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ABSTRACT

This paper focuses on planning the implementation of an autonomous mobile robot in an existing material
replenishment system of an assembly plant using a hybrid simulation approach. In this research, we aim to
identify proper strategies for the number of containers or payloads the robot should carry per shift under
different scenarios using Agent-Based Modeling and Discrete Event Simulation. Our primary objective
is to minimize the number of shifts a mobile robot should travel for replenishment while keeping idle
time low across all stations and ensuring timely material replenishment. The results show that choosing
which strategy to use for the implementation of the autonomous navigating robot depends on the maximum
number of containers it can carry and the utilization of payload space. While this paper focuses on Tiger
Motors Assembly line at Auburn University, its applications could be extended to similar assembly plants
equipped with a similar material replenishment system.

1 INTRODUCTION

In an assembly plant, material handling is the movement and control of materials (raw, finished, or
packaged) throughout the assembly process. The movement of raw materials plays a very important role
in the performance of an assembly plant that affects assembly time, cost, productivity, utilization of space,
work environment, flexibility, safety, inventory level, etc. For the same reason, equipment to be used in
material handling (material replenishment) and its efficient use is also very important (Arora and Shinde
2007).

Autonomous Mobile Robots (AMRs) are ground vehicles that can plan travel while preventing collisions
with environmental obstacles (Hentout et al. 2010). These robots can operate autonomously without any
human intervention and excel in handling material replenishment along with surveillance, inspection, and
maintenance (Datta and Ray 2007). However, efficient and effective use of an AMR is very important to
use it, and requires proper planning and scheduling. (Liu et al. 2023)

Simulation can help in planning the operations in an assembly plant (Villarreal and Alanis 2011). Hybrid
simulation is the combination of at least two kinds of simulation methods (Mykoniatis and Angelopoulou
2020). The hybrid simulation approach is usually preferred to get the benefit of many different simulation
methods in a single model or be able to answer modeling questions that can be better addressed by different
simulation approaches. This study combines Discrete Event Simulation (DES) and Agent-Based Modeling
(ABM), using AnyLogic simulation software version 8.8.6. DES is a process-centric approach (Mykoniatis
and Angelopoulou 2020) and is used in modeling systems where entities compete to use resources, for
which they form a queue (Caro and Moller 2016). However, the highly detailed behavior of entities and
dynamic decision-making of individual entities are very difficult to model in DES, whereas they can be better
captured using ABM (Dubiel and Tsimhoni 2005). On the other hand, ABM models are computationally
very expensive and very difficult to validate, which is not the case in DES (Khodabandelu and Park 2022).
This combination allows us to model the rule-based behavior of our agents in ABM, and the process-based
environment in DES. This helps us to counterbalance the strengths and weaknesses of DES and ABM
(Araya 2022).
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The Tiger Motors lab at Auburn University provides a downsized assembly process for hands-on training
and production runs of miniature Lego cars. There are three sub-assembly cells in the Tiger Motors lab,
with five stations in each. Each of these stations holds containers with various Lego parts used to assemble
the vehicles. As assembly occurs, the Lego parts are pulled from the containers and the AMR will replenish
the containers with Lego parts as needed. An operator in the first workstation of cell 1 (as shown in Figure
1) starts building a car using Lego bricks from the containers, passes it to the next station and the operator
in that station builds on top of that, and this goes on until a complete car is built in station 15 of cell 3.
Other operators enhance the assembly process through flex roles, specifically tasked with replenishing the
supply of Lego bricks during production. The implementation of an AMR would allow for the role of
flex operators to become automated. Successful implementation of the AMR would remove unnecessary
operator work, robot movement, and excess inventory.

Station 1 Station 2

'@ @ ......

@ : Stretch Robot

Q :Zones

.......... » : Paths

@ ......

Cell 1 Workspace

Station 5 Station 4

Figure 1: Cell 1 layout in Tiger Motors lab. Cell 1 consists of five stations, for which four zones are assigned
where the Stretch robot can deliver payloads. Initially, the Stretch robot stays in the Home position.

An AMR delivers containers based on different conditions (scenarios), and each station can only
accommodate two containers of each type. Hence, it’s essential to maintain a consistent quantity of
containers, ensuring there are always at least one and at most two containers for each type. When the
AMR carries too many containers for replenishment, the robot will travel fewer shifts, but will have high
idle time in stations or there will not be enough space to add the containers in the stations. This happens
because when a robot delivers too many containers at the same time, the robot either must wait for a long
time to make a delivery, or it must make an early delivery at the stations. When the robot carries too few
containers, a lot of time will be wasted during travel, and because of that travel time, stations can still be
idle.

