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ABSTRACT 

This paper proposes a comprehensively calibrated HIV simulation model, validated against HIV 

prevalence, related mortality, and viral load suppression rates. The model is designed for epidemiological 
forecasting and policy analysis. Using this model, we estimated the economic impact of antiretroviral 
therapy (ART) in the U.S. The model tracks the progression of the HIV epidemic on an individual basis, 
considering factors such as sex, age, transmission risk, and treatment adherence to project HIV prevalence 
and treatment statistics through 2040. It predicts an increase in the U.S. HIV population from 1.20 million 
in 2022 to 1.24 million by 2030, with a subsequent decrease to 1.21 million by 2040, reflecting demographic 

shifts and enhancements in ART access and effectiveness. Economically, the model predicts a significant 
rise in financial burden, with costs increasing from 38 billion US dollars in 2023 to 60 billion US dollars 
by 2040. 

1 INTRODUCTION 

The Human Immunodeficiency Virus (HIV) spreads mainly through sexual contact and/or infected 
blood/fluids. HIV weakens the immune system by attacking CD4 cells, leaving individuals vulnerable to 

infections and illnesses including cancer. Untreated HIV progresses to Acquired Immunodeficiency 
Syndrome (AIDS), a critical stage with severe immune system compromise. Antiretroviral therapy (ART) 
is the prescribed treatment for HIV, aiming to decrease the HIV viral load in the bloodstream. While ART 
does not eliminate HIV completely, it significantly extends the life expectancy of HIV-positive individuals 
close to that of people without HIV. Adhering to ART maintains the viral load undetectable for people with 
HIV (PWHIV), which is crucial in preventing the spread of HIV.  

 In the U.S., over 1.2 million people were estimated to be living with HIV by the end of 2021, with 
around 35,000 new HIV diagnoses each year (CDC 2023). Surveillance data indicate that of those 
diagnosed with HIV by the end of 2020 and still living at the end of 2021, only 59% achieved viral 
suppression, meaning they had an undetectable viral load (CDC 2023). 

1.1 Literature Review 

HIV is a well-studied disease. There are plenty of studies and clinical trials conducted for the effectiveness 

of ART, ART initiation, natural history of HIV infection, etc. Whereas these studies can be used to assess 
the effect of expanded eligibility criteria for individuals, mathematical models can be used to project the 
long-term effects of policy decisions. In the past decade, mathematical models have been useful for 
understanding the potential epidemiological effects, public health benefits, and costs of interventions for 
HIV in many populations. In literature, generally, three different types of models are used (i) 
compartmental, (ii) individual-level simulations (microsimulations), and (iii) agent-based simulations.  

Agent-based models are widely used to simulate the spread of HIV among specific populations, 
emphasizing individual behaviors and interactions at a micro-level. These models are particularly effective 
in examining how personal behaviors and social networks impact HIV transmission dynamics. Bershteyn 
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et al. (2013) developed an agent-based simulation model using EMOD software, called EMOD-HIV. 
EMOD HIV models setting-specific demographics, individual and partnership characteristics, sexual 
activity frequency, disease progression, and transmission rates. It notably predicts the substantial impact 

and high costs of early antiretroviral therapy (ART) initiation. The model emphasizes the importance of 
targeting interventions at younger, highly active populations to effectively reduce future HIV infections, 
highlighting the complex dynamics of epidemic spread and the benefits of early treatment. Anderson et al. 
(2014), utilized mathematical modeling to explore the benefits of targeted HIV intervention strategies in 
Kenya, considering geographical and population-specific variations in HIV risk. It modeled interventions 
such as male circumcision, behavior change communication, early antiretroviral therapy, and pre-exposure 

prophylaxis, tailoring them to different population groups based on their risk behaviors or geographical 
locations. Smith et al. (2015) employed an agent-based modeling framework that utilized demographic, 
behavioral, and treatment data from rural KwaZulu-Natal to simulate the HIV dynamics within a 
community. The model, which mirrored real-world characteristics such as sexual behavior and partnership 
dynamics, aimed to assess the risks of HIV transmission and the impacts of various ART initiation 
thresholds and to evaluate the effectiveness and cost-effectiveness of HIV counseling and testing. Recently, 

Bingham et al. (2021) utilized an updated agent-based model, PATH 3.0, to estimate the lifetime economic 
burden of HIV in the U.S., incorporating current antiretroviral therapy regimens and costs. It simulated a 
cohort infected in 2015, tracking lifetime treatment costs across various health services until the cohort's 
lifetime. 

