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ABSTRACT

We propose a method for generating reduced representations of time series and for constructing low
dimensional surrogate models for time dependent calculations of power and voltage in distribution networks.
We employ Fourier polynomials. The surrogate model strategy is aimed at reducing the computational cost
of time dependent simulations, albeit, at the expense of fidelity. The reduced representation is achieved by
identifying a small and most consequential subset of degrees of freedom. In power and voltage distribution
networks dynamics that are heavily influenced by strong cyclic weather events, e.g., the hourly, diurnal and
seasonal cycles, the weather/climate time series spectrum exposes these most energetic components. Once
the degrees of freedom are identified their amplitudes are optimized using training data. The key challenge
in using spectral methods in power network surrogates is addressing the computation of quotients. For this
we propose a numerically-stable deconvolution strategy.

1 INTRODUCTION

Data-driven approaches to surrogate modeling can preserve a significant amount of fidelity when compared
to a fully resolved model counterpart. See (Jiang, Zhou, and Shao ). However, these methods are often
ad-hoc and yield surrogate models that function as black boxes. Further, the training often involves a
significant amount of data and computation. We propose a trigonometric interpolation strategy to create
a reduced representation of distributed network data and a surrogate model based on the same, aimed at
reducing the computational cost of distributed network and circuit models, for problems that are strongly
influenced by cyclic phenomena, such as those present in climate and weather dynamics. An attractive
feature of Fourier interpolation is a natural connection of the network’s dynamics to the cyclic variations
in climate, weather, and demand for power.

Cyclic behaviors in distributed networks are sufficiently pronounced that they play an integral role
in load forecasting (Almeshaiei and Soltan 2011; Al-Alawi and Islam 1996). See also (Hu et al. 2019),
(Rastogi et al. 2021) and the context of control (Olama et al. 2020). Moreover, these cyclic variations are
growing in significance as renewable generation becomes an increasingly important source of electricity.
For weather-influenced power performance the Fourier method makes it easy to infer correlations between
weather cyclicity (e.g., diurnal and seasonal variations) and that of the network, yielding intepretability in
a surrogate generated by trigonometric interpolation.

Our proposed method trades fidelity for computational efficiencies by eliminating frequency components
that make small contributions to the solution. However, it is not solely based upon a low or band pass
filtering. The surrogate could be useful in generating quick network condition estimates critical to rapid
robust decisions, for example, in renewable power networks, however, the use of Fourier methods comes
with numerical challenges. In this paper we address these and suggest numerically efficient and stable
ways to overcome them.

To be clear, not every distributed network output or performance displays significant sensitivity to
weather and climactic conditions; ideally these conditions are to be avoided. However, and especially with
the greater reliance on renewable sources that happen to be weather sensitive, it is more common to see
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whole or parts of a distribution network performance to be influenced by weather, and perhaps climate. For
power signals or for distributed network models that have a strong weather/climate signature, the proposed
data and model surrogate could be a useful computational tool. In what follows it will be understood that
we are focusing on weather-sensitive signals and distribution networks.

2 SURROGATE MODEL IN THE FREQUENCY DOMAIN

For any time dependent variable, F(t) say, over time spans of a few years we expect a cyclic component
associated with weather and seasonal variation and a linear trend that becomes increasingly pronounced
over sufficiently long time scales. The latter encodes a linearized drift due to climate variations. Our
model is intended to capture the cyclic behaviors that dominate system dynamics, not ignoring climate
drift. Therefore, we decompose the signal F(t), with equally-spaced samples at time tn ∈ [t0, tS], into a
linearized trend α +β tn and a cyclic remainder. Thus

F(tn) = α +β tn + f (tn) , n = 0,1, . . . ,S

where α and β are constants estimated by least-squares. The linear trend α +β t corresponds to climate
drift.

For f (tn), after standard periodization strategies are applied, so that f is now tS-periodic (the periodization
of f (t) removes artifices and improves the spectral accuracy of the trigonometric interpolation), we assume
a complex trigonometric polynomial representation of the form

f (tn) =
S/2

∑
j=−S/2+1

f̂ (ω j)eiω jtn , n = 0,1, . . . ,S−1

f̂ (ω j) =
1
S

S

∑
n=0

f (tn)e−iω jtn , j =−S
2
+1, . . . ,S (1)

where f̂ are the complex coefficients. In what follows let F (ω) denote the discrete Fourier transform of
f (t) and its inverse by F−1.

