
Proceedings of the 2024 Winter Simulation Conference
H. Lam, E. Azar, D. Batur, S. Gao, W. Xie, S. R. Hunter, and M. D. Rossetti, eds.

EFFICIENT PARALLEL SIMULATION OF NETWORKED SYNCHRONOUS
DISCRETE-EVENT SYSTEMS

Neha Karanjkar1, Madhav Desai2, Akhil Kushe3, and Anish Natekar1

1School of Mathematics and Computer Science, IIT Goa, Goa, INDIA
2Dept. of Electrical Eng, IIT Bombay, Mumbai, INDIA

3Dept. of Electronics and Telecomm Eng, Goa College of Engineering, Goa, INDIA

ABSTRACT

We present Sitar, an open-source, general-purpose modeling framework consisting of a custom modeling
language and a simulation kernel, designed for efficient parallel simulation of networked Synchronous
Discrete-event Systems (SDES) in applications such as communication networks and computer systems
design. A unique feature of Sitar is its two-phase, cycle-based simulation algorithm that allows an efficient,
race-free parallel execution on shared-memory systems. This is achieved by imposing a mild restriction
on the set of SDES that can be described within the framework. The modeling language is designed for
describing complex, networked systems with a static interconnection structure. We demonstrate Sitar’s
modeling capability, performance and scalability through a detailed performance evaluation and a comparison
against SystemC and SimPy. Our results show that Sitar’s single-threaded performance is better than that of
SimPy and comparable to that of SystemC, whereas a multi-threaded execution shows near-linear scaling
for several benchmark configurations.

1 INTRODUCTION

1.1 Overview

Synchronous Discrete-Event Systems (SDES) represent a subclass of discrete-event systems where all
state-changes (events) occur at integer multiples of a fixed time unit. Systems across a variety of application
domains such as communication networks, computer architecture models, synchronous digital systems
and queueing networks are typically modeled as SDES. Given the complexity and scale of models in
these domains, parallel simulation approaches are crucial. We show that imposing a mild restriction on
the set of SDES that can be described within a framework (that is, restricting a framework’s scope to a
smaller, yet practically rich subset of SDES) presents the opportunity for a targeted simulation approach
with an efficient parallel implementation. Yet, there is a gap in the availability of modeling frameworks
specifically targeting this subset. Models in these application domains are often built, either as a standalone
application-specific simulator bundling together custom code for time-advancement, or are built using
general-purpose simulation frameworks such as SimPy or SystemC that are meant for a broader class of
discrete-event systems, thus missing out on the potential for targeted, parallel simulation approaches.

Sitar is an open-source, general-purpose modeling framework that addresses this gap. It consists of a
custom modeling language and a lightweight, C++ based simulation kernel with a shared-memory parallel
implementation. The modeling language provides a rich set of constructs for describing complex, networked
SDES with a static interconnection structure, typical in domains such as communication networks and
computer systems. It supports modular and hierarchical descriptions of system structure as interconnected
concurrent entities. The behaviour of each entity can be described in an imperative manner using constructs
such as conditional and unconditional delays (‘wait’ statements), branches, loops, and fork-join concurrency
in the control-flow and embedded (instantaneous) code blocks. A model description in Sitar is translated

2214979-8-3315-3420-2/24/$31.00 ©2024

Karanjkar, Desai, Kushe, and Natekar

into highly readable C++ code, which can be compiled with the simulation kernel to generate an executable,
or linked with external libraries for co-simulation.

A unique feature of Sitar is its two-phase simulation algorithm that affords a straightforward, race-free
parallel implementation. This is made possible by imposing a weak restriction on the set of SDES that
can be modeled within the framework (detailed in Section 1.2). Sitar was initially built as an internal
tool for computer architecture research. It has been used for building cycle-accurate multi-core processor
models (Karanjkar and Desai 2015) and for modeling discrete-time queueing networks (Karanjkar, Desai,
and Bhatnagar 2016). An updated version of Sitar, incorporating features for general-purpose use, was
released as open-source software with an MIT licence (https://sitar-sim.github.io/sitar). A discussion of
Sitar’s modeling language constructs and a use-case in processor modeling are presented in (Karanjkar and
Desai 2022).

1.2 Main Contributions

A key feature of Sitar is its two-phase simulation algorithm that enables a straightforward, race-free
parallel implementation. This is made possible by limiting the framework’s scope to a subset of SDES.
Specifically, this subset consists of synchronous discrete-event systems that can be described as being
composed of interconnected, communicating components (called modules) wherein, propagating an update
from the module’s inputs to its output incurs a delay of at-least one unit of time. In the domain of digital
systems, this is akin to a model consisting of communicating Moore-type components. Any components
that communicate instantaneously have to be encapsulated within a single module boundary. Modules
can then be split across threads/processes for parallel simulation (using an algorithm described in Section
4) without the need for a model dependency analysis. Thus, the modeling framework implicitly aids in
identifying potential model partition boundaries for work division during parallel execution. It should be
noted that this subset is still practically sufficient to encompass system models across many application
domains. We discuss the implications of this restriction on Sitar’s modeling scope in Section 4.0.3.

