzer of the studied Wood-SC.

This DES model allows the evaluation of the multiple objectives required in the SMO. It is used
to model and analyze the DP objectives from a harvesting schedule throughout a year using DES. DP
objectives include LT and SL per product assortment (Westlund et al. 2024b), the TH of wood and the
variations in BOs. Monthly SL are calculated as unfulfilled demand for each product assortment by the
end of the month and the deviation from demand as σ2

BO. The average LT is computed as the total time it
takes for a 40 m³ load to traverse from harvesting through forwarding, RBs, and transport to customers.
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Harvesting involves converting standing trees into products, which are then transported to the roadside
during forwarding. The harvested products can be broadly categorized as spruce logs, pine logs, spruce
pulpwood, conifer pulpwood, and deciduous pulpwood. In a general Swedish Wood-SC, saw logs are cut
according to sawmill specifications, while pulpwood is a bulk assortment. Product volumes in a stand
are estimated based on tree characteristics determined through inventories. These pre-harvest estimates
are used for supply planning, determining which mix of stands can fulfill customer demands considering
the availability of stands throughout the year. Diverging flows are integral to the Wood-SC because each
tree is bucked into multiple products based on diameter and quality dependent on customer demand. The
harvester optimizes the bucking pattern for each specific stem, and the logs are picked up by the forwarder
and transported to the roadside.

A harvesting plan is developed well in advance, detailing when to harvest each site and for which
customer specifications. These plans often cover scheduled harvesting and deliveries for periods ranging
from a month to half a year. The harvesting team, comprised of a harvester and a forwarder, operates
according to this plan, working in tandem. The forwarder transports the wood products and sorts them into
different piles at the RB. Harvester operations occur simultaneously at different sites, with teams moving
from one site to another as per the harvesting plan. Both production and logistics costs are tracked per
production entity, with harvester team costs measured per unit of wood produced. Harvester production
capacity primarily depends on harvested tree size and felling type, while forwarder production capacity
is influenced by wood concentration per area, transport distance, number of products, and felling type
(Arlinger et al. 2014; Brunberg et al. 2009; Kuitto et al. 1994), which are described in the DES model.
Trucks pick up the wood at RBs in the forest, where the accessibility to the RBs is determined for each
week, based on historical weather data (Westlund et al. 2024a). The truck transport time is given as a
log-normal distribution (Ranta 2002),

Table 1: Truck transport time functions.

Mean 2×Transport distance/(14.96+9.86× loge(Transport distance)) [km/h]
Loading lnN (0.1,0.12) [h/load]
Unloading lnN (0.1,0.12) [h/load]

The performance of the Wood-SC is assessed based on maintaining a high SL in deliveries, and striving
for low variations in monthly deliveries (σ2

BO), reducing the LT (Forslund et al. 2009; Pound et al. 2014)
and maximizing the TH wherever possible. These considerations, along with estimations of wood product
volumes at sites, must align with monthly customer demand to reach a high SL, with minimal variations
in σ2. However, maintaining consistent deliveries and low σ2

BO throughout the month is challenging, even
if BO sometimes can incorporate penalties. The deliveries should be robust with only limited fluctuations
in deliveries in comparison to demand to maintain the delivery pace to the customers.

The DES model developed for the single-objective optimization study presented by Westlund et al.
(2024a) serves as the foundation for the present simulation model with the proposed DP objectives, including
the loss function (Sanchez 2000). The design parameter in the objective function is the absolute loss function
σ2

BO = (Demandpt −Deliveriespt)
2, penalizing deviations of the total estimated harvested volume from the

demand for each assortment and time period while guiding the optimization towards schedules compliant
with the expected RB accessibility.

4 SMO FOR THE WOOD-SC

Based on earlier work (Westlund et al. 2024b) in using SMO to optimize the DP in a Wood-SC with three
objectives, SL, LT, and TH, a MOO approach using NSGA-II (Deb 2011) for generating the harvesting
schedule with an additional objective has been carried out in this study. The MOO and DES are tightly
integrated for the iterative generation of Pareto-optimal harvest schedules, as conceptually shown in Figure
2. While NSGA-III performs better for many-objective problems, it introduces additional complexity by
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requiring reference points to achieve a well-distributed Pareto front. In this study, NSGA-II is chosen for
its proven simplicity and sufficient efficiency in solving combinatorial problems (Verma et al. 2021). The
MOO problem formulation is provided in the following section.