The reduced model will be a trigonometric approximation f̃ (t) of f (t), with s degrees of freedom,
where s ≪ S, defined for t0, t1, ..., tS. One reduction strategy is to use some criteria for picking frequencies
ω , possibly among the ω j, and amplitudes f̂ (ω), possibly f̂ (ω j). The strategy we follow here is to pick
among the ω j trigonometric basis, informed by the weather, and use some criteria to find their corresponding
(complex) amplitude f̂ , not necessarily f̂ (ω j). We will develop the latter strategy. The motivation for this
strategy is illustrated by the top of Figure 1a. The figure shows power demand fluctuations, denoted as
δP(t), at a specific location in a distribution network (the signal is synthetic but inspired by actual local
electric utility meter reports; the signal has been stripped of its mean value and modified in amplitude).
The hours mark time relative to January 1 at 12am, 2022. The readings were taken every hour, over
the course of one year, for a total of 8,760 entries. Figure 1b shows the time series after it is reshaped
lexicographically, with hours per day and days per year as axes. The reshaping makes explicit the diurnal
cyclicity, and to a lesser extent, seasonality, of the signal.

The corresponding approximation to f (tn) retains significant elements from the two distinct time scales
while discarding the rest. The resulting form of the model is

f̃ (tn) := ∑
j∈JL

f̂ (ω j)eiω jtn + ∑
j∈JH

f̂ (ω j)eiω jtn , (2)

for tn = 0, t1, . . . , tS where JL are the low frequency components, associated with seasonal variations,
and JH are the high frequency components associated with daily variations. The main question is which
elements to retain while maintaining an acceptable bound on the approximation error.
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(a) (b)

Figure 1: (a) Detrended power signal δP(t); (b) the same time series, lexicographically organized, or
reshaped, in 24 hour increments. The signal is based upon an historical record of power usage in a
residential unit, taken over one year at 1 hour intervals.

Given sets JL and JH the approximation error is

max
0≤tn≤tS

| f (tn)− f̃ (tn)|2 ≤ ∑
ω j∈S\J

| f̂ (ω j)|2, (3)

where J = JL ∪ JH . This is the familiar global error for spectral interpolation, which presumes that the
amplitude f̂ in f̃ for the terms included are identical to the f̂ of f itself. However, if the f̂ in f̃ are allowed
to be something else, one has to resort to an empirical error. The total energy in the signal and the estimate
in (3) provide guidance, but are not sharp bounds on the error, and hence, one needs to work with an
empirical threshold.

A alternative expression for the error involves transforming the reduced signal back into the time
domain. In this case, using our selected s components and f̂ in f̃ seek to satisfy

| f (tn)− f̃ (tn)|2 ≤ TOL (4)

where TOL is a non-negative empirical error threshold, and the condition is satisfied at s of the tn locations.
The fact that TOL is not a priori generally determined suggests two approaches to determining a sparse
representation of the signal in terms of a fixed set of frequencies.
Method 1 (sparse) emphasizes sparsity (low s < S), accepting larger TOL values to accommodate energy
shortfalls in the approximation. Here, we work with the reshaped data. Without loss of generality we will
assume that the data was collected hourly over 1 year.

To find the frequencies associated with JL we perform the discrete/fast Fourier transform (FFT) along
the day axis, producing 24 FFTs. For each of these we normalize the modulus of the Fourier coefficient to
the largest one in each hour. We identify, on each hour, the frequencies with the largest normalized moduli
and we make use of (3) to establish an amplitude cutoff. The set of frequencies in JL is the union of the
most energetic among all 24 FFTs.

To establish the set of frequencies in JH we have 365 FFTs in the hour axis, perform a similar search.
Next, we use (4) to fix the amplitudes at these given frequencies. A Monte Carlo process would then be
performed in which each sample chooses a different set of s of tn locations, and the problem will be one
of determining the coefficients such that (4) in the expectation is satisfied.
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Method 2 (energy) emphasize energetic consistency, accepting possibly a larger s than in Method 1.
The set JH is found as in Method 1. However, in choosing the set in JL we pick all frequencies below
some threshold.