In our case study, we utilized the Stretch RE1 mobile manipulator from Hello Robot; however, the
gripper attached to the Stretch robot remained unused, and only one type of Lego car was produced through
the stations. The stretch robot can plan its path to the programmed location or coordinates, avoid and
plan paths around the obstacles autonomously, and have a decentralized control system. In this work, we
consider only cell 1 which consists of five stations and a Stretch robot. When Stretch goes to the home
position, it is filled with the corresponding containers using its robotic arm which is out of scope for our
study. Whenever any station becomes idle, the parameters that make the station idle are rejected. In Tiger
Motors lab, a toy car also requires other kinds of Lego bricks, but they are not considered in the study
since they don’t need any replenishment. Also, the Stretch robot only follows the path from Home to Zone
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D, Zone D to A, Zone A to B, Zone B to C, and Zone C to Home in each shift as shown in Figure 1. The
number of bricks in each container helps in calculating the time for how long that container will last, but
the number of bricks in the container will not be traced or used in the model. Although containers can
have different kinds of LEGO bricks, the size of the container is fixed (8 10 % 19¢m?).

2 LITERATURE REVIEW

In modern manufacturing, the utilization of an AMR could implement new levels of efficiency and adaptability
in manufacturing environments. An AMR for managing material replenishment could improve operations
and reduce worker movements.

Many studies revolve around enhancing and optimizing manufacturing processes when utilizing AMRs.
Nielsen et al. (2017) proposed a methodology to implement AMRs in manufacturing facilities by considering
it as an optimization problem. This methodology consists of a mathematical model and a genetic algorithm-
based heuristic. Zhou and Xu (2017)’s research similarly followed the works of Nielsen et al. (2017).
However here, a support vector machine addressed the challenge of multiple load carriers for material
delivery. Kousi et al. (2016) proposed a decision-making method for optimal plan generation of part supply
operations using Mobile Assistant Units (MAU) based on time and inventory level. The implementation of
this study ran a MATLAB environment to simulate a monitoring system. On the other hand, Waseem and
Chang (2023) used Q-learning for real-time scheduling of AMR in a multi-product flexible manufacturing
system. In this method, the AMR responded and adapted to potential rewards in the environment to optimize
scheduling decisions within manufacturing.

However, using only a mathematical model to represent a complicated system can be a highly complex
task, and it can be challenging to test what-if scenarios, change configurations, and visualize the results
(Carson 2005). The use of a simulation model can help overcome these obstacles. Hence, Moretti et al.
(2021) proposed an ABM simulation model composed of factory warehouses, assembly stations, and AMRs
for dynamic assignment of tasks, which would be impractical to model using a mathematical model only.
Similarly, Vieira et al. (2018) explored the planning and scheduling of industrial mobile robots using a DES
for flexibility and automation. The model created a decision-support system for production planning and
scheduling. Pappert et al. (2010) also worked on a general framework for simulation-based scheduling of
assembly lines. They offered a meta-model as a tool to develop optimization models for various production
facilities and layouts.

A hybrid simulation, which is the combination of at least two simulation methods, can also be used
to make the modeling process more effective since it can take benefit of different simulation methods,
and also account for the cons of an individual simulation model. According to Zheng et al. (2017),
the use of hybrid simulation made their installation planning easy to use and easily understood by many
people, with a high level of performance. Also, Conn et al. (2010) used a hybrid model composed of the
Generalized Semi-Markov Model and Monte Carlo simulation to evaluate maintenance plans for offshore
oil installations, which allowed flexibility and possible modifications.

Our study focuses on planning the installation of AMR by comparing different strategies. Planning
the installation or implementation of AMR into an existing replenishment using a hybrid simulation tool
is a unique contribution of this paper. Hybrid modeling composed of DES and ABM is preferable for our
installation scheduling as our model uses ABM to replicate the rule-based behavior of material replenishment
and depletion, while DES captures the container delivery process by the Stretch robot and its statistics.