In this paper, we present the context and the key ideas behind the two-phase simulation approach used
by Sitar and demonstrate its effectiveness through a detailed performance and scalability evaluation using
a parameterized benchmark model. We also present a comparison of Sitar with two popular open-source
simulation frameworks: SystemC and SimPy in terms of simulation performance and modeling capability.
Although Sitar is targeted for a subset of the systems that SimPy or SystemC can model, for benchmark
models within this subset we find that Sitar’s base (single-threaded) performance is significantly better
than that of SimPy and comparable to that of SystemC, whereas a multi-threaded execution in Sitar shows
near-linear scaling with a speed-up close to 50x on a 40-core machine. (We present detailed results in
Section 5.) This paper aims to position Sitar as a unique open-source framework filling a gap in targeted,
parallel simulation of synchronous discrete-event systems.

2 CONTEXT AND RELATED WORK

We consider the modeling and simulation of SDES in application domains such as communication networks
and computer systems. On one end of the modeling spectrum, standalone simulators used in these application
domains provide the end-user with a pre-built configurable model that is directly written in a high-level
programming language such as C++/Java, bundling together custom code for time advancement (Akram
and Sawalha 2019; Naicken et al. 2007). While the time advancement algorithm in such simulators can
be optimized for a specific application or model, it becomes difficult to reuse or extend the models for
exploring alternate structural configurations or coupling them with other frameworks for co-simulation.
On the other end of the spectrum, modelers may use commercial or open-source general-purpose Discrete
Event Simulation (DES) frameworks such as AnyLogic, SimPy or SystemC to build their models. These
general-purpose DES frameworks employ an event-driven simulation approach, because it is most flexible
and suitable for modeling a broad class of discrete-event systems where event timestamps can be real-valued.

2215

https://sitar-sim.github.io/sitar

Karanjkar, Desai, Kushe, and Natekar

An event-driven approach employs a Priority Queue data structure for maintaining a list of all events
scheduled for the future, sorted by their timestamps. The simulation progresses by repeatedly extracting
and executing the events scheduled at the earliest timestamp, followed by updating the simulation-time
variable directly to the next-earliest timestamp in the list. The event-driven approach can thus be thought
of as “taking shortcuts in time” by directly jumping to timestamps of interest. An event-driven approach is
efficient for systems where the frequencies of state updates can vary widely across components, for example
in agent-based simulations in epidemiology and transportation. However this approach can be fundamentally
difficult to parallelize, although there is a large body of research in this direction (Fujimoto et al. 2017).
The difficulty in parallelization arises primarily because sharing or splitting the event queue across multiple
processes/threads while maintaining causality of events can be difficult, and may yield marginal performance
gains for some scenarios. Most general-purpose discrete-event modeling frameworks such as SimPy and
SystemC use an event-driven simulation approach, and do not offer parallel simulation capability by default.
Parallelization of the event-driven engine by partitioning the event-queue and model components across
threads has been explored in some general-purpose frameworks such as SimX (Thulasidasan et al. 2014)
and parallel variants of hardware modeling languages such as SystemC (Dömer et al. 2012).

Focusing solely on the synchronous subset (that is, SDES) opens up the possibility of a simpler,
cycle-based simulation approach (also referred to in literature as time-stepped or full-cycle simulation),
where state updates are performed at regular, fixed time intervals by executing/querying the state-update
functions of all concurrent components in the model at every time-step. This approach is applicable for
synchronous models or discrete-event models where a coarse-grained time-discretization is an acceptable
approximation. Compared to an event-driven approach, this approach can be more suited for systems with
time-dense activity, that is, systems where most components are likely to be active at every time-step (Tay
et al. 2003). This is indeed the case for computer systems, clocked VLSI systems, communication networks
etc. and several application-specific simulators in these domains use a cycle-based approach (Grossman
et al. 2013). Despite the predictable time-advancement, parallelization of cycle-based simulation is still
non-trivial because of the possibility of race conditions. Simulation may yield different results, depending
on the order in which the individual components in the model are executed within each time-step. For
race-free parallel execution, it may be necessary to first build a directed acyclic graph (DAG) representing the
static dependency between model components, and to execute the components in sequence, respecting this
model-specific ordering. As an example, consider the system shown in Figure 1 consisting of components
A, B, C and D that need to be executed in the specific order: A → {B,C} → D, due to the dependence
structure. This limits the scope for parallelism. The presence of zero-delay dependency loops in the model
(for example, between components B and C in Figure 1) can further complicate the execution, necessitating
multiple execution of components within each loop until convergence. Although such a cycle-based approach
has been used in a few application-specific libraries and simulators, the possibility of dependency loops
and the requirement of a static dependency analysis makes it difficult to partition a model for effective
work division using multiple threads. Among the tools that use a cycle-based simulation approach, notable
examples are Cascade (Grossman et al. 2013) which is a processor simulator, SystemCASS(Buchmann,
Petrot, and Greiner 2004) a cycle-based implementation of SystemC and RepCut (Wang and Beamer 2023)
which are both hardware (RTL) modeling frameworks. A cycle-based (time-driven) approach has also
been used in applications such as agent-based and traffic simulation (Tan et al. 2021). In most of these
tools and frameworks that specifically target the synchronous class, model dependency analysis and model
partitioning are critical steps before the simulation can commence. In contrast, Sitar targets a subset of
SDES by imposing a weak restriction on the set of models that can be described, leading to a simple, race-
free parallel execution approach without the need for model dependency analysis. Although its underlying
simulation algorithm is simple, the Sitar modeling language is rich with complex constructs, and well-suited
for several application domains. To our knowledge there is currently no other general-purpose modeling
framework that targets the same subset.