Figure 2: Conceptual model of the SMO.

4.1 MOO Problem Formulation

A MOO problem can be tackled as a single-objective optimization problem by weighting the objectives.
Nevertheless, determining the optimal weights of the objectives beforehand poses a challenge. In MOO,
trade-offs among solutions are managed by the MOO algorithm, which identifies a set of Pareto-optimal
solutions, considering equally important objectives derived from the DES model. The MOO framework
manages the trade-offs between these objective values. Supply goals in the Wood-SC may conflict and
improving the Wood-SC DP requires understanding how simulation objectives such as SL, LT, and TH
interact and counteract. Moreover, an additional fourth objective aims to find solutions to ensure robust
deliveries to customers, with a consistent SL across months.

Based on the research of Sanchez (2000) and Sanchez and Sanchez (2020), a loss function E[ιBO] for the
variations in BO was included in the design of the DP objectives and integrated as an output parameter in the
DES model. E[ιBO] is calculated for the deviations in monthly deliveries per product. The DP parameters
assess the forest manager through LT, SL, and TH metrics (Forslund et al. 2009; Pound et al. 2014). To
enhance delivery commitment robustness and minimize variations, the loss function of the deviation in
deliveries, i.e., the variation in deliveries compared to demand, is included in the DP objectives. The four
objective functions are computed within the DES model with simulation runs for 12 months and given in
Equations 1–4,

N harvesting sites

T time period, months, t = 1,2, ...,12

P products, p = 1,2, ...,P

Dpt Demanded volume of product p, for time t, [m3]

WDpt Delivered volume of product p for time t, [m3]

σBO Standard deviation in backorders for product p, [m3]

E[ιBO] Loss function for backorder, with target value 0 m3
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maximize f1(x) = SL =
T

∑
t=1

P

∑
p=1

Dpt −WDpt

Dpt
(1)

minimize f2(x) = LT =
1
P

P

∑
p=1

entity process timep (2)

maximize f3(x) = T H =
1
P

P

∑
p=1

THp (3)

minimize f4(x) = E[ιBO] =
1
P

T

∑
t=1

P

∑
p=1

σ
2
BOpt

+E[BOpt ]
2 (4)

4.2 Genetic Representation and Partially-Mapped Crossover

The NSGA-II algorithm (Deb et al. 2002) has been a well-known evolutionary MOO algorithm over the
last two decades due to its widespread applications in various practical problems (Verma et al. 2021). It
was chosen due to its extensive use in solving combinatorial problems similar to the Traveling Salesman
Problem. Utilizing meta-heuristic methods like NSGA-II does not guarantee global optimal solutions, but
they offer a range of optimized trade-off solutions for decision-makers to consider. This is particularly
valuable when the managers’ contextual knowledge can be incorporated in choosing from multiple solutions
to a problem. NSGA-II operates through two main steps: evaluating each generation of solution populations
and refining the replacement of dominant solutions in the next generations. NSGA-II involves comparing
and ranking solutions in the objectives space in terms of fronts and crowding distance to encourage diversity
within a front. Fronts with the lowest rank, when minimized, indicate better convergence. In the case of this
problem, genetic operators for crossover and mutation have been customized specifically for a permutation
problem type. The crossover operator combines parents from the mating pool to produce superior offspring
in subsequent generations, while the mutation operator recombines individuals in the mating pool for the
next population.