3 RESEARCH METHODOLOGY

The use of hybrid simulation allows for several aspects of the Tiger Motors Lab to be utilized into a
singular model. Since it was easier to model the container-carrying behavior of a Stretch robot with a
process-centric approach, we used DES to model that (explained in sub-section 3.4). For the depletion and
replenishment behavior of containers, each container had to follow specific rules or behaviors per state,
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hence we used ABM (explained in sub-section 3.2). With the use of hybrid simulation, we can model all
of these aspects simultaneously.

Table 1: Input and output parameters of our model.

Variables | Name in Model Type Description
flel [1,10] TimeToEmpty Input variable | Time taken in second by each type of container to empty.
X2 Trip Time Inout variable Trip time for a Stretch REI in second to travel from Home to
je(1,3] P P Zone D, D to A, A to B, B to C and C to Home respectively.
X3 CarryLimit Input variable | The limit of containers a Stretch RE1 can carry in a single shift.
- Input variable | The time in second a Stretch RE1 has to wait in a Home position
X4 RobotWaitTime . . .
for Scenario 1 | before going for a next shift.
. RushTime Input variable | The time difference between current time and NearestDeadline
5 ) for Scenario 3 | before which a Stretch RE1 rushes or moves to deliver container.
Ci_1 Container 0, 1, ... 9 Agent Container agents representing ten different types of container.
_ Deadlines Intermediate Variable assigned for each type of container that tells when the
i ) Variable Container of each kind becomes empty.
Yai ContainerCondition Intgrmedlate Available number of containers for each kind.
Variable
) RobotContainer Intermediate A collection of strings, that collects the name of containers that
3 Variable will be replenished in the next shift based on Deadlines.
Va4 NoOfTotal AvailableContainers i?;:i:ll)li: diate Total number of containers available in the system.
NearestDeadline Intermediate The earliest deadline for a container which represents the time at
s Variable which any container will be empty and station becomes idle.
. . I i . .
Y6 NoOfContainersReplenished nte.rmedlate Total number of containers replenished.
Variable
. Output Total number of shifts done by Stretch RE1 in 40 minutes for
7 Shifts . .
variable replenishment.
Output Total number of times a station became idle because of empty
¥s IdleNo . L Lo .
variable container in the station in 40 minutes.
Yo PayloadUltilization ?;gg;{e Utilization of CarryLimit in percentage.

Table 1 illustrates the input and output parameters for the model. We collected the Trip Time data
using a Stretch RE1 mobile manipulator developed by Hello Robot. We used thirty-three observations for
Trip Time of moveToHome block (as shown in Figure 4). Similarly, we used thirty-nine observations for
the rest of the moveTo blocks from Figure 4. For each observation, Stretch RE1 was programmed to travel
and follow the path shown in Figure 1 autonomously. For the input analysis and goodness of fit of Trip
Time, we used @RISK. Table 2 shows the time distributions from input analysis.

Table 2: Trip Time Distribution in seconds.

Block Trip Time Distribution | Description

moveToD triangular(22,36,22) Travel time in second from Home to Zone D
moveToA normal(1.5324,8.3846) Travel time in second from Zone D to A
moveToB uniform(51.316,78.684) | Travel time in second from Zone A to B
moveToC pareto(7.4755,31) Travel time in second from Zone B to C
moveToHome | uniform(44.219,70.781) | Travel time in second from Zone C to Home

During the development of our hybrid model, we made five assumptions. These help the model to
have the required level of simplicity and clarity. These assumptions are listed below:

* The cycle time to produce a single car is 80 seconds and the stations build 30 cars for 40 minutes.
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* The layout in Figure 1 assumes that Zone D will be accessible by Station 1 operator, Zone C by
Station 2 operator, Zone B by Station 3 as well as Station 4 operators, and Zone A by Station 5
operator. So, whenever the robot enters that zone, the corresponding worker will be able to pick
up the filled containers and replace them with the empty ones.

e In Zone D, Container 0 and Container 1 needs to be replenished. Similarly, Zone A requires
replenishment of Container 2 and Container 3; Zone B requires Container 4, Container 5, Container
6 and Container 7; and Zone C requires Container 8 and Container 9.

* The workers will be able to replace the filled containers with the empty ones while the Stretch
robot is trying to align itself in that zone because, during the alignment process, the Stretch robot
will be already in the respective zone and trying to align itself more accurately.

*  We assume that there is enough supply of all types of Lego bricks in the store or home.