Let ωL belong to a frequency in the daily range. Hence,

f̃ (tn) :=
L

∑
j=−L

f̂ (ω j)eiω jtn + ∑
j∈JH

f̂ (ω j)eiω jtn , (5)

where L < S and L not in JH . Basically, we are thresholding in the frequencies associated with daily
motions, and we are retaining only frequencies that have importance in the hourly data. The amplitudes
of the components in JH are picked as in Method 1, and the amplitudes associated with ω j ≤ ωL are set
by fulfilling (3).

3 USING THE SURROGATE REPRESENTATION

The computational challenge posed by adopting trigonometric polynomials to build a practical surrogate
for power/voltage networks is that products of signals in the time domain become convolutions in the
frequency domain. Hence, convolutions/de-convolution operations need to be addressed in a numerically
stable manner.

To illustrate the challenge and a possible practical solution, consider the power flow calculations for
a distributed network with N current loops or bus components. The power at time tn at the kth element is
found by solving

Pk(tn) =Vk(tn)
N

∑
j=1

Yk j(tn)Vj(tn)eiφk j , tn = t0, t1, ..., tS, (6)

where P is power, V is the voltage, Y is the admittance or the inverse of the impedance Z, and φ the phase.
We note here that we allow for the admittance to be time dependent. Solving this problem in the time
domain for S time steps requires S solutions of the power flow equations.

In the frequency domains, only a single solution is required but that solution involves a convolution of
the s components in our surrogate model. Specifically, if we write (6), for each tn, as

Pk(tn) =Vk(tn)Mk(tn), k = 1,2, ...,N (7)

where Mk(tn) = ∑
N
j=1Yk j(tn)Vj(tn)eiφk j then, in Fourier space, the equations to be solved are

P(ωℓ) =
1

2π
V (ωℓ)⋆M(ωℓ), (8)

where ⋆ conveys the convolution operation, P(ω) =FP(t), for ℓ= 0,1, ..,S−1, and k = 1,2, ..,N. For the
time dependent case, there is a non-linear solve which is often done at each time step by some bisection,
fixed point or higher order iteration scheme, presuming conditions are right for a unique fixed points to
exist at each time step. In the Fourier case, and presuming the same conditions on fixed points, the iteration
is done over all of frequencies at once.

To compute the convolution in a numerically stable manner we rewrite, for ℓ= 0,1, ..,S−1, (8) as

P(ωℓ) =
1

2π
HS

V M(ωℓ),

where HS
V is an anti-cyclic matrix of dimension S. If we instead use s interpolants, and Hs

V we obtain
a reduced representation of the variables. The explicit form of HS

V will be made plain in a calculation
that follows. (Success in this calculation requires that the variables be periodic, which might require
pre-processing data for periodization via extensions).
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Figure 2: Time series for R(t), used in the surrogate model example calculation.

3.1 A Sample Calculation

We restrict our example to a simple circuit calculation to emphasize the construction and use of the
convolution matrix HV . A generalization to power flow calculations is straightforward, but the necessary
iterative procedure reduces the illustrative power of the more complete problem.

Consider a circuit with N = 1 loop currents I(t), voltage sources E(t), power P(t), and N ×N (real)
impedance matrix R(t). The goal of this calculation is to develop a surrogate and use it to calculate the
unknown voltage and power and compare these to the time dependent non-reduced values, we denote as
the ’exact’ solution. The simple system is given:

R(tn)I(tn) = E(tn) , tn = t0, ..., tS and (9)

E(tn)I(tn) = P(tn). (10)

We use the power data shown in Figure 1a for δP(t). Another time synthetic time series is used for R(t)
and is inspired by another local utility record. R(t) is shown in Figure 2. We will solve for the unknowns
I(t) and E(t). The time dependent benchmark is solved in a straightforward manner using (9)-(10). For
the estimate, on the other hand, we employ Method 1 and 2 to find surrogates of R(t) and P(t), and we
use (9)-(10) to solve for the surrogates of I(t) and E(t) using the same s Fourier components we used to
capture R and P in Fourier space and then transform back to real time.

