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ABSTRACT

This paper presents a novel approach for solving unrelated parallel machine scheduling problems through
reinforcement learning. Notably, we consider three main constraints: release date, machine eligibility, and
sequence- and machine-dependent setup time to minimize total weighted tardiness. Our work presents a new
graph representation for solving the problem and utilizes graph neural networks combined with reinforcement
learning. Experimental results show that our proposed method outperforms traditional dispatching rules
and an apparent tardiness cost-based algorithm. Furthermore, since we represent and solve the problem
using graphs, our method can be used regardless of the number of jobs or machines once trained.

1 INTRODUCTION

In a manufacturing environment, it is common for each process to be handled by multiple machines. The
main task here involves assigning jobs to machines and deciding the sequence of jobs for each machine. In
particular, we tackle an unrelated parallel machine scheduling problem (UPMSP) in which job processing
times change depending on the machine. This problem is common in manufacturing environments, such as
semiconductor and steel production, often due to differences in machine types or versions (Wang, Wang,
and Chen 2013; Pan, Wang, Mao, Zhao, and Zhang 2012). For example, in semiconductor manufacturing,
the ion implantation process can be modeled as UPMSP with sequence- and machine-dependent setup time
(Mönch, Fowler, and Mason 2013). We are focusing on UPMSP in real manufacturing settings, where
many different constraints are considered. This includes constraints, such as release dates that specify
when the job can be processed, machine eligibility, which ensures that the job can only be processed on
specific machines, and sequence- and machine-dependent setup time. The goal is to provide a high-quality
scheduling solution that not only complies with all specified constraints but also does so within a short
computational time, which is a critical factor for real-world applicability. Therefore, we employed a
reinforcement learning algorithm to tackle these challenges.

There has been extensive research on UPMSP using heuristic algorithms (Ðurasević and Jakobović
2023). In particular, many studies have been conducted to consider sequence- and machine-dependent setup
time and to minimize tardiness. Lee et al. (2013) introduced a tabu search algorithm specifically designed
for the UPMSP with sequence- and machine-dependent time. Their approach focuses on minimizing
total tardiness through the incorporation of various neighborhood generation methods. Lin et al. (2014)
developed an enhanced version of the apparent tardiness cost (ATC) algorithm, which takes into account
specific factors, such as setup time and release dates. They derived an initial solution with an ATC-based
approach and further improved it using an iterated hybrid metaheuristic method to achieve improved results.
Zeidi et al. (2015) proposed a hybrid algorithm that combines a genetic algorithm (GA) with simulated
annealing (SA) to focus on minimizing the total weighted sum of tardiness and earliness. In this approach,

1773979-8-3315-3420-2/24/$31.00 ©2024



Cho, Kim, and Mönch

SA is used to generate the initial solutions for the GA. Afzalirad et al. (2016) explored the integration of GA
and ant colony optimization (ACO) in the context of the block erection scheduling problem in shipyards.
They used meta-heuristic approaches considering setup time, machine eligibility and release precedence in
complex scheduling environments. Diana et al. (2018) proposed a hybrid metaheuristic combining iterated
local search (ILS) with variable neighborhood descent (VND), termed ILS-VND. This approach leverages
the strengths of VND’s local search heuristic within an ILS framework, employing multiple restarts to
navigate the solution space effectively. Perez-Gonzalez et al. (2019) adopted a three-phase approach in
their study for unrelated parallel machine scheduling with setup time and machine eligibility. Initially,
they focused on constructing a solution where jobs were allocated to machines. In instances where any
machine remained unassigned, they optionally proceeded to phase two. The final phase involved conducting
single-machine scheduling for each machine individually. Notably, at each stage, various algorithms were
applied, and experiments were conducted across a range of problem sizes and combinations, allowing for
a comprehensive evaluation of their approach.

Recently, there has been a significant increase in research on neural combinatorial optimization,
especially using reinforcement learning. This research area has made significant progress, especially in
traditional logistics problems, such as the traveling salesman problem (TSP) and the vehicle routing problem
(VRP). Kool et al. (2018) show the applicability of reinforcement learning to the VRP problem by using
a transformer architecture for the VRP that uses an encoder to insert the coordinates of each node and
sequentially selects the location using a decoder. Kwon et al. (2020) used the symmetric characteristics of
TSP by incorporating it into the baseline of the REINFORCE algorithm and further improved performance
through data augmentation. Bi et al. (2022) used knowledge distillation as a strategic method to train a
more generalized model that performs well across a variety of data distributions. This approach aimed to
address a common limitation in previous models: their performance was often restricted to the specific
data distributions on which they were trained.