The harvest scheduling problem is a permutation problem that requires the use of adequate algorithmic
operators. Westlund et al. (2024b) conducted implementations and experiments of multiple genetic
crossovers to compare and analyze their convergence efficiency and the quality of generated solutions in
terms of the DP. Partially-Mapped Crossover (PMX) (Puljić and Manger 2013) gave the best performance
and is used for the harvest scheduling problem in this paper. The PMX crossover ensures that alleles
are unique in permutation problems. In this method, two positions, genes, are randomly selected. The
offspring inherits the gene sequence from one parent and fills in the rest with genes from the other parent.
To ensure uniqueness, the offspring’s gene appearance is re-assessed. If necessary, genes are replaced with
those from the other parent. An example is given in Figure 3a, where the crossover points are marked. The
genes in Parent 2, | 2 9 8 4 |, are copied into the offspring. For the remaining empty positions, genes are
copied from Parent 1. To resolve the duplicates, the genes in Parent 2 are mapped to the genes in Parent 1,
filling the remaining empty positions. An example of inversion mutation is given in Figure 3b, where a
subset of genes is selected randomly and the order is reversed.

5 EXPERIMENT, RESULTS AND ANALYSIS

The SMO calculates Pareto-optimal solutions to be analyzed for the Wood-SC in the DES model. The
SMO model ran for a population of 50 over 100 generations with ten replications in each simulation
experiment and was executed on a standard laptop, when using one CPU core taking 24 hours generating
the Pareto-optimal solutions. The framework can be readily extended to support parallelized simulation
runs, so that the optimization time can be significantly reduced. Each simulation is assigned a harvest
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Parent 1: (1 2 3 | 4 5 6 7 | 8 9)

Parent 2: (3 7 1 | 2 9 8 4 | 5 6)

Offspring: (1 7 3 | 2 9 8 4 | 6 5)

(a)

Before mutation: (1 7 3 | 2 9 8 4 | 6 5)

↓
After mutation: (1 7 3 | 4 8 9 2 | 6 5)

(b)

Figure 3: Example of (a) PMX crossover, and (b) inversion mutation of chromosome.

schedule, and the DES evaluates the four objectives to provide MOO for generating new populations of
harvest schedules. A more-detailed comparison of different harvesting schedules can be conducted using
single simulation runs of the specific schedules under comparison. In this case, additional output parameters
can be collected in the simulation run with longer model computation time. In this way, DES can provide
more details on how a particular harvest schedule affects the Wood-SC. For example, more details of the
objectives being considered can be compared across various processes and time spans when provided to
the DES. These results are typically used for dashboard visualization (see Section 5.2).

5.1 SMO Results

The solutions from the SMO framework are shown in Figure 4. The parallel plot shows solutions with
low values in the loss function together with a high SL, but with LT in the middle segment not among the
shortest LTs. The parallel plot reveals solutions with low variations in deliveries with a high service SL on
an annual basis alongside an LT in moderate time. Additionally, these solutions exhibit high TH. However,
the productivity of the entire supply chain is minimally impacted by the harvesting schedule. Although the
TH is included in the objectives, it does not significantly impact the DP of which the performance ranges
from 32 to 34 truckloads per hour as shown in Figure 5, not making any relevant difference in practice.

Figure 4: Parallel plot of the Pareto-optimal solutions.

Notably, the productivity of the entire supply chain remains unaffected by the harvesting schedule.
More significant is the conflict between the loss function and the LT, where the LT for most solutions
becomes longer and ranks among the longest LTs. Most schedules with a lower loss function value have
longer LT.
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Figure 5: Pareto-optimal solutions in three objectives, showing the range of TH.

In Figure 6a, solutions from two optimization setups are displayed. The purple front represents results
from an earlier study (Westlund et al. 2024b) with two objective functions, SL and LT. The violet scatter
markers denote optimization results from this study, showcasing outcomes for the added E[ιBO] and TH
objectives. Unlike the first study, the front is less distinct in the results in the present study. Front solutions
that resemble those of the two-objectives problem are observed, prioritizing high SL and short LT while
minimizing loss in BO. This suggests the feasibility of expanding the objectives to include robustness in BO
for finding harvest schedules with less variations in deliveries. Figure 6b shows the relationship between
E[ιBO] and LT, with front solutions highlighted for their minimal LT and E[ιBO] values. The results suggest
that for the majority of solutions – aiming for an LT of at least 32 days – results in consistent delivery
variations. However, prioritizing shorter LTs in Wood-SC leads to higher delivery variations, and short
LTs come at costs in delivery variations.
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Figure 6: Visualization of the Pareto-optimal solutions: (a) comparsion of two solutions of harvest schedule,
from MOO with two and four objectives including E[ιBO]. (b) Pareto-optimal solutions, LT versus E[ιBO].
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5.2 Decision Analysis Using Dashboard Visualization