If we cast

P(t) = p0 +δP(t) = p0 + p1t + p(t) and

R(t) = r0 +δR(t) = r0 + r1t + r(t)

the terms p0 + p1t and r0 + r1t are the ’climate’ linear trends, and r(t) and p(t) are the ’weather’ cyclic
terms. Apparently in 2022, when this data was collected, the trend was downward: p0 = 3.6545 W,
p1t =−3.281×10−5t W, and r0 = 12.223Ω, r1t =−8.455×10−6t Ω, respectively.

The spectrum of δP(t) is shown in Figure 3. To begin, we reshape δP and δR (see Figure 1). We then
analyze the 24 yearly T−time series δP(T ) and δR(T ), and the 365 daily t−time series δ p(t) and δ r(t).
The spectra of each of the T and, respectively, the t series, were similar enough that we simply produced
an ensemble average T -time series and a t− time series.

3.1.1 Method 1 (sparse)

We analyze the averaged T -time series for δP and δR. Figure 4.
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Figure 3: Spectrum of δP(t). δP(t) appears in Figure 1 in its original and its reshaped form.

Figure 4: Modulus of the Fourier coefficients of the discrete Fourier transform of the ensemble averaged
T−time series δP(T ). Inset, Fourier modulus for t−series δ p(t), respectively.

We construct trigonometric approximations of the form

δ̃P(T ) = ∑
|l|∈JL\0

δ̂P(Ωl)eiΩlT ,

δ̃R(T ) = ∑
|l|∈JL\0

δ̂R(Ωl)eiΩlT

where Ωl are the frequencies on the day time scale, and T is in units of days.
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(a) (b)

(c)

Figure 5: Comparison of the exact (solid) and the approximate time series (dashed). (a) δP(T ) (a) Method
1 and (b) Method 2; (c) δ p(t), for both methods.

In this method we rank-order the amplitude of spectral components (normalizing these to the highest
component), and based upon their modulus amplitude we add them to the set JL. We then tune the amplitudes
using an empirical threshold 0 ≤ TOL ≤ 1. We perform a similar process on the t-time series, creating an
approximation of the form

δ̃ p(t) := ∑
|l|∈JH\0

δ̂ p(ωl)eiωlt , δ̃ r(t) := ∑
|l|∈JH\0

δ̂ r(ωl)eiωlt

where ωl are frequencies in the hour scale and t is in units of hours.
The parameter TOL was set to 0.1, sifting 61 daily modes (JL) and 4 hourly modes (JH), for a total of

s = 65 modes. The amplitudes of the reconstruction were then optimized according to (4). In Figure 5a
we show a comparison of the exact T−daily signal for P using Method 1.
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(a) (b)

Figure 6: Method 1. Comparison of the exact (solid) and the approximate time series (dashed) on δP(t).
(a) using only the JL modes (b) adding the JH modes.

3.1.2 Method 2 (energy)

Method 2 picks the individual hourly frequencies, and we threshold the frequencies associated with daily
frequencies. Using the same value for TOL, we obtain the comparison shown in Figure 5b. The results are
qualitatively better than in Method 1, albeit we used 126 (JL) Fourier interpolants for the T−time series
and 4 (JH) for the t−time series. In this case we are using a total of s = 130 modes. The final step for
either method is to assemble the approximation of the S-long time series. We will only show δP. For each
respective method, we assemble (2).

In Figure 5 there are marked differences in the reconstruction of the dayly time series, between both
methods. The tolerance was the same in both methods; a tighter fit would be obtained with Method 1 using
a smaller tolerance (Figure 5a). In Figure 6 we show a comparison of δP(t) and its approximation using
Method 1. In Figure 6a we show the approximation using only the JL modes and amplitudes. In Figure
6b we add the JH modes. In contrast, Figure 7 shows a comparison of δP(t) and its approximation using
Method 2. Figure 7a displays the comparison of the exact and its approximation using only the JL modes
and amplitudes. In Figure 7b we add the JH modes.