Section 3.1 Start Event

Assign TimeToEmpty |Create 10 Container

for each container | agents If a robot is carrying the same container that
the station is looking for, increase
; ior i ContainerCondition for that container by 1
Section 3.2 Corfcalner Behavior in Yy
Stations (Modeled in ABM)
Deadlines from |ContainerCondition Condition to use this path:
TimeToEmpty & time() |from states Scenario 1: After time delay
Scenario 2: If total no. of empty
. i containers in the system is greater than
Section 3.3 Contalner Sorter ¢ % g ¢
(Modeled in ABM) or equal to the fixed no. of containers
that the robot can carry
RobotsContainer |NoOfTotalAvailableContainers Scenario 3: If total no. of empty
from Deadlines |from ContainerCondition containers in the system is greater than
or equal to the fixed no. of containers
i that the robot can carry, or any container
Section 3.4 Robot Be_hawor ! . Y y
(Modeled in DES) is going to be empty very soon

Figure 2: Model Summary.

The model has four important parts i.e., Start Event, Container Behavior in Stations, Container Sorter,
and Robot Behavior. The way how these pillars interact using variables is shown in Figure 2. The following
sub-section provides a detailed explanation of how these pillars perform:

3.1 Start Event

This event is triggered at the very start of the simulation. Table 3 provides all the necessary information
related to the containers that need replenishment. It shows which station or zone each container belongs
to, the number of Lego bricks in each container, the number of Lego bricks from that container required to
build a single car, how many cars can be built from each container, and time in second until the depletion
of that container. Since it takes 80 seconds to build each car, we calculate the time until depletion for each
container by multiplying 80 by the number of cars that can be built from each container. These values are
assigned to TimeToEmpty in the Start event.

3.2 Container Behaviour in Stations

The replenishment and depletion behavior of containers, which shows the rule-based behavior of our agents
(containers), is captured using ABM. Agent population containers represents the Container Behavior in
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Table 3: Container Information. Different containers deplete at different rates.

Container | Station Zone Lego bricks | No. of pieces Cars yield Time until depletion in second
no. no. quantity in each car (Cars yield * 80sec)
0 1 D 4 1 4 320
1 1 D 8 2 4 320
2 5 A 8 1 8 640
3 5 A 8 1 8 640
4 4 B 28 4 7 560
5 4 B 12 1 12 960
6 3 B 6 1 6 480
7 3 B 7 2 35 280
8 2 C 16 4 4 320
9 2 C 14 2 7 560

Stations and has three main states such as TwoContainer, OneContainer and Empty as shown in Figure 3a.
TwoContainer state signifies there are two containers of that type in the station, OneContainer state signifies
there is only one container of that type left in the station, and Empty state signifies that there is no container
of that type in the station. Two variables affect these states: TimeToEmpty and ContainerCondition. We
update the value of ContainerCondition in two places i.e. when containers carried by robot reach stations
that need the same container, and in agent population containers (which signifies the consumption of Lego
bricks in the container). The Robot Behavior part replenishes the containers and updates their state. So,
the value and state of ContainerCondition are connected. The states in the containers update the Deadline
for each kind of container. This part also updates the NoOfContainersReplenished during replenishment

for the calculation of PayloadUtilization.

Containerstatechart

transit

{ ContainerCondition

() TimeToEmpty

() Deadline

(TwoContainerfStartW [TwoContainer W

OneContainerEmpty

OneContaineH

Replenishment2

(a) State chart of Container Behaviour in Sta-

tions.

"¢ statechart

ManageContainersinHome

[\
y4

(b) State chart of Container Sorter.

Figure 3: ABM parts for our model.
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In Figure 3a, TwoContainer_Start and TwoContainer have the same function. The only difference
is the assignment of Deadline variable. At the start of the simulation, Deadline can be assigned as 2 *
TimeToEmpty, as there are two containers available in the stations. But later when the containers go to
TwoContainer from OneContainer state, it also has to consider how long the container was in the state of
OneContainer before it went to TwoContainer. For example, if we have only one container of that type left
in the station, that filled container will only last for 320 seconds. Robot makes the delivery of its second
container when the container in use is half used. So it would have lasted the next 160 seconds when the
delivery was made. After the container is delivered, the new deadline should be 160+ 320 + currenttime.
We model this in TwoContainer state. If TwoContainer_Start was used, the new deadline would be
320 * 2 + currenttime, which doesn’t represent accurate behavior. This behavior is only required in the
initial state. Also, we used state transit in a model to delay the process until all the agents get the value
of TimeToEmpty from the Start event before we assigned the default common value.