Significant progress has also been made in applying reinforcement learning in scheduling tasks, including
the job shop scheduling problems (JSSP) and the parallel machine scheduling problems (PMSP). Zhang
et al. (2020) introduced an approach to represent the problem as a disjunctive graph and then solve it
through reinforcement learning with a graph neural network. Park et al. (2021) advanced this field further
by defining various edge relationships in JSSP. Iklassov et al. (2023) introduced a new strategy for solving
JSSP by segmenting problems according to their difficulty. In the training phase, they dynamically train
the model on problems of appropriate difficulty, resulting in significant performance improvements. Li et
al. (2023) proposed a reinforcement learning approach for tackling the PMSP with due dates and setup
constraints. They used a gated recurrent unit within the proximal policy optimization (PPO) framework
and incorporated a two-stage training strategy to achieve better scheduling outcomes. Liu et al. (2023)
developed a novel deep reinforcement learning-based approach for a dynamic PMSP that effectively selects
dispatching rules to handle unexpected events in a manufacturing environment, such as machine failure and
requirement change. Kwonet al. (2021) extended their previously researched POMO framework (2020) to
address the asymmetric traveling salesman problem (ATSP) and the flexible flow shop problem (FFSP).
In this study, they developed a method that effectively computes representations when a matrix contains
relational information between two items.

The remaining paper is organized as follows. We will discuss the scheduling problem at hand in the
next section. Moreover, we will introduce an appropriate graph representation for the UPMSP. In Section 3,
we will describe the proposed graph-based reinforcement learning framework. The design of experiments
and related computational experiments will be discussed in Section 4. Finally, conclusions and future
research directions will be provided in Section 5.
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2 PROBLEM FORMULATION

2.1 Scheduling Problem and Overall Approach

We consider n jobs that have to be scheduled on m unrelated parallel machines. Each job j has a ready time
r j ≥ 0, a due date d j, and a weight w j that represents the importance of the job. The machines are unrelated,
i.e., the processing time of a job depends on the machine and the job. Moreover, we have machine- and
job sequence-dependent setup times. The setup time for processing job j after job i on machine k is si jk.
The initial setup time for job j on an empty machine k is denoted by s0 jk. Moreover, we have machine
eligibility restrictions, i.e., it is possible that jobs cannot be processed on all machines. We are interested
in minimizing the total weighted tardiness (TWT) of the jobs defined as

TWT =
n

∑
j=1

w jTj, (1)

where we have for the tardiness of job j Tj := max{C j−d j,0}. Here, C j is the completion time of job j.
Using the three-field notation from deterministic machine scheduling, the problem can be represented as

Rm|r j,M j,si jk|TWT, (2)

where the m unrelated parallel machines are indicated by Rm. Moreover, M j refers to the eligibility
restrictions for the job. It is well known that the single-machine scheduling problem 1||TWT , a special
case of the problem at hand, is strongly NP-hard. Hence, problem (2) is also strongly NP-hard. Therefore,
we have to look for efficient heuristic approaches to tackle large-sized problem instances of (2) using a
reasonable amount of computing time.

In the present paper, we construct schedules through a constructive process, employing a neural network
model that sequentially selects jobs for allocation to machines. To facilitate this, we represent the UPMSP
as a graph and utilize a graph neural network combined with reinforcement learning techniques.

2.2 Graph Representation

We address the UPMSP while considering three main constraints, namely release dates, machine eligibility,
and sequence- and machine-dependent setup times. We start by modeling the problem through a graphical
representation. Instead of employing the commonly used bipartite graph, which connects machine nodes
to job nodes, we had to develop a new technique to accurately represent sequence- and machine-dependent
times. Therefore, we introduced the concept of a line graph, where nodes and edges are transformed (Cai,
Li, Wang, and Ji 2021). In this transformation, edges in the original graph G are considered as nodes in
the line graph L(G). Two nodes in L(G) are connected if and only if the two corresponding edges share a
common node (see Figure 1a and Figure 1b).