3.1.3 Surrogate Model

In this paper we define a surrogate model as a set of reduced Fourier representation of coupled equations.
The structure of the equations is inherited from the primitive time dependent equations the Fourier equations
derive from. The coefficients of the individual trigonometric interpolants are derived by Method 1 or 2, to
approximately satisfy the primitive equations. The surrogate model, built using Method 2, will be used to
calculate I(t) and E(t). This requires solving for the coefficients of the Fourier polynomial approximation
for I(t) and E(t), the s Fourier modes will be the 130 modes that were used to determine the approximation
for P(t) and R(t). To solve for the coefficients of the 2 unknowns we work in Fourier space using (9) and
(10). For each ℓ ∈ JL ∪ JH ,

1
2π

Z(ωk −ωℓ)I(ωℓ) = E(ωℓ) , k ∈ JL ∪ JH

1
2π

I(ωk −ωℓ)E(ωℓ) = P(ωℓ) , k ∈ JL ∪ JH . (11)
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(a) (b)

Figure 7: Method 2. Comparison of the exact (solid) and the approximate time series (dashed) on δP(t).
(a) using only the JL modes (b) adding the JH modes.

To solve for I(ω) and by a fixed point method for E(ω) we will need to perform deconvolutions.
Conventional deconvolution is generally numerically unstable. Hence, crucial to making the use of a

Fourier-based surrogate that is practical, we need to propose an alternative procedure. The key to solving
the system is to convert the convolution into the matrix problem

Hs
ZI(ωℓ) = E(ωℓ), (12)

Hs
Z is a matrix of size s×N per side, for N loops, corresponding to N currents. The exact solution is

obtained when s = S.
For N = 1 the exact calculation (that is, with s = S), the HS

Z convolution matrix
Z(0) −Z(S−1) −Z(S−2) · · · −Z(2) −Z(1)

Z(1) Z(0) −Z(S−1) · · ·
.
.
.

.

.

.
.
.
.

.

.

. · · ·
.
.
.

· · · Z(0) −Z(S−1)
Z(S−1) Z(S−2) · · · · · · Z(1) Z(0)


is an S×S matrix, the argument of each entry is the frequency index. The matrix Hs

Z is of size s× s, if the
reduced representation is used. The computational complexity of the convolution is O(S2), which when
compared to the O(S) of the conventional time dependent methodology, hardly justifies its use. However,
if we use surrogates and these are of dimension s < S, it is possible that the dimensions of the surrogate
are such that s2 < S, in which case the convolution methodology gains practical currency.

Figure 8 shows the results of using the deconvolution and Method 2 to solve for the current and the
electromotive potential, as a function of time. We choose here to display the comparison of the exact and
the surrogate approximation in Figure 8 the T -time daily evolution of the current and potential and in the
inset, the corresponding counterparts for t−time.

4 COMPUTATIONAL COMPLEXITY

For an S element time series, the computational complexity of the reduced Fourier representation is s < S.
Additionally, there are 2 fast Fourier transforms (FFT), along with some additional processing.

For the surrogate model, the computational complexity is application specific. We will merely highlight
the cost estimates for key operations that arise in calculations such as the ones encountered in power networks,
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Figure 8: Method 2: Superposition of the surrogate approximation and the exact solution; The current
I(T ). Inset: comparison of reduced (dots) and exact I(T ) year-long current.

i.e., typified by Equation (6) or for distribution circuits, i.e., Equations typified by (9)-(10). The cost of
vector multiplication in time as compared to vector convolution; the cost of deconvolution; the cost of
matrix-vector multiply and its Fourier counterpart; the cost of simple fixed point iteration.

The multiplication of two scalar time series of size S require s2 operations in Fourier, hence, as long as
s2 < S, there is a saving in required operations (ignoring FFT costs). In both the power and the loop current
calculations there are matrices of size N, where N is the number of loops. A matrix-vector multiply, over
S time steps would thus require N2S operations. The (reduced) convolution involves s frequencies, so the
cost is N2s2. In the loop calculations the inversion of the impedance matrix is required, S times. Supposing
we use QR, for example, the cost is N3S in the time domain. In the frequency domain, inverting and
convolving would cost N3s2. In summary, the reduced representation model is computationally-competitive
when s2 < S.