3.3 Container Sorter

In this part (Figure 3b), we sort names of containers based on Deadlines and insert the required container
names into RobotContainer (collection). Additionally, we update NoOfTotalAvailableContainers based on
values of ContainerCondition. The Container Sorter includes a single state that updates every half second.
This also assigns updated values of deadlines and available numbers of each number to the variables,
helping in the validation of the model. Since these tasks use dynamic decision-making, Container Sorter
uses ABM.

3.4 Robot Behavior

The Stretch robot carries containers from the home position and delivers them to different stations in an
assembly cell within a specific time or requirements. We model this behavior of our Stretch robot with a
DES approach as shown in Figure 4, since the DES approach works better on modeling process-centric
behavior and makes the validation process more achievable. Here, we represent the Stretch robot as an
entity, and the Stretch robot’s behavior acts as an environment for containers agent population, making the
robot behavior simple to model. There is only one Stretch robot in the system. So, the source creates only
one Stretch robot, and since there is no sink, the same robot moves through the loop. If the condition for
replenishment is met, the Stretch robot follows the path D-A-B-C path and returns to the home position.
If the Stretch robot is carrying the same container that the station is looking for and the station has less
than two containers of that type, we increase the value of ContainerCondition for that container by 1.
Initially, all the stations are full of containers. After the simulation or production run has started, it
takes more time to get the demand of containers for the first shift. To model this behavior accurately and
level the RobotWaitTime, we used initialDelay block as shown in Figure 4. From Table 3, the nearest
time for the first container to be empty is 280 seconds. So, the Stretch robot has to start its first shift
before 280 seconds. After some simulation runs with different numbers, we choose the first waiting
to be 240 seconds which levels the RobotWaitTime. Therefore, the delay time for initialDelay block is
240 — RobotWait Time, because the robot waits again in Waiting block for the delay value of RobotWaitTime.

We obtain results by running the optimization experiment and varying the value of CarryLimit for each
experiment. Subsequently, we generate different graphs to represent the outcomes of these experiments.
The optimization parameters for the experiments are discussed in section 5.

4 VERIFICATION AND VALIDATION

This section provides information about how we ensured that our model is correct (verification) and that
the model represents our real system (validation). For verification of the model, we used intermediate
variables shown in Table 1. RobotContainer represents the containers carried by a Stretch robot during
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7 (® CarryLimit () \dleNo (= NumberOfTimeslidle
(® RobotWaitTime () NoOfContainersReplenished
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Figure 4: DES logic of Robot Behavior.

the replenishment process. During the simulation, whenever the Stretch robot reaches Zone A, B, C,
or D, we update Deadlines and ContainerCondition of the containers that were included in a collection
RobotContainer, to verify our model. During each container delivery, we estimate the expected values
of intermediate variables. If the model does not meet our expectations, we analyze the discrepancies to
identify the causes and make necessary corrections. We also monitor the replenishment conditions in the
console to ensure that the Stretch robot initiates its replenishment shift as expected. We validated our
replenishment system using a base model. We performed a two-sample t-test to compare the average of
forty-six simulation data points with the average of thirty-three real observations of the trip time of the
Stretch robot in a shift, under the null hypothesis that the two means are equal. The results indicate that
the difference between the two means is not statistically significant. Therefore, we consider the model to
be valid. After we validated the base model, we tested alternative scenarios, explained in section 5.

5 RESULTS AND DISCUSSION

This section explains the optimization parameters and experiment results for the base model and the
alternative scenarios. Here, we want to find out the different parameters to help us plan the implementation
of AMR. Scenario 1 considers the different CarryLimit of containers or payload for a Stretch robot,
Scenario 2 tests the full utilization of payload for each shift, and Scenario 3 explores maximizing shift
utilization and meeting immediate needs. Each scenario is built on a verified and validated base model
and includes a sensitivity analysis with varying CarryLimit values. In all scenarios, we assume sensors
track the state of each container, allowing us to reduce the number of containers the robot needs to
carry. This is beneficial because the Stretch robot may sometimes be unable to carry all containers
due to weight or volume limitations. The multiple-part feeder or robotic arm in the home decides
which containers to put on the Stretch robot based on sensor data. For Scenario 2 and 3, we need to
adjust the DES part of the base model as shown in Figure 5. Here, we added a loop in a Waiting
block so that the replenishment is only triggered when the condition is satisfied. For Scenario 2, the
condition is NoO fTotalAvailableContainers <= (20 — CarryLimit), whereas for Scenario 3, the condition is
NoOfTotalAvailableContainers <= (20 — CarryLimit)||(NearestDeadline — time()) < RushTime, where
time() returns current simulation time. Other parts of the model are the same as the base model. More
details about the changes are explained below.