2.3 State

We represent the state as a graph Gt(Vt ,Et), where the graph is defined by nodes and edges representing
the UPMSP environment at time step t. Each time step t corresponds to a decision point in the constructive
scheduling process. The node set Vt is partitioned into two distinct subsets: V a

t and V b
t , representing

machine-job pair nodes and machine nodes, respectively. Furthermore, the edge set Et of our graph is
segmented into four distinct subsets: Ea

t , Eb
t , Ec

t , and Ed
t , each describing different types of relationships

within the scheduling environment:

• Machine-Job Pair Nodes (V a
t ): These nodes represent the pairs formed by a machine k and a

job j at any specific simulation time, denoted as simt . Importantly, V a
t includes all machine-job

pairs, excluding those involving jobs that have been completed by time simt . The nodes, denoted
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(a) (b)

Figure 1: (a) illustrates the parallel machine scheduling problem using a bipartite graph, where nodes
represent machines (Mi) and jobs (Ji). (b) represents the line graph of (a), transforming each edge between
a machine-job pair in the original graph into a node, and connecting nodes if their corresponding edges in
the original graph share a common job or machine.

as va
jk, are characterized by a feature vector [w j,r j,d j,m jk], where w j is the weight of job j; r j

is the release date of job j, adjusted as max(r j− simt ,0); d j is the due date of job j, adjusted to
d j− simt to reflect the time remaining until the job’s due date from the current simulation time;
and m jk signifies whether job j can be assigned to machine k.

• Machine Nodes (V b
t ): These nodes represent individual machines at any given simt . The nodes,

denoted as vb
k within this set, encapsulate the current state of each machine k, characterized by a

feature vector that typically includes the remaining processing time for the current job assigned to
the machine.

• Edges Connecting Same Job Nodes (Ea
t ): These edges are bidirectional edges that connect nodes

that represent the same job across different machines. Specifically, within the set V a
t , edges in Ea

t
link nodes va

jk that share the same job identifier j. Figure 2a illustrates this relationship.
• Edges Connecting Same Machine Nodes (Eb

t ): These directional edges connect nodes associated
with the same machine but different jobs. Each edge features s j j′k to model the setup time from
job j to job j′ on the same machine k. Figure 2b illustrates this relationship.

• Inverted Edges Connecting Same Machine Nodes (Ec
t ): These edges are the inverse of Eb

t ,
connecting nodes in reverse order while still relating to the same machine and possibly different
jobs. The reversal is designed to aid learning processes by using s j′ jk as an edge feature, reflecting
the setup time from job j′ to job j on machine k.

• Edges Connecting Machine Nodes to Pair Nodes (Ed
t ): These edges are bidirectional and establish

connections between machine nodes and machine-job pair nodes. This relationship incorporates
a feature representing the setup time required for each job considering the machine’s last job.
Specifically, within the set V a

t , edges in Ed
t connect nodes vb

k (machine nodes) to va
jk (machine-job

pair nodes) and vice versa. Figure 2c illustrates this relationship.

2.4 Action and State Transition

Action at is classified into two types. The first type of action involves assigning a job j to the selected machine
k by selecting an unassigned job-machine pair ( j,k). When the RL agent selects the node that represents
the unassigned job-machine pair ( j,k), the job j is assigned to machine k and begins at t = min(simt ,r j),
where simt represents the earliest time at which at least one machine, including k, becomes available. This
ensures that job j starts at the earliest possible moment, when both the machine k is available and it is
after the job j’s release time. The second type of action is the wait action. When the RL agent selects
the wait action, this action is executed once the machine node is selected, effectively postponing the simt
until the minimum time point when at least one currently processing machine finishes its job and becomes
available for a new job assignment.
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(a) (b)

(c)

Figure 2: Graphical representations of states within a scheduling framework. Each subfigure represents
distinct edge sets: (a) Ea

t for Edges Connecting Same Job Nodes, (b) Ed
t for Edges Connecting Machine

Nodes to Pair Nodes, and (c) Eb
t and Ec

t for Edges Connecting Same Machine Nodes and their inverted
counterparts, respectively.

2.5 Reward

The reward of the scheduling decisions is calculated when the entire scheduling process is completed,
rather than being assigned for individual job-machine allocations. At this point, we use the TWT value
of the schedule, the performance measure of problem (2), with a negative sign as a reward. Note that the
reward is given as the negative value of the TWT to reflect the objective of minimizing the total weighted
tardiness.

