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ABSTRACT

This paper explores the dynamic assortment optimization problem in the context of live-streaming sales. In
response to the dynamic characteristics of live-streaming e-commerce, we propose a new choice model that
extends the traditional Multinomial Logit model into the continuous time domain. This novel model enables
the decoupling of parameter estimation for different products and facilitates the convenient updating of
posterior parameters at any time. Finally, we introduce a myopic optimization algorithm based on Thompson
Sampling. This algorithm effectively balances exploration and exploitation, captures fluctuations in the
number of audiences, and demonstrates superior numerical performance.

1 INTRODUCTION

Assortment optimization problems are prevalent across numerous industries, such as retailing, e-commerce,
and online advertising. In these contexts, sellers are tasked with choosing a subset from a pool of alternative
items, all with the aim of maximizing expected revenue. For a comprehensive understanding of assortment
optimization problems, we direct readers to the survey paper of Kök et al. (2015). Notably, dynamic
assortment optimization constitutes a critical segment within this domain (Sauré and Zeevi 2013; Miao and
Chao 2021). In dynamic settings, customers’ preferences are unknown, and thus sellers are confronted with
the dual challenge of deciphering customers’ preferences while striving to maximize revenue. Given the
inherent uncertainty in preference learning, achieving a suitable balance between exploration and exploitation
becomes essential. As a result, dynamic assortment problem can be aptly framed as a Multi-Armed Bandit
(MAB) problem (Auer et al. 2002). Under this framework, various techniques, including Upper Confidence
Bound (UCB) and Thompson Sampling (TS), have been thoroughly investigated (Agrawal et al. 2017;
Agrawal et al. 2019).

In this paper, our focus is on an emerging business model that is garnering increasing attention
from researchers (Simchi-Levi et al. 2021), yet has not received adequate exploration in the assortment
literature: live-streaming sales. Generally, live-streaming sales events are led by key opinion leaders
(KOLs) on platforms like Amazon Live, Taobao Live, and TikTok. During the live-streaming sales, hosts
meticulously curate products to showcase, promote, and sell successively. The process of product selection
emerges as a crucial aspect of a company’s preparations for live-streaming sales.

Unlike traditional e-commerce platform retailing, live-streaming sales exhibit distinctive characteristics
that existing modeling and optimization methods have not fully addressed. First, conventional literature
typically assumes that sellers display a set of multiple products simultaneously. However, in live-streaming
sales, products are introduced sequentially, leading to a gradual expansion of the assortment available to
customers over time. This dynamic resembles the monotonic choice model proposed by Davis et al. (2015).
Consequently, besides the subset selection, sellers must further determine the order and timing of introducing
new products, significantly augmenting the degree of freedom in assortment policy. Second, traditional
choice models primarily rely on the Multinomial Logit (MNL) model or its variations (Rusmevichientong
et al. 2014; Bai et al. 2024), typically assuming that customers make decisions at given discrete time points
based on their preferences. However, during live-streaming sales, customers have the flexibility to enter
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or exit the live-streaming room and make purchase decisions at any moment along a continuous timeline.
Therefore, the fluctuation in audience traffic over time emerges as a crucial factor for revenue optimization,
which has been scarcely addressed in existing literature. To capture these distinctive characteristics, we
propose a novel basic model to formulate the assortment optimization problem in the context of live-
streaming. In addressing this problem, our study derives the associated parameter estimation method and
develops a Thompson Sampling-based myopic assortment policy.

The rest of this paper is organized as follows. In Section 2, we present the model formulation for
live-streaming assortment problem, highlighting its connection to traditional MNL models. Section 3 derives
the posterior parameters in the newly introduced model. In Section 4, we propose a myopic algorithm based
on Thompson Sampling (TS) to approximately solve the live-streaming optimization problem. Section 5
tests the empirical performance of our proposed algorithm.

2 PROBLEM FORMULATION

In this section, we formulate the assortment optimization problem in the context of live-streaming. First,
we present the primary notations and definitions for modeling the live-streaming process and its associated
decision-making framework. Then we compare the new basic model with the MNL model, clarifying their
distinctions and interrelations.