2216

Karanjkar, Desai, Kushe, and Natekar

A

B

C
 data tokens

net

D

module

PHASE
0

PHASE
1

PHASE
0

PHASE
1

CYCLE
1

CYCLE
2

CYCLE
3

...

Can Input
from nets

Can Output
to nets

(1,0)

TIME
(1,1) (2,0) (2,1) (3,0)

Figure 1: Basic elements in a sitar model, and the two-phase model of time in Sitar.

2.1 Differentiating aspects of Sitar

• Modeling Scope and Simulation Approach: In contrast to frameworks such as SystemC and
SimPy that are meant for modeling the broad class of discrete-event systems, or frameworks
targeting the SDES subclass using time-stepped simulation, Sitar’s scope is limited to a subset of
SDES (in particular, Moore-type SDES) which allows for a simple simulation algorithm with a
straightforward and efficient, race-free parallel implementation. Notably this also eliminates the
need for model dependency analysis or the need to compute possible model partitions for work
division during parallel execution. Hornet, a multi-core simulator (Ren et al. 2012) reportedly uses
a two-phase algorithm similar to that of Sitar. However Hornet is a specific configurable processor
model and not a general-purpose modeling framework.

• Application: In contrast to application-specific simulators and frameworks such as Hornet, Cascade
and RepCut, Sitar is a general-purpose modeling framework, with a language targeted for describing
structured models in a wide range of application domains. To our knowledge there is currently no
other general-purpose, open-source modeling framework that specifically targets this subset.

• Language: Unlike SystemC and SimPy, which are libraries in an existing high-level programming
language, Sitar provides a custom modeling language with translation to C++ code. This makes
it possible and easy to enforce the modeling restriction (for Moore-type components). Although
a custom language with well-designed constructs aids in model comprehension, conciseness and
validation, it necessitates learning yet another language for the modeler, which can be a disadvantage.

3 MODELING ASPECTS

Sitar consists of a custom modeling language suited for systems that have a static, interconnected structure,
such as networks and computer architecture models. The framework orthogonalizes the structural and
execution semantics from the functional/behavioral aspects of the individual components in the model. A
system can be described in a modular manner, as a set of behavioral entities (called modules) communicating
over buffered channels (called nets). Modules can be hierarchical, containing instances of other modules.
The language supports parameterized module descriptions and constructs like component arrays to model
regular structures such as meshes conveniently. Module behavior can be described in an imperative manner
as nested sequences of statements. A statement can consist of an atomic (instantaneous) C++ code block or
model constructs such as conditional delays (wait statements), branches, loops, and fork-join type parallel
blocks. A procedure construct is also provided to support modular descriptions. If a particular sequence
of statements (including delays) occurs multiple times within a description, it can be encapsulated and
described just once as a procedure, and invoked at multiple points. Procedures can also be parameterized.
Figure 2 shows a minimal example illustrating some of the behavioral constructs and the corresponding
control-flow and simulation output. Constructs for structural description are illustrated in Figure 4.

The system behavior is thus defined by the individual behaviors of the modules and their interconnections,
described in an orthogonal manner. The Sitar parser translates model descriptions to highly readable C++
code. Each module description gets translated to a single class. This can be compiled together with the

2217

Karanjkar, Desai, Kushe, and Natekar

Output (with an even number as input)

Output (with an odd number as input)

Figure 2: A minimal example illustrating Sitar constructs for describing module behavior. In this example,
the system consists of just a single module named Top. C++ code can be embedded within the dollar ($)
symbols. The corresponding control flow and simulation output is also shown.

simulation kernel to generate a single executable or linked with external libraries for co-simulation. The
Sitar framework also provides syntax highlighting, constructs for systematic, fine-grained logging and error
reporting.