3 GRAPH-BASED REINFORCEMENT LEARNING FRAMEWORK

3.1 Overall Approach

Our policy network is divided into two primary components, namely an encoder and an action probability
computation module. The encoder utilizes a graph neural network (GNN) to compress node information,
effectively managing states that are represented as graphs. This process involves applying the GNN to
subgraphs, each corresponding to one of four edge types: Ea, Eb, Ec, and Ed . These subgraphs are processed
separately, and the resulting representations are concatenated to form a comprehensive state representation.
The action probability computation module then converts this combined representation into probabilities.
The model’s parameters are optimized using the REINFORCE algorithm, a Monte Carlo policy gradient
method. This method updates the model parameters using complete trajectories (Williams 1992).

3.2 Encoder

The encoder initiates by transforming each node in the state into hidden vectors of a specified size to
standardize input dimensions across different nodes. This transformation is described by the following
equation:

hi(0) = ReLU(W0 · xi), (3)

where hi(0) denotes the initial hidden vector for any given node i,W0 is a trainable matrix parameter,
and ReLU is the rectified linear unit activation function. This step prepares the node features for further
processing.
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After this initial transformation, we apply a Graph Attention Network version 2 (GATv2) (Brody,
Alon, and Yahav 2021) to subgraphs corresponding to the four edge types: Ea

t , Eb
t , Ec

t , and Ed
t . These

subgraphs, composed of nodes V a
t and V b

t and their respective edges, are processed independently, and
the node features are then concatenated to form a comprehensive state representation that captures various
relationship dynamics within the graph. We obtain:

ek
i j = ak(l) ·LeakyReLU(W k

1 (l) · [hi(l),h j(l), fi j]), (4)

α
k
i j =

exp(ek
i j)

∑ j′∈Nk
i

exp(ek
i j′)

, (5)

hk
i (l) =W k

3 (l) ·LeakyReLU

 ∑
j∈Nk

i

α
k
i j ·W k

2 (l)h j(l)

 . (6)

In these equations, fi j represents the setup time, crucial for relationships within the edge types: Edges
Connecting Same Machine Nodes (Eb

t ), Inverted Edges Connecting Same Machine Nodes (Ec
t ), and Edges

Connecting Machine Nodes to Pair Nodes (Ed
t ). The attention coefficients ak, weights W k

1 (l), W k
2 (l), and

W k
3 (l) are all learnable parameters. Here, l = 1, . . . ,L denotes the layer index, where L is the total number

of layers in the network, and k ranges from 1 to 4, each corresponding to one of the four edge types Ea
t , Eb

t ,
Ec

t , and Ed
t . Nk

i represents the set of neighboring nodes connected to node i via edge type k in the graph.
LeakyReLU, with a negative slope coefficient of 0.2, is an activation function used in the neural network.

Building upon this adaptive foundation, the final embedded vector for each node i is computed as
follows:

hi(l +1) = ReLU(hi(l)+W4 · [h1
i (l),h

2
i (l),h

3
i (l),h

4
i (l)]), (7)

where [·, ·] symbolizes vector concatenation. The index l represents the current layer of processing in the
GNN, with each layer designed to refine the node representations by integrating relational and feature
information from the graph structure. The notation hi(l+1) refers to the updated node representation at the
next layer, ensuring that each iteration builds upon the last to enhance the overall representation of node
states. This aggregation method ensures a comprehensive representation of each node’s state, effectively
encapsulating the diverse graph-based interactions and characteristics it possesses. This process is repeated
L times, with the hidden representations of the nodes at the final iteration denoted as hi(L).