Deterministic Compartmental Models (DCM) have been extensively utilized to analyze the population-
level dynamics of HIV transmission and evaluate the impact of public health strategies. These models 

categorize the population into different compartments according to disease status and simulate the 
transitions between compartments to forecast epidemic trends. DCMs are crucial for evaluating outcomes 
such as shifts in HIV incidence, prevalence, mortality, and the cost-effectiveness of interventions. Khurana 
et al. (2018) developed the HIV Optimization and Prevention Economics (HOPE) model to simulate the 
sexually active US population aged 13 to 64 from 2010. The model stratifies this population into 195 groups 
by various demographic and risk factors to analyze the impact of achieving national HIV goals and 

implementing pre-exposure prophylaxis (PrEP). HOPE model evaluated the number of HIV infections 
averted from 2016 to 2020 by implementing different PrEP scenarios. 

Individual-based (Micro) simulation models provide detailed simulations of individual life courses 
within a population, capturing the complexities and random nature of life events and disease progression. 
These models have been extensively used in HIV research to examine a variety of outcomes including life 
expectancy, development of drug resistance, viral load suppression, and the economic impact of treatment 

and prevention strategies. Several studies used microsimulations to assess the effectiveness and cost-
efficiency of various interventions, including ART strategies, improved access to care, universal testing 
with immediate ART initiation, and PrEP (Walensky et al. 2016; Paltiel et al. 2005; Maheswaran et al. 
2018; Kazemian et al. 2020). 

1.2 Motivation 

This paper introduces an updated version of our prior HIV Microsimulation Model (version 1.0.2), with 

revised calibration including data from the years 2017 and 2018 (Deshmukh et al. 2024). The model has 
undergone comprehensive calibration across various outcomes such as HIV prevalence, HIV-related 
mortality, HIV diagnoses, and rates of viral load suppression. This thorough calibration ensures the model 
accurately reflects current HIV dynamics and can be effectively utilized in epidemiological forecasting and 
policy analysis.  
 As a practical application of this updated model, we have conducted an estimation of the economic 

impact of antiretroviral therapy (ART) on the US economy. This analysis not only provides insights into 
the direct costs associated with ART but also explores the broader economic implications, including 
healthcare savings from averted HIV transmissions and improved productivity among individuals receiving 
treatment. This detailed examination helps in understanding the fiscal dimensions of ART interventions, 

1048



Damgacioglu, Sonawane, Dorali, and Deshmukh 
 

 

thereby aiding policymakers in making informed decisions about resource allocation in HIV management 
programs. 

2 METHODS 

We developed a detailed individual-level (micro) simulation model to project the progression of the HIV 
epidemic in the US. The model simulates each person living with HIV (PLWH), from infection through to 
disease progression, diagnosis, treatment initiation, adherence, and both HIV-specific and other-cause 
mortality. The model characterizes the PLWH by several factors such as sex/sexual orientation (Men who 
have Sex with Men [MSM], men who have sex with women [MSW], and women [W]), age, diagnosis 
status of HIV, both current and lowest CD4 count ranges, history of AIDS, number of opportunistic 

infections, treatment status, adherence levels, and viral suppression status. Data for the model parameters 
were obtained from CDC surveillance reports via the CDC’s HIV surveillance tool (NCHHSTP AtlasPlus), 
and relevant literature, while unobservable parameters were estimated through calibration by aligning 
model outcomes with real-world data. The model was validated by comparing its predictions with actual 
data on HIV/AIDS diagnoses, deaths, and the virally suppressed HIV population. The model is capable of 
examining trends over time and across different groups by projecting future prevalence of HIV and 

treatment statistics by age, sex, and transmission risk up to 2040. The cycle length of the model was annual. 
The model was coded in R version 4.3.1 and RStudio version 2023.06.1.  

2.1 Population Characteristics 

Starting from 2010, the model simulates the prevalent population of PLWH. The newly infected PLWH is 
added to the model for each year. Table 1 shows the population characteristics and the potential values that 
can be assigned throughout the simulation. Based on the CDC's definition (as per the surveillance report), 

AIDS is identified by a nadir CD4 count of fewer than 200 cells per cubic millimeter of blood or by the 
diagnosis of an opportunistic infection (OI). The model is capable of providing the number of HIV prevalent 
cases and their trends over time for each characteristic.  