For N = 1 one can deconvolve by inverting Hs
Z = QR, where Q is unitary and R is an upper triangular

matrix. This is the process used in the computational examples shown above. For example, (12) becomes,
for ℓ= 0,1, ...,S−1,

Ĉ(ωℓ) := QÊ(ωℓ) and Î(ωℓ) = RĈ(ωℓ) . (13)

Once Î(ωℓ) is obtained, using (13), I(t) is obtained by taking an inverse Fourier transform. The QR
decomposition cost is O(S3). (A sparse algorithm is used in practice and thus the above inversion cost
is usually pessimistic). Clearly, the reduced Fourier case, in which HS

Z is replaced by Hs
Z is especially

effective in reducing the computational cost of the QR inversion. Parenthetically, the smaller s is, the better
conditioned will be the convolutional matrix, presuming that there are significantly fewer modes in JH than
in JL.

Regarding the solution of (9) and (10), a fixed point iteration is involved to solve for all of the variables,
and in the time dependent case, the fixed point iteration is usually performed at each time step, at a cost of
O(S× Jt), where Jt is the typical number of interations per time step. In Fourier, the fixed point iteration
is done for each frequency, at a cost O(s×Jω) (alternatively, over all Fourier coefficients simultaneously).
Hence, the approximate Fourier will be more efficient if Jt ≈ Jω , and s < S.
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5 CONCLUSIONS

The goal of this project was to develop a computationally efficient polynomial approximation of observational
data as well as a general procedure to generate surrogate models of time dependent distributed network
models. In approximating time series, the strategy achieves a significant data representation reduction,
albeit at the expense of fidelity. In creating surrogate models of time dependent processes, its practical
goal is reducing the expense of time dependent simulations in large scale power and distribution systems.
In both of these applications it is presumed that there is a strong influence on weather/climate, as it is this
dependency that influences the reduced representation. Trigonometric polynomials are chosen here because
of their spectral accuracy. Furthermore, the choice was motivated by the empirical observation that strong
correlations between weather and climate and networks that are sensitive to these environmental factors
will be borne out in the spectra of the weather and the network signals. In this sense, the surrogate will
be endowed with interpretability. For an alternative Fourier-based approach, see (Willcox and Megretski
2005).

A lower dimensional and computationally nimble surrogate model can be a useful alternative to a very
large and computationally demanding time dependent distribution model when a quick estimate of some
dynamic quantity suffices. A major obstable to using Fourier methods in power distribution networks was
addressed in this paper, namely, the stable (de) convolution operation, critical to quantities that appear as
time dependent products/quotients. We argue that for simulations of weather-sensitive power distribution
networks, a surrogate that comes equipped with the inherent variability of weather itself can prove useful
in understanding the dynamics of the distribution systems. The construction of the surrogate proposed here
relies on using a subset of Fourier interpolants or degrees of freedom. The subset of degrees of freedom
is not chosen by a low-pass filtering or by an energetic ranking, but instead is informed by the degrees of
freedom in the weather signal. In the examples presented in this paper the classification of the electrical
signals was made in terms of time scales, a diurnal and a seasonal set, based upon the conjecture that
both of these would be strongly identified in the consumption of power. Other classifications may be
possible with this data set. Two slightly different algorithms are proposed. Both include hourly as well
as diurnal scales of resolution. One of the methods picks the most salient frequencies in each time scale,
the other thresholds the longer time scales and chooses salient frequencies in the fast scales. Once the
Fourier interpolants are chosen, the final surrogate is constructed by tuning the amplitudes to either a data
set or by constraining the amplitudes, using least squares. A possible extension of this work would pursue
an optimization on both the frequency content as well as on the amplitudes of each of the modes. This
would entail pinning down twice the number of degrees of freedom in the surrogate. For a distribution
system that is very highly affected by weather, this approach might complicate things and yield incremental
improvements. However, for a network where internal as well as external forces play a role, this approach
might prove fruitful. Another follow up on this work would be to extend the strategy to a Fourier Feature
Network (Kovatchi, Lanthaler, and Mishra 2021) surrogate. The goal there would be to endow the Fourier
network with a prior data classification, thus curbing the training demands on the network. It is not clear,
at the outset, that doing so would lead to a computationally more efficient Fourier Feature Network, as
compared to the empirical spectral technique we proposed here.
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