3.3 Action Probability Computation

Following the encoder’s process, the encoded hidden vectors are converted into probabilities for selecting
action. To ensure compliance with constraints such as machine eligibility and task completion status,
a masking process is applied. Specifically, maski assigns a value of 0 to nodes representing infeasible
actions, while assigning a value of 1 to nodes representing feasible actions. This ensures that only feasible
machine-job pair nodes are considered for job allocation. Here, the parameters W5 and W6 are learnable,
and the softmax activation function is applied to convert the outputs into probabilities. We have:

yi =W6 ·ReLU(W5 ·hi(L))+ log(maski), (8)

pi = Softmax(i)(yi). (9)

3.4 Training Algorithm

We employed the REINFORCE algorithm for training. This approach involves solving each problem
instance K times (sampling rollout) and using the average of these K outcomes as the baseline for variance
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Algorithm 1 Training Procedure using REINFORCE
1: Initialize policy model π with random weights
2: for i = 1 to max_iter do
3: for j = 1 to B do
4: Solve each problem instance K times using model π

5: Compute reward for each of the K solutions
6: Calculate average reward of the K solutions as baseline
7: Compute gradient ∇θ J j(θ)← 1

K ∑
K
k=1(R(τ

k
j )−b j)∇θ log pθ (τ

k
j )

8: end for
9: Perform gradient update θ ← θ + α

B ∑
B
j=1 ∇θ J j(θ)

10: end for

reduction. Gradient updates are performed after every B problem instances to improve the policy model
incrementally. Many studies solving combinatorial problems using reinforcement learning have utilized the
REINFORCE algorithm (Kool et al. (2018), Kwon et al. (2020)). Following this trend, we also adopted
the REINFORCE algorithm for our approach.

In Algorithm 1, R(τk
j ) represents the cumulative reward of instance j from the k-th rollout, where each

instance j is rolled out K times and b j is the baseline calculated as the average cumulative reward from
these K rollouts. Here, τk

j denotes the schedule obtained during the k-th rollout of instance j, θ refers to
the policy parameters, ∇θ log pθ (τ

k
j ) is the policy gradient of the k-th rollout of instance j. This gradient

is used to update the policy parameters θ via gradient ascent with learning rate α , aiming to maximize the
expected cumulative rewards.

4 COMPUTATIONAL EXPERIMENTS

4.1 Instance Generation

To evaluate the performance of the proposed algorithm, we generated problem instances with varying
numbers of jobs (12, 50) and machines (3, 6) according to the instance generation scheme outlined in
(Jaklinović, Ðurasević, and Jakobović 2021).

Parameter Settings:

• Job Processing Times: Job processing times p jk were generated from a discrete uniform distribution
DU(1,100).

• Job Weights: Job weights w j were drawn from U(0,1).
• Setup Times: Setup times si jk for jobs were generated from DU(0,smax) where smax = 10.

Release and Due Dates:

• Release Times: Release times for jobs r j were determined based on half the average processing
time:

p̂ =
1

m ·n

m

∑
k=1

n

∑
j=1

p jk, (10)

r j ∼ DU (0,⌊p̂/2⌋) . (11)

• Due Dates: Due dates were set using tightness and range parameters (T and R), which varied in
increments of 0.2, starting from 0.2 up to a maximum of 1.0:

d j− r j ∼ DU (⌊(p̂− r j) · (1−T −R/2)⌋,⌊(p̂− r j) · (1−T +R/2)⌋) . (12)
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Machine Eligibility Constraints: Machine eligibility constraints ensure that only a specified proportion
of jobs, fixed at 0.5, are suitable for each machine. Jobs are randomly selected with equal probability to
meet this criterion until the specified proportion is achieved. If jobs remain unassigned to any machine,
one machine is randomly selected for each of those jobs to ensure assignment to at least one machine.

4.2 Model and Training Parameters

Each of our GAT models is configured with 8 attention heads and a hidden dimensionality of 256, across
three layers. We set the learning rate to 10−4 and use the Adam optimizer. For each problem instance, we
sampled 16 schedules, using the mean of these results as the baseline in the REINFORCE algorithm. The
model is then updated after every 10 problem instances have been processed. Specifically, our experiments
focused on problem instances involving either 12 or 25 jobs and 3 machines, with the training process set
at 1000 iterations (max_iter = 1000) to ensure thorough learning and convergence. Consequently, a total
of 10,000 instances were used for training.

RL training and testing are conducted using an Intel Core i7-9700 CPU with 64.00 GB of RAM and an
NVIDIA GeForce RTX 3070 Ti GPU with 8.00 GB of memory. The dispatching rules are also processed
on the same Intel Core i7-9700 CPU. All implementation and testing of these models are carried out using
Python.

4.3 Comparison Methods

To assess the effectiveness of our proposed algorithm, we compared it with a commonly used dispatch
rule, earliest due date (EDD). In addition, we used ATCSR_Rm, an ATC-based algorithm that incorporates
both release times and setup times, providing a more detailed evaluation of scheduling performance (Lin
and Hsieh 2014).