4 EXECUTION MODEL

4.0.1 Execution Model

The basic components in a Sitar system are modules and nets. Modules are behavioral entities in the system,
and nets are buffered channels of communication between them (illustrated in Figure 1). All modules
run concurrently on a single, global clock. Modules communicate via transfer of data tokens (which are
packets of information) over nets. Nets are passive components, and their state can change only upon input
or output actions by modules. A net can have at-most one module as a writer and at-most one module as a
reader transferring tokens to/from it. Modules can be hierarchical, containing instances of other modules.
The system description must contain a single module named Top which represents the top-level module in
the hierarchy to be instantiated for simulation. The modeler can describe the behavior of each module in an
imperative manner (as illustrated in Figure 2). The Sitar description of a module’s behavior gets translated
to C++ code into a member routine of the module’s class called run() which needs to be executed at
every time-step during simulation. To perform simulation, simply executing the run() function for each
module once in every cycle can lead to race conditions, since the exact order of execution among modules
can affect the final state. Further, there may be dependency loops within a cycle (for example, the loop
through modules B and C in Figure 1), and therefore the run() function in each module may need to
be executed multiple times until convergence. Even if the dependency graph among the modules were to
be built statically, it does not offer a straightforward approach for parallelization since the execution of
modules needs to be sequenced as per the dependency and cannot be performed in parallel. Sitar overcomes
this challenge through a two-phase execution algorithm.

4.0.2 Two-Phase Simulation and Parallel Execution

In this algorithm, each time-step (or clock-cycle) is divided into two phases: phase-0, followed by phase-1.
A module can input tokens from a net in phase-0 only and output tokens in phase-1 only. Simulation is
performed by executing the run() function on each of the modules exactly once in every phase. Since

2218

Karanjkar, Desai, Kushe, and Natekar

cycle = 0
while (cycle < simulation_end_time)
{

 phase=0;
#pragma omp for //run all modules for phase 0
for (m=0; m<num_modules; m++)

module[m].run(cycle, phase);
#pragma omp barrier

 phase=1;
#pragma omp for //run all modules for phase 1
for (m=0; m<num_modules; m++)

module[m].run(cycle, phase);

#pragma omp barrier
 cycle = cycle + 1
}

Figure 3: Pseudo-code showing the Sitar execution algorithm and its parallelization using OpenMP.

a net can have at-most one reader and writer, all state-updates to nets are performed in a deterministic
manner, without the need of critical sections enclosing the updates. The simulation results do not depend
on the order in which the individual modules are executed within a phase. This leads to a straightforward
parallel implementation. To perform simulation in parallel, the set of all modules can be partitioned into
groups. In each phase, the execution of a group of modules can be mapped to a single thread, and multiple
such threads can run in parallel. All threads need to synchronize at the end of each phase (that is, twice
within a single time step). The simple two-phase execution algorithm and its parallelization using OpenMP
is illustrated by the pseudo-code in Figure 3. Race-free execution can be guaranteed if the modules that are
mapped to different execution threads interact solely via nets, and not through any other shared variables.
The partitioning of module instances and their mapping to OpenMP threads for execution can either be
dynamically determined using OpenMP’s default scheduler or statically specified by the modeler for a
balanced work division.

4.0.3 Modeling Scope

As a consequence of the two-phase execution, the propagation of information from a module’s inputs to
its outputs incurs a delay of at-least one cycle. In the domain of digital systems, this is akin to a model
consisting of communicating Moore-type components. In such a model, the components have at-least
one flip-flop in every path from the input to the output and there are no direct (combinational) paths
running across component boundaries. This restricts Sitar’s modeling capability to synchronous systems
that can be described as interconnected Moore-type components. The framework enforces this restriction
automatically through the two-phase execution algorithm, and no separate checks are necessary. To model
instantaneous communication or zero-delay dependency loops between concurrent components in the system,
Sitar provides other means. These can be modeled by placing the concurrent components within a single
module as parallel branches of a fork-join section using Sitar’s parallel block construct. In Sitar,
these concurrent branches are automatically executed multiple times, if necessary, until convergence. The
execution order of these branches in the fork-join section is fixed (determined by the order of declarations in
the model code), and leads to deterministic execution, since they cannot be split across separate threads. In
essence, the modeling framework leads the user to explicitly identify the possible parallelization boundaries
(as modules), which makes parallelization straightforward.

5 PERFORMANCE EVALUATION

We present detailed results of a performance and scalability evaluation of Sitar using a parameterized
benchmark model. We also present a comparison with SystemC and SimPy in terms of the modeling
capability and performance.