Table 1: Population characteristics. 

Characteristics Potential Values 

Age Numeric value (years) {13, 14, …, 99} 

Sex/Sexual orientation 
MSM (Men who have Sex with Men) [MSM] 
MSW (Men who have Sex with Women) [MSW] 
Women [W] 

HIV diagnostic status 
Diagnosed 
Undiagnosed 

Nadir CD4 count Numeric value (cells/μL) [0-640] 

Current CD4 count Numeric value (cells/μL) [0-640] 

History of opportunistic infection 
No 
Yes 

Prior AIDS diagnosis 
No 

Yes 

Treatment status 
Not currently under treatment 
Under treatment 

Current treatment adherence 
Adherent 

Non-adherent 

Viral load suppression 
Suppressed 
Not suppressed 
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The simulation began in 2010 with a cohort of PLWH, both diagnosed and undiagnosed. The CDC's 
HIV surveillance tool, CDC AtlasPlus, provides national data for the number of diagnosed and estimates 
for undiagnosed HIV patients, categorized by gender, transmission group, and age. The age distribution of 

the HIV population by sex/sexual orientation is derived from CDC HIV/AIDS surveillance reports. 
Information on HIV diagnosis status, by sex/sexual orientation, is sourced from CDC HIV/AIDS 
surveillance reports. Table 2 outlines the HIV population at the end of 2010 in the US, detailing age, 
sex/sexual orientation, and diagnosis status. For assigning the exact age of each HIV patient, a uniform 
distribution was utilized. 

Table 2: Age distribution of the initial population. 

Age Group 
Diagnosed Undiagnosed 

MSM MSW Female MSM MSW Female 

13 - 14 107 713 1072 428 18 28 

15 - 19 2138 1833 2680 10261 430 535 

20 - 24 19132 2547 6967 32066 1343 1313 

25 - 29 32055 3749 13296 13004 2406 3030 

30 - 34 39178 6963 19945 15894 4468 4544 

35 - 39 63363 15185 30274 10176 3666 4043 

40 - 44 63363 15185 30274 10176 3666 4043 

45 - 49 96959 28464 36621 8539 3906 4305 

50 - 54 70211 28464 29963 5692 2604 2870 

55 - 59 42775 21981 18437 2584 1725 1947 

60 - 64 22945 12226 9538 1386 959 1007 

65 - 69 9833 5203 4219 594 408 446 

70 - 74 4097 2385 1950 248 187 206 

75 - 79 1639 997 851 99 78 90 

80 - 84 492 390 319 30 31 34 

85 - 99 164 173 142 10 14 15 

 
 

 Next, we assigned nadir CD4 counts (the lowest CD4 count during entire follow-up) to each patient 
based on age, sex/sexual orientation, and diagnosis status. The history of opportunistic infections (OIs) and 
nadir CD4 counts were modeled together for AIDS modeling. It was assumed that an individual diagnosed 
with an OI but previously unaware of their HIV status would become aware of their HIV status. Here, the 
history of OIs was modeled for only diagnosed HIV patients in the baseline population. Additionally, due 
to the distinct characteristics between diagnosed and undiagnosed patients, we calibrated the model 

separately for those unaware of their HIV status. This calibration utilized OI probabilities and nadir CD4 
count distributions from the previous version of our model for the prevalent population living with HIV 
(PLWH). We utilized CDC Atlas receipt-of-care data to identify patients currently under treatment. 
Subsequently, we assigned their viral suppression status.  
 For the assignment of current CD4 levels, we used the assigned nadir CD4 levels and viral load 
suppression status using the following formula. For individuals who have achieved viral suppression, we 

adjusted CD4 count levels based on the study by Bishop et al. (2016). 
 

𝐶𝐷4 =  {
𝑁𝑎𝑑𝑖𝑟 𝐶𝐷4 𝑖𝑓 𝑉𝐿𝑆 = 0

𝑁𝑎𝑑𝑖𝑟 𝐶𝐷4 + 𝑈(195, 470) 𝑖𝑓 𝑉𝐿𝑆 = 1
 (1) 
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2.2 HIV Surveillance, Progression, and Treatment 