To objectively evaluate the performance of our algorithm, we addressed small-sized problems by solving
them optimally using mixed integer linear programming (MILP). We utilized the formulation presented
in Lin et al. (2014) and extended it to include machine eligibility constraints, applying CPLEX for the
computations. For all the instances with 12 jobs, we were able to find the optimal solutions.

• Earliest Due Date (EDD): This strategy prioritizes jobs according to their due dates, scheduling
the job with the closest due date first. We also took into account machine eligibility constraints
while assigning jobs using this method.

• ATCSR_Rm (Lin and Hsieh 2014): ATCSR_Rm assigns weights to remaining jobs by considering
the factors weighted shortest processing time (WSPT), slack time, setup time, and ready time. Each
of the factors slack time, setup time, and ready time is adjusted by a corresponding positive look-
ahead parameter, denoted as k1, k2, and k3, respectively. Rather than sticking to a fixed parameter
setting, we utilized a parameter value from a grid as suggested in the relevant literature. For each
instance, we experimented with all possible look-ahead parameter combinations to identify the
configuration that yields the smallest TWT value. For pairs of jobs and machines that are not
eligible under machine eligibility constraints, we assigned a prohibitively high processing time to
effectively prevent their assignment. Next, we assume that a specific machine k∗ becomes idle at
time t∗ after job l is processed on it. In this situation, the following ATCSR index value is computed
for each unscheduled job j:

IATCSR, j(t∗) :=
w j

p jk∗
exp

(
−
(d j− p jk∗−max(r j, tk∗+ sl jk∗))

+

k1 p

)
· exp

(
−

sl jk∗

k2s

)
(13)

·exp
(
−
(r j− tk∗− sl jk∗)

+

k3 p

)
,
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where we abbreviate x+ := max(x,0). Here, p is the average processing time of all unscheduled
jobs, and s is the average setup time across all machines. The first factor on the right-hand side of
(13) is the index of the WSPT dispatching rule, the second factor is a slack term, while the third
and fourth factor are setup and ready terms, respectively. The grid is as follows:

k1 ∈ {0.2,0.6,0.8,1.0,1.2,1.4,1.6,1.8,2.0,2.4,2.8,3.2,3.6,4.0,4.4,4.8,5.2,5.6,6.0,6.4,6.8,7.2},
k2 ∈ {0.1,0.3,0.5,0.7,0.9,1.1,1.3,1.5,1.7,1.9,2.1},
k3 ∈ {0.001,0.0025,0.004,0.005,0.025,0.04,0.05,0.25,0.4,0.6,0.8,1.0,1.2}.

Overall, we consider 3146 different combinations of the look-ahead parameters to find a schedule
with smallest TWT value.

4.4 Computational Results

4.4.1 Small-sized Instances

In evaluating our algorithm’s performance on small-scale problems involving 12 jobs and 3 machines, we
expanded our analysis by combining due tightness and due range parameters across five levels—0.2, 0.4,
0.6, 0.8, and 1.0—creating 25 unique sets. Each set was then used to solve 20 different problems. We
utilized a model trained on instances with 12 jobs and 3 machines for this evaluation. Through this testing,
we found that our algorithm outperformed the dispatching rules. This performance advantage is likely a
result of our model’s ability to effectively learn from various details of the problem, such as setup times,
machine eligibility, and release dates, and incorporate this information to improve the scheduling decisions.

Table 1: Experimental results for small-sized instances.