Pareto-optimal solutions are selected based on the priorities of the decision-makers, e.g., to prioritize
minimal variation over a long LT, or to equally balance all objectives. To make an informed decision
regarding the choice of a Pareto-optimal solution, it is vital for a forestry manager to thoroughly analyze
the solution in detail before making a final decision on the harvest schedule. To analyze a Pareto-optimal
solution, the harvesting schedule is simulated in the DES model.

The two highlighted solutions in Figure 6b exemplify how the DES can be used to explore details of
a harvest schedule. Two extremes of solutions on the front in terms of E[ιBO], both with relatively short
LT but with differences in the loss function, are simulated in the DES for details of the E[ιBO] within one
year. By simulating the two solutions in the DES model, more details of the DP can be further accessed.
An example is shown in Figure 7, where the two highlighted solutions in Figure 6b exemplify how the
DES can be used to explore the details of a harvest schedule and are further analyzed. Two extremes of
solutions, in terms of E[ιBO] but with relatively short LT, are simulated in the DES to examine the details
within a year. By simulating the two solutions in the DES model, more details can be accessed.

In Figure 7a, the SL for the solution with more variations is shown and with less variations in Figure
7b. The deliveries remain stable at the beginning of the year during winter with frozen ground admitting
accessibility to most roads. This holds true for both scenarios depicted in the figures. From March to April,
the thawing period begins and many RBs become inaccessible. This phenomenon is clearly observed in
the figures, showing a drastic reduction in SL for both solutions, albeit to a greater extent for the solution
with higher loss values. Another notable drop in SL occurs between day 300 and 350. This is due to during
early fall, heavy rain affects accessibility, leading to road closures and rendering more RBs inaccessible.
The reduction in SL is significant during this period, but the drop is rapid and recovery faster to a better
SL for the remainder of the year for the solution with a lower loss value. Notably, for the solution with
a higher loss value, the SL never fully recovers to the same extent as shown in Figure 7b throughout the
year.
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Figure 7: SL for the solutions in Figure 6b: (a) SL ~ 30 days and E[ιBO] ~ 344; (b) SL ~ 31 days and
E[ιBO] ~ 74 .

6 CONCLUSIONS AND FUTURE WORK

Combining simulation with an intelligent optimization engine allows for the integration of modeling
flexibility with the power of optimization, because simulation is not an optimization tool on its own.
MOO techniques enable the identification and analysis of trade-off solutions, such as capacity against
cycle times in buffer optimization scenarios. The stochastic and variable nature of forestry supply chains
suggests that SMO can significantly improve delivery precision and enhance the robustness and flexibility of
supply chains, thereby increasing the profitability in the forest industry. By analyzing different scheduling
strategies alongside an optimal buffer allocation problem for a supply chain, which is tightly connected to
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the robustness in deliveries, SMO runs can provide valuable insights and knowledge for scheduling and
operating forestry supply chains more efficiently, especially when considering the quality and real-time
input data gathered from the forestry fields and the transportation network. One finding from the present
study is the difficulty in optimizing the TH, suggesting the potential exclusion of TH as an objective.
Reducing the focus on the TH allows for other objectives to be included, thus improving computational
efficiency.

A dashboard can visualize both potential solutions for decision-makers and the real-world implications
of those decisions or solutions. Through simulation runs of different decision scenarios, a forest manager
can explore the detailed effects that a harvest schedule has on processes in the Wood-SC model. This paper
proposed an objective for improved DP incorporating robustness into the SMO. To further develop this idea,
a division in products and fine-tuning on a monthly or weekly basis is also suggested. This extension aims
to provide more detailed insights into the impact of a harvest schedule through an integrated dashboard
with which forest managers could experiment with decisions. The framework presented here is suggested
as a starting point for the development of such a dashboard decision tool that facilitates forest managers
to conduct effective multi-criteria decision analysis and support.
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