5.1 Base Model: Optimization of RobotWaitTime for Each Shift

First, we explore a simple model where a robot carries all ten containers and delivers them in a specific
time gap. In the base model, it is not required to decide what container to deliver or to know what container
is required to be replenished. The robot just replenishes containers after the allocated time difference. The
experimental parameters for the base model are shown in Table 4.

5.2 Scenario 1: Consideration for Carry Limit of Mobile Robot

In this scenario, the objective is to minimize the number of shifts for healthier battery life while optimizing
the container capacity the robot should carry. A trade-off between these two factors is necessary. The
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Table 4: Experimental Parameters.

Number of Replication | 100

Optimization engine Genetic
Objective Minimize root.Shifts
Parameter CarryLimit : Fixed (9,8,7,6,5,4,3 for each run)

root . NumberO fTimesldle <=0

Requirement (NumberOfTimesldle is the final value of IdleNo)

RobotsContainer £ Start )
83 7 () NearestDeadline

(@ CarryLimit () NoOfTotalAvailableContainers @ Shifts G PayloadUtilization
(@ RushTime () NoOfContainersReplenished © IdieNo (= NumberOfTimesidle
source Wiaiting moveToD delayD moveToA  delayA  moveToB delayB moveToC  delayC  moveToHome

Figure 5: Modified model for Scenario 2 and 3.

additional optimization parameter for Scenario 1 is, RobotWaitTime (described in Table 1), which is defined
as:
RobotWaitTime : Discrete (minimum:0, maximum:150, step:2).

5.3 Scenario 2: Full Utilization of Each Shift

Scenario 2 enables the Stretch robot to decide when to replenish the containers. If the container carrying
capacity of a Stretch robot is fixed to six, the Stretch robot only starts replenishing the containers when
there is a demand for at least six containers. This system aims to ensure that the shift of the Stretch robot
is fully utilized. The experimental parameters for this model are the same as the base model. However,
this scenario did not provide any feasible solution. So in our case, it is not possible to make the Stretch
robot wait long enough to get the demand of containers to be greater than or equal to carryLimit. There
is a high chance of a station being idle.

5.4 Scenario 3: Maximizing Shift Efficiency and Meeting Immediate Needs

In this scenario, the Stretch robot can start replenishment either when the demand for containers is more
than or equal to CarryLimit of the Stretch robot (similar to Scenario 2), or when any deadline of the
container is very close. This ensures that there is very little chance of a station being idle, and provides
full utilization of the Stretch robot’s carrying capacity. The additional optimization parameter for Scenario
3 is RushTime (described in Table 1), which is defined as:
RushTime : Discrete (minimum:20, maximum:300, step:2).

The results from all feasible scenarios are shown in Figure 6. As illustrated in the plot ’a’ of Figure 6,
Scenario 1 is generally preferable as it requires fewer shifts for replenishment, except when the CarryLimit
is five. In that case, Scenario 3 becomes the better option. For Scenario 1, if the CarryLimit is between
6 and 10, the number of shifts required for replenishment remains at 8. However, if the CarryLimit is 5,
the number of shifts increases to 9, and for a CarryLimit of 4, it increases to 10. In contrast, Scenario
3 consistently requires 9 shifts for CarryLimit values from 5 to 10, and 11 shifts for a CarryLimit of 4.
Additionally, the first plot indicates that a CarryLimit of less than 4 is not feasible, as it would cause the
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stations to become idle. Therefore, optimizing the CarryLimit is crucial for minimizing shifts and ensuring
operational efficiency.