2.1 Basic Model

For convenience, we denote the set of all candidate products by M ≜ {1,2, ...,M}. A live-streaming
sales event is denoted by S(t), t ∈ [0,T ], where S(t) is the product being introduced by the live-streaming
host at time t. The total assortment size for the live-streaming, denoted by k(T ) =

∣∣⋃
t∈[0,T ] S(t)

∣∣, is
not predetermined. During the live-streaming, the host starts to introduce the i-th product si ∈ M at
time Ti and continues until time Ti+1, where 0 = T1 < T2 < · · · < Tk(T ) < Tk(T )+1 = T . Moreover, the
introduction time Ti+1 −Ti, i = 1, . . . ,k(T ) is constrained to be within [∆Tmin,∆Tmax], where ∆Tmin and
∆Tmax are predetermined by decision-makers. For t ∈ [Ti,Ti+1), i = 1, . . . ,k(T ), we have S(t) = {si}.
Decision-makers need to determine when to introduce a new product (i.e., Ti, i = 1, . . . ,k(T )) and which
new product to introduce (i.e., si, i = 1, . . . ,k(T )), where k(T ) is also a decision variable to be determined.
Consequently, a live-streaming assortment policy is denoted by a sequence π[0,T ] = {(T π

i ,sπ
i )}

kπ (T )
i=1 . Clearly

the realization of S(t) depends on π[0,T ], but for the sake of notation simplicity, we omit this dependency
in our notation.

Consider an audience entering the live-streaming room at time t0. The audience will watch the live-
streaming for a while and then leave the live-streaming room either after purchasing one product or without
purchasing. Before leaving, the audience has access to the assortment set A(t0, t) =

⋃
t ′∈[t0,t] S(t

′) at time
t. We introduce a set of random variables {Yj, j ∈ {0}∪A(t0, t)}, where Yj, j ∈ A(t0, t) represents the
time when the audience’s desire to purchase product j matures, and Y0 represents the time when the
audience’s desire not to purchase anything matures. Naturally, Yj, j ∈ A(t0, t) must not be earlier than the
time (T S j) when the audience first encounters the product j, while Y0 must not be earlier than the time
(T S0) when the audience enters the live-streaming room. Regardless of which desire matures first, the
audience will leave the live-streaming room subjectively, where “subjectively” means the live-streaming
will continue as long as possible without forcing the audience to leave, i.e., T = +∞ mathematically.
Conditional on the assortment set A(t0, t ′), t ′ ≥ t is fixed as A(t0, t), the time that the audience leaves the
live-streaming room subjectively is denoted by X |A(t0, t) and supported on [t,+∞), following a distribution
X |A(t0, t)∼ min{Yj|Yj ≥ t, j ∈ {0}∪A(t0, t)}.

At t = 0, the live-streaming begins with an initial audience count of n0. The arrival process of new
audiences is known and denoted by N(t), t ∈ [0,T ], where N(t) is the flow intensity of audiences entering
the live-streaming room at time t. During the live-streaming, each product j ∈ M yields a known reward
of r j upon sale. At t = T , the live-streaming ends, and all remaining audiences are subsequently forced
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to leave, with no further purchasing actions occurring. The expected total reward under policy π[0,T ] is
denoted by R(π[0,T ]), and our objective is to design an optimal policy that maximizes R(π[0,T ]), i.e.,

max
π[0,T ]

R(π[0,T ]). (1)

2.2 Connection to MNL Model

The density function of Yj’s is generally flexible, allowing our model to capture the underlying purchasing
behavior of the audience effectively. For the purpose of establishing a connection to the classic MNL
model, we assume in this study that Yj −T S j follows an exponential distribution (Exp(λ j)) with a rate
parameter λ j, j ∈ {0}∪M and is independent of each other.

First, we provide a brief overview of the popular MNL model. In the MNL model, v j represents the
preference weight that customers assign to product j, while v0 denotes the preference weight associated with
the no-purchase option. Given that we offer the set of products A to customers, each customer purchases
product j ∈ A with a probability of v j/(v0+∑ℓ∈A vℓ). Within the MNL model framework, customers observe
an assortment and make a purchasing choice instantaneously. Thus, the MNL model can be regarded as a
static choice model for discrete-time points.