2219

Karanjkar, Desai, Kushe, and Natekar

5.0.1 Benchmark Model

A parameterized benchmark model (illustrated in Figure 4) was built with parameters representing the
model size (N), the amount of computation within each module per time-step (A), and the extent of
communication between the modules (C). The topology is representative of models occurring in systems

Module
0,0

Module
0,1

Module
1,0

Module
1,1

Module
M-1,0

Module
M-1,1

Module
0,M-1

Module
1,M-1

Module
M-1,M-1

Sitar Description (partial)ParametersBenchmark Model

Figure 4: Parameterized benchmark model.

such as networks-on-chip, computer mesh networks and many-core processor systems. To mimic some
computation happening in every module in each cycle, each module has an integer array of size A which
is populated and then sorted (using Bubble sort), once in every phase during simulation. The parameter C
represents the extent of communication between the modules. In every cycle, each module generates C
new data tokens with randomly assigned destination addresses and forwards them along its output ports.
Each generated data token carries the destination module’s address and some payload. We evaluate the
performance and parallel speedups as a function of each of these model parameters (N, A and C), by
varying the number of execution threads from 1 (single-threaded) to 64.

5.0.2 Host Configuration

The experiments were performed on a 40-core system running Ubuntu Linux 18.04 (64bit). The dual socket
system has two Intel Xeon Gold 6148 processors, each with 20-cores and 27.5MB of L3 cache memory.
Each core supports two threads via hyper-threading. The system has 384GB of DDR4 main memory.

5.0.3 Simulation time-steps and Model-size parameter (N)

We first present a basic validation case which shows that the total simulation time varies linearly with the
number of cycles being simulated, as well as with the model size N (as one would expect) in Figures 5
and 6. We observe that the speedup is limited by the number of modules in the model, since each module
is mapped to a single thread during execution and the computations for a single module cannot be divided
across multiple threads. A higher speedup is observed when the number of modules N is an integer multiple
of the number of threads. Comparing results in plots 5 and 6 obtained for slightly different configurations
(C=8 and C=4) we note that a higher speedup is achieved when communication between modules is less
frequent (a lower value of C). Next, we assess the scalability by sweeping the parameters N, C and A while
simulating for a fixed number of cycles. For each experiment, we present two plots, the first showing the
speedup versus the number of threads on the x-axis, and the second showing the speedup versus the model
parameter value being swept, as the x-axis.

2220

Karanjkar, Desai, Kushe, and Natekar

100200 400 800 1600
Num_cycles

0

20

40

60

80

100

120

140

re
al

 ti
m

e
(s

)
Simulation time for N=64, A=800, C=8

num_threads=1
num_threads=2
num_threads=4
num_threads=8
num_threads=16
num_threads=32
num_threads=64

100200 400 800 1600
Num_cycles

2

4

6

8

10

12

14

Sp
ee

du
p

Speedup for N=64, A=800, C=8

num_threads=1
num_threads=2
num_threads=4
num_threads=8
num_threads=16
num_threads=32
num_threads=64

Figure 5: Total simulation time and speedup as a function of the number of cycles being simulated (for
N=64, A=800, C=8).

4 9 16 25 36 49 64
Model size N

0

20

40

60

80

re
al

 ti
m

e
(s

)

Simulation time for C=4, A=800, simulated cycles=1000
num_threads=1
num_threads=2
num_threads=4
num_threads=8
num_threads=16
num_threads=32
num_threads=64

4 9 16 25 36 49 64
Model size N

0

5

10

15

20

Sp
ee

du
p

Speedup for C=4, A=800, simulated cycles=1000
num_threads=1
num_threads=2
num_threads=4
num_threads=8
num_threads=16
num_threads=32
num_threads=64

Figure 6: Total simulation time and speedup as a function of the model size N (for C=4, A=800,
num_cycles=103).

5.0.4 Computation parameter (A)

We consider the case where C=0 and N and A are reasonable large. This represents an embarrassingly
parallel scenario where the model size and the per-cycle computation on each module are very large and
there is no communication between the modules. Figure 7 presents the speedup as a function of the number
of threads and A. It is to be noted that while there is no communication between the modules, all OpenMP
threads still have to synchronize at the end of each execution phase. Thus the slope of the speedup line is
less than 1. The speedup increases with A and plateaus after a certain value.

5.0.5 Communication parameter (C)

Figure 8 presents the speedup as a function of C. We observe that a large value of C limits the maximum
speedup achievable, though it does not have a significant impact on the total simulation time. While
communication-related routines (for reading from or writing to nets by the modules) may contribute to
the added workload of each thread, a large impact on performance may be caused by coherence-related
cache evictions on each net. A net essentially acts like a shared variable between the modules. Multiple
threads reading/writing to such a shared variable may increase the overhead associated with cache evictions

2221

Karanjkar, Desai, Kushe, and Natekar

12 4 8 16 32 64
Num_threads

0

10

20

30

40

Sp
ee

du
p

Speedup for N=64, C=0, simulated cycles=1000
A=100
A=200
A=400
A=800

100 200 400 800
A

0

10

20

30

40

Sp
ee

du
p

Speedup for N=64, C=0, simulated cycles=1000
threads

1
2
4
8
16
32
64

Figure 7: Speedup as a function of the number of threads and the model parameter A (for N=64, C=0,
num_cycles=103).