Average value of Shifts for each CarryLimit (@) RushTime and RobotWaitTime for each CarryLimit (b)
10.5 210
190
10 » 170
9.5 g 150
2 S 130
£ 9 &
5 c 110
8.5 é 38
8 ———— — .
50
7.5 30
3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10
CarryLimit CarryLimit
—e—Average Number of Shifts in Scenario 1 Optimal RobotWaitTime for Scenario 1
—e—Average Number of Shifts in Scenario 3 —e—Optimal RushTime for Scenario 3

PayloadUtilization for each CarryLimit (©)
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——Payload Utilization for Scenario 1
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Figure 6: Experimental Result.

The second plot, ’b’, in Figure 6 identifies the optimal parameters to use for different CarryLimit values
based on the chosen scenario. For instance, with a CarryLimit of 5, Scenario 3 is optimal since it requires
fewer shifts, with a RushTime of 148 seconds. Similarly, plot °c’ illustrates the payload utilization across
various scenarios and CarryLimit values. This plot is based on the results of one hundred replications in the
parameter variation experiment, using the optimized parameters from plots ’a’ and ’b’. For a CarryLimit
of 8, 9, and 10, Scenario 1 demonstrates better payload utilization, while for a CarryLimit of 6 and 7,
Scenario 3 is more efficient. For other CarryLimit values, the payload utilization is comparable across
scenarios.

The plots in Figure 6 provide crucial data to guide our strategy for implementing a mobile robot in our
sub-assembly plant. For instance, if our Stretch RE1 is limited to carrying 6 containers, plot ’a’ suggests
selecting Scenario 1 due to its lower number of required shifts for replenishment. On the other hand,
according to plot ’c’, Scenario 3 achieves better payload utilization. Therefore, the decision hinges on
our priorities. Suppose minimizing the number of shifts takes precedence over payload utilization. In that
case, Scenario 1 is the preferred choice. Implementing Scenario 1 requires setting an appropriate wait time
at the home position before each shift begins. In our case, this wait time is approximately 102 seconds.
Thus, we must program Stretch RE1 accordingly, ensuring it waits 102 seconds at the home position before
initiating each repetitive shift.

6 CONCLUSIONS AND FUTURE WORKS

In this study, we explore planning the implementation of an AMR into an existing material replenishment
system within assembly plants using hybrid simulation. The primary objective is to assess different scenarios
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for optimizing the containers a robot should carry per shift, with a focus on minimizing travel shifts while
ensuring timely material replenishment to eliminate idle time across all stations. From the experiments, we
find that the decision to choose between strategies highly depends on the payload limit of AMR. By the
use of a hybrid model, we are also able to get optimized parameters for different strategies and compare
the strategies using a key performance indicator or parameter.

Initially, for Scenario 1, we test a simple model where an AMR carries a fixed number of containers,
replenishing them at specific time intervals. Building upon this, Scenario 2 aims at optimizing the robot’s
shift utilization and minimizing wasteful trips. However, Scenario 2 does not provide a feasible solution.
Finally, Scenario 3 introduced the consideration of approaching deadlines for containers, prompting the
robot to act proactively and start delivering containers when a container’s deadline approached, while also
trying to maximize the utilization of payload in the AMR. This dynamic approach aims at reducing the
chances of stations being idle and providing flexibility in determining the optimal container capacity for
the robot. For the payload limit of five, Scenario 3 gives a better result whereas, for other limits, Scenario
1 is a better choice if we only consider minimizing the number of shifts. If we also consider payload
utilization, things change. These results help in comparing and selecting a plan or strategy to implement
an AMR in a sub-assembly cell. From the experiment, we also get the optimized parameters for each
scenario, which can be used during the implementation of the selected plan.

The findings of the study provide valuable insights for Tiger Motors lab to implement AMR for material
replenishment. The results indicate that planning the implementation of AMR using hybrid simulation
can help us compare different strategies, and select the best one based on our requirements for different
performance measures. This methodology can also help assembly-plant managers and engineers to adapt
hybrid simulation for planning the implementation of AMR in their assembly plant.

Although there are many benefits of this study, the study is limited in using a single AMR and a single
station of Tiger Motors lab. Also, the study considers that all the containers are of the same size. These
boundaries set a limitation to help managers and engineers of other assembly plants for their adoption of
this methodology that has different requirements than ours.

Future work in this domain could explore more on using multiple AMRs and consider whole sub-
assembly cells of the assembly plant. The research can also expand to consider the variability of the
product, where the assembly plant produces different models of Lego cars.
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