In our study, the purchasing behavior of audiences is modeled as a stochastic process. The audience
continuously observes the assortment and makes a purchasing decision at the conclusion of this stochastic
process. We further investigate the probability of purchasing product j conditional on the audience leaves
at time t ′ ∈ [Ti,Ti+1] and given A(t0,Ti). With the assortment set A(t0, t), t ∈ [Ti,Ti+1] being fixed and
utilizing the memoryless property, we have when t ′ ∈ [Ti,Ti+1],

(t ′−Ti)|A(t0,Ti)∼ min{Exp(λ j), j ∈ {0}∪A(t0,Ti)}= Exp

(
λ0 + ∑

m∈A(t0,Ti)

λm

)
. (2)

Therefore, for x supported on {0}∪A(t0,Ti) and t ′ ∈ [Ti,Ti+1], we have

P(x = j|t ′,A(t0,Ti)) = P(x = j|t ′−Ti,A(t0,Ti))

=
f (x = j, t ′−Ti,A(t0,Ti))

f (t ′−Ti|A(t0,Ti))

=
λ je

−(λ0+∑m∈A(t0 ,Ti) λm)(t ′−Ti)

(λ0 +∑m∈A(t0,Ti) λm)e
−(λ0+∑m∈A(t0 ,Ti) λm)(t ′−Ti)

=
λ j

λ0 +∑m∈A(t0,Ti) λm
, (3)

where f (·) denotes the probability density function. The choice model in (3) aligns with the MNL model:
conditional on the time of making a purchasing choice and the current assortment set, the purchasing choice
is multinomially distributed. Meanwhile the rate parameter λ j can be considered as the preference weight
of product j in the MNL model. It is worth noting that our choice model P(x = j|t ′,A(t0,Ti)) extends the
discrete-time MNL model into the continuous-time domain. Specifically, as shown in Figure 1, a random
variable t ′ is first generated as the departure time, and then the purchasing choice follows an MNL model
with respect to the current assortment.

3 PARAMETER ESTIMATION

In this study, we estimate each λ j, j ∈ {0}∪M under a Bayesian framework. Leveraging the conjugacy
of exponential families, we assume each λ j, j ∈ {0} ∪M follows a prior Gamma(α j,β j). At any
time t, the available historical information up to t is Ht = {{S(t ′)}t ′∈[0,t],{cn(t),T En,T Ln(t)}n=1,...,nt},
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Figure 1: Audiences may make decisions at any moment t ′ along a continuous timeline, following the
MNL model.

where nt = n0 +
∫ t

0 N(x)dx is the total number of audiences entering the live-streaming room before
t, cn(t) ≜ (cn,0(t),cn,1(t), . . . ,cn,M(t)) is a vector with each of its dimension cn, j(t) indicating whether
audience n purchases product j or not until time t, T En is the entering time of audience n, and T Ln(t) is
the latest watching time of audience n. Given Ht , we have

k(t) =

∣∣∣∣∣ ⋃
t ′∈[0,t]

S(t ′)

∣∣∣∣∣,
Ti = inf{t ′|k(t ′) = i, t ′ ∈ [0, t]},

si = S(Ti),

dn,i(t) =



Ti+1 −Ti, T En < Ti and T Ln(t)> Ti+1

T Ln(t)−Ti, T En < Ti < T Ln(t)≤ Ti+1

Ti+1 −T En, Ti ≤ T En < Ti+1 < T Ln(t)
T Ln(t)−T En, Ti ≤ T En < T Ln(t)≤ Ti+1

0, otherwise

where k(t) is the assortment size for the live-streaming at time t, dn,i(t) is the time duration of audience
n watching product si up to time t, and then dn(t) ≜ (dn,1(t), . . . ,dn,k(t)(t)). Therefore, the historical
information set Ht can be reformulated as Ht = {k(t),{Ti,si}i=1,...,k(t),{cn(t),dn(t)}n=1,...,nt}.

By Bayes’ rule, the posterior joint distribution of λλλ ≜ (λ0,λ1, . . . ,λM) conditional on Ht is derived as
follows:

f (λλλ |Ht) ∝ f (Ht |λλλ ) f (λλλ ).

As λ j’s are independent with each other, we have the prior distribution

f (λλλ ) = ∏
j∈{0}∪M

β
α j
j

Γ(α j)
λ

α j−1
j e−β jλ j .