12 4 8 16 32 64
Num_threads

0

10

20

30

40

50

Sp
ee

du
p

Speedup for N=64, A=800, simulated cycles=1000
C=0
C=1
C=2
C=4
C=8

0 1 2 4 8
C

0

10

20

30

40

50
Sp

ee
du

p

Speedup for N=64, A=800, simulated cycles=1000
threads

1
2
4
8
16
32
64

Figure 8: Speedup as a function of the number of threads and the model parameter C (for N=64, A=800,
num_cycles=103).

(though the two-phase algorithm guarantees that this happens in a race-free manner without the need for
using critical sections). For C=8 the maximum speedup possible is 12x-13x using 16 or more threads. In
contrast, for C=0 the maximum speedup is found to be close to 50x for large values of A (A=800).

5.1 Comparison with SystemC and SimPy

We consider the same benchmark model as shown in Figure 4, modeled using Sitar, SimPy and SystemC.
For each experiment reported in this section, the model parameter settings used for all three frameworks
are identical and are listed on each plot heading. To give a comparison of the modeling effort, the source
line counts (without comments) for modeling the same system in the three frameworks were as follows:
Sitar: 219, SimPy:142 and SystemC: 212. The programmer effort is quite low for SimPy because of the
higher level of abstraction offered by Python, with features such as dynamic type-casting and in-built data
structures such as lists. For compiling the SystemC and Sitar models, we have used the gcc compiler with the
optimization setting of O3. For the SimPy model, we present results for two simulation executions. The first
is a simulation of the model using the default Python3 implementation. The second is simulation performed
using PyPy (https://www.pypy.org/). PyPy is a highly optimized implementation of Python which provides

2222

https://www.pypy.org/

Karanjkar, Desai, Kushe, and Natekar

a Just-in-Time (JIT) compiler that translates Python code into machine-native assembly language. Since
we are comparing the base (single-threaded) performance of the three frameworks, the simulations were
performed on a desktop/laptop configuration (4-core system with the AMD Ryzen-5 processor with up-to
8 execution threads and 6GB of DDR4 RAM). Figures 9 and 10 present the total simulation time measured
by sweeping various model parameters at different base parameter settings. In summary, we observe that
the base performance (single-threaded) of Sitar is far better than that of SimPy, but lies in between those
of the PyPy-execution of the SimPy model and SystemC. However, a multi-threaded execution using Sitar
out-performs both. This is illustrated by the plots in Figure10.

4 9 16 25 36 49 64
Model size N

0

200

400

600

800

1000

1200

1400

re
al

 ti
m

e
(s

)

Simulation time for C=4, A=800, simulated cycles=1000
systemC
simpy
pypy-simpy
sitar

100 200 400 800
A

0

20

40

60

80

100

120

140

re
al

 ti
m

e
(s

)

Simulation time for N=36, C=4, simulated cycles=800
systemC
simpy
pypy-simpy
sitar

Figure 9: Total simulation time (for single threaded execution) plotted as a function of the model size N
and the per-cycle computation parameter A.

5.2 Results Summary

The results indicate that the two-phase execution algorithm of Sitar is capable of efficiently leveraging
multi-core platforms for significant speedups. When the model size is large or the computation carried
out in each module per-cycle is large, a speedup of close to 50x on a 40-core machine using 64 threads
was observed. Greater speedups can potentially be obtained by leveraging distributed platforms, and this
can be a direction for future work. Further, there is no additional programmer effort or model dependency

0 2 4 8
C

0

100

200

300

400

500

600

re
al

 ti
m

e
(s

)

Simulation time for N=36, A=400, simulated cycles=800

systemC
simpy
pypy-simpy
sitar

0 2 4 8
C

5

10

15

20

25

re
al

 ti
m

e
(s

)

Simulation time for N=36, A=400, simulated cycles=800

systemC
pypy-simpy
sitar

(a) 1 2 4 8
Num Threads

20

40

60

80

100

120

re
al

 ti
m

e
(s

)

Simulation time for N=64, C=4, A=800, simulated cycles=800

systemC
pypy-simpy
sitar

(b)
Figure 10: (a): Simulation time (for single-threaded execution) vs the communication parameter C (with
a zoomed view in the Inset). (b): Simulation time vs number of threads when multi-threaded execution is
enabled for Sitar.