n m T R MIP EDD ATCSR_Rm RL

12 3 0.2 0.2 33.59 146.20 74.13 75.48
12 3 0.2 0.4 22.88 169.61 64.36 44.78
12 3 0.2 0.6 25.26 186.36 71.30 55.37
12 3 0.2 0.8 28.42 187.48 65.14 61.62
12 3 0.2 1.0 31.99 153.73 72.71 73.90
12 3 0.4 0.2 62.51 163.00 125.85 95.52
12 3 0.4 0.4 59.14 232.46 106.08 105.71
12 3 0.4 0.6 63.32 241.88 126.18 100.47
12 3 0.4 0.8 61.17 243.10 102.34 120.28
12 3 0.4 1.0 89.88 270.14 146.23 153.79
12 3 0.6 0.2 121.09 329.94 211.37 170.74
12 3 0.6 0.4 110.57 270.08 153.64 148.26
12 3 0.6 0.6 136.03 299.47 202.11 190.09
12 3 0.6 0.8 186.26 446.51 243.81 248.47
12 3 0.6 1.0 149.30 427.67 201.60 222.38
12 3 0.8 0.2 243.49 437.49 295.56 286.78
12 3 0.8 0.4 251.34 514.02 311.74 327.28
12 3 0.8 0.6 220.40 422.69 285.36 282.30
12 3 0.8 0.8 213.87 458.30 295.46 279.99
12 3 0.8 1.0 158.95 375.34 251.39 217.93
12 3 1.0 0.2 340.10 596.18 397.11 395.58
12 3 1.0 0.4 279.37 504.08 354.69 349.60
12 3 1.0 0.6 272.36 552.70 332.12 339.97
12 3 1.0 0.8 213.74 420.06 252.69 259.37
12 3 1.0 1.0 229.86 483.01 289.97 274.75

Average 144.20 341.34 201.32 195.22
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4.4.2 Large-sized Instances

In evaluating our algorithm on larger-scale problems involving 50 jobs and 6 machines, we similarly
expanded our analysis by combining due tightness and due range parameters across five levels—0.2, 0.4,
0.6, 0.8, and 1.0, thus creating 25 unique sets. Each set was utilized to solve 20 different problems. We
utilized a model trained on instances with 25 jobs and 3 machines for this evaluation. The results confirmed
that our algorithm consistently outperformed the dispatching rules in these settings as well. It is particularly
noteworthy that our model was originally trained with 25 jobs and 3 machines. Even so, it performed well
when tested on larger problems, proving that it is reliable and flexible for different sizes of tasks.

Table 2: Experimental results for large-sized instances.

n m T R EDD ATCSR_Rm RL

50 6 0.2 0.2 807.22 55.14 107.36
50 6 0.2 0.4 718.08 81.96 56.55
50 6 0.2 0.6 787.78 94.15 89.32
50 6 0.2 0.8 636.06 75.05 28.31
50 6 0.2 1.0 418.07 162.46 37.30
50 6 0.4 0.2 1185.76 229.98 182.66
50 6 0.4 0.4 1066.22 157.44 149.32
50 6 0.4 0.6 1240.91 306.27 179.69
50 6 0.4 0.8 1204.32 323.75 187.02
50 6 0.4 1.0 1172.80 412.01 183.32
50 6 0.6 0.2 1668.18 646.60 358.43
50 6 0.6 0.4 2042.09 595.01 446.75
50 6 0.6 0.6 2240.49 649.32 414.85
50 6 0.6 0.8 2230.45 796.23 583.86
50 6 0.6 1.0 1985.87 616.16 479.45
50 6 0.8 0.2 3056.44 1139.97 849.25
50 6 0.8 0.4 3171.92 1256.58 1118.12
50 6 0.8 0.6 2822.55 1052.38 1039.31
50 6 0.8 0.8 2936.82 1000.15 833.40
50 6 0.8 1.0 2665.25 749.99 624.85
50 6 1.0 0.2 3714.21 1786.38 1926.88
50 6 1.0 0.4 3498.91 1633.02 1592.88
50 6 1.0 0.6 3490.89 1372.09 1346.38
50 6 1.0 0.8 3186.04 1037.52 1014.10
50 6 1.0 1.0 2875.88 1128.98 896.31

Average 2032.93 863.61 570.94

5 CONCLUSION

In this study, we have presented a novel reinforcement learning-based approach to the UPMSP, considering
key constraints such as unequal release dates of the jobs, machine eligibility, and sequence- and machine-
dependent times to minimize the TWT value. Experimental results have demonstrated that the proposed
algorithm performs well across various problem sizes compared to list scheduling based on a dispatching
rule that is appropriate for the TWT measure.

For future work, we aim to apply this approach in dynamic and stochastic environments, leveraging
the effectiveness of reinforcement learning compared to deterministic scheduling approaches applied in a
rolling horizon setting. Moreover, we intend to conduct research based on meta-learning methodologies
to enable our model to adapt effectively to different scenarios, including variations in release times and
machine eligibility constraints.
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