As all audiences are independent with each other, we have the likelihood function

f (Ht |λλλ ) =
nt

∏
n=1

f (k(t),{Ti,si}i=1,...,k(t),cn(t),dn(t)|λλλ ).
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Derived from (2), for each audience n, we have

f (k(t),{Ti,si}i=1,...,k(t),cn(t),dn(t)|λλλ )

=

k(t)−1

∏
i=1

(λ0cn,0(t)+
i

∑
i′=1

1{dn,i′(t)> 0}λsi′ cn,si′ (t)

)1−1{dn,i+1(t)>0}

e−
(

λ0+∑
i
i′=11{dn,i′ (t)>0}λsi′

)
dn,i(t)

]
1{dn,i(t)>0}

)
×

(λ0cn,0(t)+
k(t)

∑
i=1

1{dn,i(t)> 0}λsicn,si(t)

)∑
k(t)
i=0 cn,i(t)

e−
(

λ0+∑
k(t)
i=11{dn,i(t)>0}λsi

)
dn,k(t)(t)

]
1{dn,k(t)(t)>0}

=
(

λ
cn,0(t)
0 e−∑

k(t)
i=1 λ0dn,i(t)

)
×

(
k(t)

∏
i=1

λ
cn,i(t)
si e−∑

k(t)
i′=i λsi dn,i′ (t)

)
.

Therefore, the posterior distribution of λ j, j ∈ {0}∪M is shown as follows:

λ j|Ht ∼


Gamma(α j +∑

nt
n=1 cn, j(t),β j +∑

nt
n=1 ∑

k(t)
i=1 dn,i(t)), j = 0

Gamma(α j +∑
nt
n=1 cn, j(t),β j +∑

nt
n=1 ∑

k(t)
i′=i dn,i′(t)), j = si, i = 1, . . . ,k(t)

Gamma(α j,β j), otherwise.

Note that, even without purchasing product j, we can still update the posterior parameter of product
j using non-purchase data and data from other products. Additionally, the posterior updates of different
products are decoupled, which cannot be done in traditional MNL models.

4 THOMPSON SAMPLING-BASED MYOPIC POLICY

The seller’s strategy space encompasses both the timing for introducing new products and the selection
of which products to introduce. Additionally, the posterior distribution of parameters is updated online
during the live-streaming. Due to the vast strategic space and the dynamic nature of the problem, we focus
on providing an efficient myopic algorithm to approximately solve the optimization problem (1). Here,
“myopic” refers to: (i) looking ahead and optimizing the reward within the subsequent time interval where
the product assortment remains unchanged, and (ii) focusing solely on the profits brought by the current
customers in the live-streaming, disregarding potential profits from future customers. The utilization of the
myopic algorithm to approximately solve the original optimization problem is a prevalent practice within
the assortment optimization literature, particularly for online and dynamic settings (Simchi-Levi et al. 2021;
Gong et al. 2022; Aouad and Saban 2023).

For the sake of theorem formulation convenience, we denote the expected reward of audience n leaving
the live-streaming at time t by Rn(t)|An(t), where An(t) represents the assortment set for audience n at time
t. Thus following (3), Rn(t)|An(t) = (∑m∈An(t) rmλm)/(λ0 +∑m∈An(t) λm). Further, if the assortment set is
fixed as An(t) during the period [t, t +∆T ], then following (2) and (3), the expected “myopic” reward of
audience n during the period [t, t +∆T ] can be denoted and calculated by

Rn([t, t +∆T ])|An(t) =
∑m∈An(t) rmλm

λ0 +∑m∈An(t) λm

(
1− e−(λ0+∑m∈An(t) λm)∆T

)
. (4)

First, we discuss the strategy for the timing of product introductions. To begin with, we present the
following theorem to demonstrate an optimality property of the assortment policy.
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Theorem 1 Given any period [t, t+∆T ] such that
∣∣⋃

t ′∈[t,t+∆T ] S(t
′)
∣∣= 1, let Nt be the number of audiences

at time t and R̄(t)≜ max
n=1,...,Nt

Rn(t)|An(t). If there is a product j that has not yet been introduced such that

r j ≥ R̄(t), then assortments An(t)∪{ j}, n = 1, . . . ,Nt has a better expected reward of audience n during
the period [t, t +∆T ] than assortments An(t), n = 1, . . . ,Nt .