2223

Karanjkar, Desai, Kushe, and Natekar

analysis required to achieve these speedups. The single-threaded performance of Sitar is slightly lower than
that of SystemC (due to the two phase execution overhead) and better than SimPy, but a multi-threaded
execution can outperform both using just a few threads, and shows near-linear scalability for several model
configurations. While the benchmark model considered here is homogeneous, for heterogeneous systems
the workload balancing across threads can be effectively performed by OpenMP’s default scheduler if the
model is partitioned into a reasonably large number of modules. Further, it is possible for the modeler to
explicitly specify the mapping between modules to execution threads for an effective work-division. The
results also indicate that there is further scope in optimizing the communication routines in Sitar to improve
performance, particularly in addressing the performance hit caused by cache coherence-related evictions
of the communication channels (nets) that are accessed by multiple threads. The scalability demonstrated
by this study makes this a promising direction for future work.

6 CONCLUSIONS

Most general-purpose discrete-event simulation frameworks use an event-driven simulation approach for
modeling flexibility. We show that by restricting the modeling scope to a subset of discrete-event systems,
(specifically synchronous systems that can be described as interconnected Moore-type components), it
becomes possible to arrive at a simple two-phase simulation algorithm that affords an efficient, race-free
parallel implementation. Models in several application areas typically fall within this subset. Yet, there is
a notable gap in the availability of a modeling framework which specifically targets this subset.

This paper presents Sitar, an open-source, general-purpose framework we have developed to bridge this
gap. By focusing on a subset of synchronous discrete-event systems and inferring parallelization boundaries
directly from the model description, Sitar’s two-phase execution algorithm can leverage shared-memory,
many-core systems for efficient parallel simulation. We present detailed results from a performance and
scalability evaluation study and also compare Sitar’s base performance and modeling effort with that of
SystemC and SimPy. Sitar’s single-threaded performance is comparable to that of SystemC, and better
than SimPy, while its multi-threaded execution across several model configurations demonstrates near-
linear performance gains with respect to the number of execution threads. This makes Sitar well-suited
for applications that involve extremely large models. The utility of Sitar as a general-purpose modeling
framework lies in its expressive modeling language, which allows for a modular and hierarchical description
of complex systems as interconnected concurrent entities and provides a variety of constructs, such as
conditional delays, branches, loops, fork-join concurrency and embedded C++ code blocks for describing
module behavior. Sitar also has built-in logging support, syntax highlighting, and systematic error reporting
for easing modeling effort. Sitar descriptions get translated into modular, readable C++ code, which makes
it easy to couple these models with other simulators for co-simulation. In summary, this paper positions
Sitar as a useful open-source framework targeted for modeling and parallel simulation of synchronous
discrete-event systems.

ACKNOWLEDGEMENT

Akhil Kushe and Anish Natekar worked on the performance evaluation study through an internship funded
by the National Supercomputing Mission (NSM) India.

REFERENCES
Akram, A. and L. Sawalha. 2019. “A Survey of Computer Architecture Simulation Techniques and Tools”. IEEE Access 7:78120–

78145.
Buchmann, R., F. Petrot, and A. Greiner. 2004. “Fast Cycle Accurate Simulator to Simulate Event-driven Behavior”. In

International Conference on Electrical, Electronic and Computer Engineering, 2004. ICEEC ’04., 35–38: ICEEC.
Dömer, R., W. Chen, and X. Han. 2012. “Parallel discrete event simulation of Transaction Level Models”. In 17th Asia and

South Pacific Design Automation Conference, 227–231.

2224

Karanjkar, Desai, Kushe, and Natekar

Fujimoto, R. M., R. Bagrodia, R. E. Bryant, K. M. Chandy, D. Jefferson, J. Misra, et al. 2017. “Parallel Discrete Event Simulation:
The Making of a Field”. In 2017 Winter Simulation Conference (WSC), 262–291 https://doi.org/10.1109/WSC.2017.8247793.

Grossman, J., B. Towles, J. A. Bank, and D. E. Shaw. 2013. “The role of Cascade, a cycle-based simulation infrastructure,
in designing the Anton special-purpose supercomputers”. In 2013 50th ACM/EDAC/IEEE Design Automation Conference
(DAC), 1–9. Austin, TX: ACM.

Karanjkar, N. and M. Desai. 2015. “An Approach to Discrete Parameter Design Space Exploration of Multi-core Systems Using
a Novel Simulation Based Interpolation Technique”. In 23rd IEEE International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems, MASCOTS 2015, Atlanta, GA, USA, October 5-7, 2015, 85–88:
IEEE Computer Society.

Karanjkar, N. and M. Desai. 2022, July. “Sitar: A Cycle-based Discrete-Event Simulation Framework for Architecture
Exploration”. In Proceedings of the 12th International Conference on Simulation and Modeling Methodologies, Technologies
and Applications (SIMULTECH), 142–150. Lisbon, Portugal.