Proof. Given the assortment An(t), the expected reward of audience n during the period [t, t +∆T ] is

Rn([t, t +∆T ])|An(t) =
∑m∈An(t) rmλm

λ0 +∑m∈An(t) λm

(
1− e−(λ0+∑m∈An(t) λm)∆T

)
.

Given the assortment An ∪{ j}, the expected reward of audience n during the period [t, t +∆T ] is

Rn([t, t +∆T ])|An(t)∪{ j}=
∑m∈An(t)∪{ j} rmλm

λ0 +∑m∈An(t)∪{ j} λm

(
1− e−(λ0+∑m∈An(t)∪{ j} λm)∆T

)
.

Given the sufficient condition

r j ≥ max
n=1,...,Nt

∑m∈An(t) rmλm

λ0 +∑m∈An(t) λm
≥

∑m∈An(t) rmλm

λ0 +∑m∈An(t) λm
,

we have
∑m∈An(t)∪{ j} rmλm

λ0 +∑m∈An(t)∪{ j} λm
≥

∑m∈An(t) rmλm

λ0 +∑m∈An(t) λm
.

And it is obvious that (
1− e−(λ0+∑m∈An(t)∪{ j} λm)∆T

)
>
(

1− e−(λ0+∑m∈An(t) λm)∆T
)
,

then we have Rn([t, t +∆T ])|An(t)∪{ j}> Rn([t, t +∆T ])|An(t), which concludes this theorem.
As implied by Theorem 1, the quantity R̄(t) is an important indicator for determining the timing of

product introductions. Let r̄(t) = max j/∈
⋃

t′∈[0,t) S(t ′) r j, then the profitable condition

R̄(t)< r̄(t) (5)

is a sufficient condition for the existence of a product whose addition can lead to higher “myopic” rewards
in the subsequent time period. In our policy, the profitable condition at time t serves as the criterion for
deciding whether to introduce a new product into the assortment collection at that moment. Specifically,
as shown in Algorithm 1, the timing policy entails the following: once a product has been presented for
at least the minimum explanation time ∆Tmin, the seller repeatedly checks the profitable condition, and
as soon as this condition is met, the next product can be introduced. When computing R̄(t) and r̄(t) in
practice, the parameters λ j, j ∈ M ∪{0} are all replaced by their posterior estimates.

In general, the entire live-streaming process can be divided into two phases: the growth phase and the
stable phase, which are separated by a hitting time defined as

τ = inf{t ≥ 0 : R̄(t)≥ r̄(t)}.

Here, τ is the time when the profitable condition is first violated, and consequently, the growth phase
refers to the interval [0,τ), while the stable phase refers to (τ,T ]. Next, we will discuss the assortment
selection strategies for the two phases separately. Before proceeding, we introduce additional notations.
For a function f of time, f (t−) and f (t+) respectively denote the left and right limits of f at t, or more
intuitively, the moment just before and just after time t.
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Algorithm 1 Thompson Sampling-Based Myopic Policy (TS-Myopic)
Input: {α j,β j,r j} j∈M∪{0}, T, ∆Tmin, ∆Tmax
Initialization. Randomly introduce a product s1 ∈ M at time T1 = 0. Let i = 1 and I(t ≥ τ) = 0.
While t < T do
Posterior Update and Check Profitable Condition. Update λ j|Ht with equation (3). Calculate R̄(t)
and r̄(t) using posterior parameter estimates.
If R̄(t) first exceeds r̄(t) then

Let I(t ≥ τ) = 1.
End if
Product Introduction. If I(t ≥ τ) = 0, go to (A); If I(t ≥ τ) = 1, go to (B).
(A) If t ≥ Ti +∆Tmin then

Let i = i+1 and Ti = t. Introduce the product si according to (7) at time Ti.
End if

(B) If “R̄(t)< r̄(t) and t ≥ Ti +∆Tmin” or “t ≥ Ti +∆Tmax”
Let i = i+1 and Ti = t. Introduce the product si according to (8) at time Ti.
End if

End while

4.1 Growth Phase

As shown in Figure 2, at the initiation of the live-streaming, the assortment collection contains only one
product, s1, and R̄(t) is significantly lower than r̄(t), t ∈ [0,τ), primarily due to λ0 typically surpassing λs1 .
Consequently, there is a high probability that audiences will choose to leave without purchasing. Therefore,
during the growth phase, it is crucial to quickly introduce more profitable products to retain customers and
compete against the intention to leave without making a purchase. Following the introduction of si at time
Ti, sellers tend to swiftly introduce subsequent products after the minimal time interval ∆Tmin. When ∆Tmin
is small enough, utilizing (4) and Taylor expansion, the total expected reward of audiences n = 1, · · · ,NTi

during time [Ti,Ti +∆Tmin) conditioned on assortments An(T+
i ) = An(T−

i )∪{si}, n = 1, · · · ,NTi can be
expressed as

NTi

∑
n=1

R([Ti,Ti +∆Tmin))|An(T+
i ) =

NTi

∑
n=1

∑
m∈An(T+

i )

rmλm∆Tmin +o(∆Tmin). (6)

It is straightforward to verify that selecting a product si maximizing the “myopic” reward in (6) is
equivalent to maximizing rsiλsi . Therefore, products with higher r jλ j are more preferable. The most
straightforward idea is to pick the product that maximizes the posterior mean of r jλ j. However, this
strategy, being overly greedy, lacks exploration, particularly in scenarios where parameter estimates lack
sufficient accuracy. To address this, we turn to MAB techniques such as UCB and TS to strike a balance
between exploration and exploitation. Given the computational simplicity of the proposed model’s posterior
updates and sampling, we opt for TS. From the MAB perspective, introducing a new product j is akin
to pulling the “arm” j, with the resulting reward being r jλ j. In our algorithm, parameters are sampled
independently from the current posterior distribution, denoted as λ̂1, · · · , λ̂M, where λ̂ j ∼ λ j|HTi , j ∈ M .
In the growth phase, the product introduced at time Ti is chosen as

si = argmax j/∈
⋃

t′∈[0,Ti)
S(t ′) r jλ̂ j. (7)

4.2 Stable Phase

As the live-streaming progresses and new profitable products are continually introduced, generally,
Rn(t)|An(t) as well as R̄(t) increase over time, while the maximum reward of the remaining products,
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Figure 2: An illustration of profitable condition and hitting time τ .

r̄(t), decreases over time. Eventually, at time τ , R̄(t) surpasses r̄(t), marking the onset of the stable phase.
At this point, introducing new products may not increase profits. Sellers should wait until those audiences
with high Rn(t)|An(t) have left the live-streaming room, causing R̄(t) to drop back below r̄(t), before
considering the introduction of new products. Assuming that after product si is introduced at time Ti,
condition (5) is violated. Let N ∗(Ti) = {n ∈ {1, · · · ,Nt}

∣∣∣Rn(Ti)|An(Ti) = R̄(Ti)} be the set of audiences
with the maximum Rn|An at time Ti, and note that all audiences in this set share the same available assortment
A∗(Ti). R̄(t) decreases if and only if all customers belonging to N ∗(Ti) have left. Thus, by calculating
the expected maximum duration of customers in the live-streaming room, we obtain the lower bound of
the expected time until the next product introduction as

E(∆T )≥
(

1+
1
2
+ · · ·+ 1

|N ∗(Ti)|

)
∑

j∈A∗(Ti)

λ j ∼ O
(

log(|N ∗(Ti)|)
)
,

which signifies the time required for all audiences in N ∗(Ti) to leave.
Therefore, in the stable phase, we assume that ∆T is relatively large and with (4), we approximate the

“myopic” reward during [Ti,Ti +∆T ) as

NTi

∑
n=1

R([Ti,Ti +∆T ))|An(T+
i )

=

NTi

∑
n=1

(
∑m∈An(T+

i ) rmλm

λ0 +∑m∈An(T+
i ) λm

+O(e
−(λ0+∑m∈An(T+i )

λm)∆T
)

)

≈
NTi

∑
n=1

∑m∈An(T+
i ) rmλm

λ0 +∑m∈An(T+
i ) λm

,
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which exactly equals ∑
NTi
n=1 Rn(T+

i )|An(T+
i ). The following corollary of Theorem 1 suggests that in the

stable phase, introducing products with higher λ is preferable. The technique of its proof is similar to that
of Theorem 1 and is omitted.
Corollary 2 Suppose that product si is added to the assortment at time Ti, i.e. An(T+

i ) = An(T−
i )∪{si}

and the condition rsi > R̄(Ti) holds. Then for any n = 1, · · · ,NTi , Rn(T+
i )|An(T+

i ) is increasing with respect
to λsi .