Karanjkar, N., M. P. Desai, and S. Bhatnagar. 2016. “On Continuous-space Embedding of Discrete-parameter Queueing Systems”.
arXiv preprint arXiv:1606.02900.

Naicken, S., B. Livingston, A. Basu, S. Rodhetbhai, I. Wakeman and D. Chalmers. 2007, mar. “The state of peer-to-peer
simulators and simulations”. SIGCOMM Comput. Commun. Rev. 37(2):95–98.

Ren, P., M. Lis, M. H. Cho, K. S. Shim, C. W. Fletcher, O. Khan, et al. 2012. “HORNET: A Cycle-Level Multicore Simulator”.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 31(6):890–903.

Tan, W. J., P. Andelfinger, D. Eckhoff, W. Cai and A. Knoll. 2021. “Causality and Consistency of State Update Schemes in
Synchronous Agent-based Simulations”. In Proceedings of the 2021 ACM SIGSIM Conference on Principles of Advanced
Discrete Simulation, SIGSIM-PADS ’21, 57–68. New York, NY, USA: Association for Computing Machinery.

Tay, Tan, and Shenoy. 2003. “Piggy-backed time-stepped simulation with ’super-stepping”’. In Proceedings of the 2003 Winter
Simulation Conference, 2003., Volume 2, 1077–1085 vol.2 https://doi.org/10.1109/WSC.2003.1261535.

Thulasidasan, S., L. Kroc, and S. Eidenbenz. 2014. “Developing parallel, discrete event simulations in Python - first results and
user experiences with the SimX library”. In 2014 4th International Conference On Simulation And Modeling Methodologies,
Technologies And Applications (SIMULTECH), 188–194.

Wang, H. and S. Beamer. 2023. “RepCut: Superlinear Parallel RTL Simulation with Replication-Aided Partitioning”. ASPLOS
2023, 572–585. New York, NY, USA: Association for Computing Machinery.

AUTHOR BIOGRAPHIES
NEHA KARANJKAR is an Assistant Professor in the School of Mathematics and Computer Science at the Indian Institute
of Technology Goa (IIT Goa). Her research interests include discrete-event simulation, parallel simulation and hybrid (mixed
discrete-continuous) simulation. She is a senior member of IEEE and currently serves as a member of the ACM India Education
Committee and Chair of the ACM Goa professional chapter. Her email address is nehak@iitgoa.ac.in and her website is
https://nehakaranjkar.github.io.

MADHAV DESAI is a Professor in the Department of Electrical Engineering at IIT Bombay, India. His research interests
include VLSI Design, Design Automation, Circuits and Systems, Graph theory and Combinatorics. He is a co-founder of
Powai Labs Technologies and has successfully led the design and development of an indigenous processor named ’Ajit’. He
was formerly a Principal Engineer in the Semiconductor Engineering Group at the Digital Equipment Corporation in Hudson,
MA. His email address is madhav@ee.iitb.ac.in and his website is https://www.ee.iitb.ac.in/wiki/faculty/madhav.

AKHIL KUSHE is a graduate of the Department of Electronics and Telecommunication at Goa College of Engineering, India,
where he earned his Bachelor’s degree. He is currently working as an Application Engineer at Synopsys (India) Pvt Ltd,
Bangalore. His areas of interest include computer architecture and formal/static verification for digital systems. His email
address is kusheakhil@gmail.com.

ANISH NATEKAR is an undergraduate student in Computer Science and Engineering at the Indian Institute of Technology
Goa (IIT Goa), India. His research interests include Robotics, Drones, SITL simulations, and Computer Vision. Anish is a
developer of the open-source project PicoW_Copter. His email address is anish.natekar.20031@iitgoa.ac.in.

2225

https://doi.org/10.1109/WSC.2017.8247793
https://doi.org/10.1109/WSC.2003.1261535
mailto://nehak@iitgoa.ac.in
https://nehakaranjkar.github.io
mailto://madhav@ee.iitb.ac.in
https://www.ee.iitb.ac.in/wiki/faculty/madhav
mailto://kusheakhil@gmail.com
mailto://anish.natekar.20031@iitgoa.ac.in

	INTRODUCTION
	Overview
	Main Contributions

	CONTEXT AND RELATED WORK
	Differentiating aspects of Sitar

	Modeling Aspects
	EXECUTION MODEL
	 Execution Model
	 Two-Phase Simulation and Parallel Execution
	 Modeling Scope

	PERFORMANCE EVALUATION
	 Benchmark Model
	 Host Configuration
	 Simulation time-steps and Model-size parameter (N)
	 Computation parameter (A)
	 Communication parameter (C)

	Comparison with SystemC and SimPy
	Results Summary

	CONCLUSIONS