In our TS-based algorithm, the parameters of products that are introduced before Ti are estimated by
their posterior mean, i.e.,

λ̂ j = E(λ j|HTi), j ∈
( ⋃

t ′∈[0,Ti)

S(t ′)
)⋃

{0}.

The parameters λ̂ j, j /∈
⋃

t ′∈[0,Ti) S(t ′) of other products that are not introduced before are sampled from
their posterior distribution λ j|HTi independently. In the stable phase, the product introduced at time Ti is
chosen as

si = argmax j/∈
⋃

t′∈[0,Ti)
S(t ′)

NTi

∑
n=1

∑m∈An(T+
i ) rmλ̂m

λ̂0 +∑m∈An(T+
i ) λ̂m

, (8)

where An(T+
i ) = An(T−

i )∪{ j}.

5 NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of the newly proposed TS-based myopic (TS-Myopic) policy
through simulation experiments. In this experiment, the total number of candidate products is M = 60,
with a total live-streaming time of T = 300. The parameters of each product are λ j = 500(15+ 5 j

12), where
j = 1, · · · ,60 and r j are generated from uniform distribution U [0,10]. The parameter of “no-purchase” is
λ0 = 5000. The minimum and maximum introduction times for each product are ∆Tmin = 5 and ∆Tmax = 50,
respectively. The arrival of customers follows a Poisson distribution with an arrival rate of 10. The initial
number of customers at the start of the live-streaming process is n0 = 100.

One of the benchmarks in the experiment is the static monotonic policy (referred to as “Static”)
introduced in Davis et al. (2015). This policy is built upon a scenario where the assortment size grows
over time, akin to the live-streaming setting. However, it relies on static optimization and maintains fixed
intervals for the introduction of products, ignoring the dynamics of customer behavior. Another benchmark
is the completely random policy (referred to as “Random”), where, given a total assortment size K, a
random product is introduced at random time. We provide two versions of random policy: one with K = 20
and another with K = 40. Moreover, we consider two scenarios: known and unknown parameters. In the
known parameters case, all λ parameters in the TS-Myopic and Static policy are replaced by their true
values rather than using TS samples or posterior estimates. In the unknown parameters case, the prior
distribution of λ j is set to be Gamma(α j,β j), with α j = 100(λ j + 500ε j), where ε j is generated from
normal distribution N(0,1), and β j = 100. The Static algorithm updates the posterior parameters after each
new product addition and then updates the assortment policy. Additionally, it is worth mentioning that the
performance of the random policy is unaffected by whether the parameters are known or not.

The experimental results, illustrating the total reward accrued over time, are showcased in Figure 3.
Regardless of whether the parameters are known or not, the performance of the TS-Myopic algorithm
surpasses that of all other benchmarks. Before time t < 150, due to parameter estimation bias, the
TS-Myopic algorithm with unknown parameters exhibits lower performance compared to its counterpart
with known parameters. However, after t > 150, as parameter estimation becomes increasingly accurate,
the performance of the TS-Myopic policy in both cases becomes nearly identical, resulting in a parallel
growth of cumulative rewards. Moreover, the Static policy proves effective in addressing static monotonic
assortment optimization challenge. Nonetheless, surprisingly, even in the case where parameters are known,
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the performance of the Static algorithm is inferior to that of the Random algorithm with K = 40. This
suggests that in the context of live-streaming, the dynamics resulting from audience influx and outflow is
the primary factor influencing rewards management.

Figure 3: Evolution of cumulative reward over time t.

6 CONCLUSION

The unique attributes of live-streaming e-commerce pose significant challenges to conventional assortment
problems discussed in literature, particularly concerning modeling, parameter estimation, and optimization
algorithms. Our newly introduced model extends the traditional choice model into the continuous time
domain. This model also allows for the convenient updating of parameter estimates at any moment.
Furthermore, in comparison to traditional static assortment optimization methods, our proposed TS-based
myopic algorithm effectively captures the dynamic nature of live-streaming sales, yielding superior empirical
outcomes. Additionally, our continuous-time choice model can be applied not only in live-streaming sales
but also in the assortment problems of traditional e-commerce platforms.
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