After assigning the characteristics of the prevalent HIV population in 2010, the model incorporated new 
infections each year. Data for these new cases up to 2021 were obtained from CDC's AtlasPlus. After 2021, 

projections of new infections were estimated using a Joinpoint regression model based on age and sexual 
orientation, using the Joinpoint Regression Program v5.0.2 from the National Cancer Institute. Joinpoint 
regression is a statistical method used to identify points where a significant change, or "joinpoint," occurs 
in a trend over time. The method estimates the number and location of these joinpoints and provides insights 
into how trends vary across different segments of data. The estimation of new HIV infections was based on 
the most recent trend segment from the regression model. The number of new HIV cases used in the model 

was presented in Figure 3. 
 Newly infected individuals enter the model as undiagnosed and not receiving treatment. Their CD4 
count is assigned based on a uniform distribution: i) ~𝑈(600 − 640) for those aged 34 and younger, and 
ii) ~𝑈(550 − 600) for those aged 35 and older (Lodi et al. 2010; Touloumi et al. 2013). Undiagnosed 
PLWH may be diagnosed either through testing or due to symptoms (such as opportunistic infections). The 
model simulates HIV diagnosis based on transition probabilities that vary by sex/sexual orientation and 

CD4 count. These transition probabilities and the initial CD4 counts of undiagnosed individuals were 
obtained through calibration. These probabilities are given in Table 4. The model follows a square root 
CD4 depletion model (Lodi et al. 2010; Touloumi et al. 2013), where the depletion of CD4 cells over a year 
is calculated using the following equation. 

 

√𝐶𝐷4𝑡+1 − √𝐶𝐷4𝑡 = 𝑏1 (2) 

 
In the model, the 𝑏 values for each individual were determined using a triangular distribution, whose 

parameters were shown in Table 3. We also incorporated the modeling of opportunistic illnesses, which are 
the second condition of the AIDS definition, using transition probabilities derived from both literature and 
calibration. We assumed that opportunistic infections (OIs) occur in individuals who do not achieve viral 
load suppression. 

 
Table 3: CD4 count depletion model parameters. 

  Peak Lower Upper 

MSM 13-24 -1 -0.9 -1.14 

 25-44 -1.15 -1.02 -1.3 

 45-54 -1.35 -1.21 -1.53 

 55+ -1.55 -1.4 -1.78 

MSW 13-24 -1.25 -0.75 -1.79 

 25-44 -1.4 -0.87 -1.91 

 45-54 -1.6 -1.06 -2.1 

 55+ -1.8 -1.25 -2.29 

Women 13-24 -1.7 -1.15 -2.23 

 25-44 -1.85 -1.27 -2.35 

 45-54 -2.05 -1.46 -2.54 

 55+ -2.25 -1.65 -2.73 

 
 
In the model, treatment uptake and adherence vary based on sex/sexual orientation and AIDS history. 

Using the data from Bishop et al. (2016) Improvement in CD4 count with ART was modeled as a function 
of treatment duration (𝑡𝑑) as shown in Equation (3).  
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𝐶𝐷4 =  {
𝐶𝐷4 + 195 𝑖𝑓 𝑡𝑑 = 1

𝐶𝐷4 + 119 ∗ (ln(𝑡𝑑) − ln(𝑡𝑑 − 1)) 𝑖𝑓 𝑡𝑑 > 1
 (3) 

 

Typically, the individuals start their treatment at the time of diagnosis, and we estimated this probability 
using the linkage to care measure found in the CDC's HIV Surveillance reports. Considering the recent 
trends in linkage-to-care rates in recent years, we employed a linear trend model for different age groups 
(13-24, 25-34, 34-44, ≥45) to determine future linkage-to-care rates for newly diagnosed individuals. Here, 
we set an upper limit of 90% for the linkage-to-care probability. The model assumes an initial treatment 
effectiveness of 80% for the first regimen and 60% for the subsequent ones. For those initially untreated, 

the probability of eventually starting treatment is set through calibration. Treatment dropout probabilities 
are established using data from CDC reports, and calibration. Table 4 presents the annual probabilities of 
treatment uptake, dropout, treatment return, and treatment adherence, with specific values for different age 
groups. 

 
Table 4: The annual probabilities of treatment uptake, treatment dropout, and treatment adherence. 

Description Value 

Treatment uptake  
   13-24 0.03 
   25-34 0.036 

   35-44 0.04 
   45-54 0.044 
   ≥55 0.05 
Treatment dropout 0.01 
Treatment return 0.05 
Treatment adherence  

   13-24 0.85 
   25-34 0.9 
   35-44 0.92 
   45-54 0.94 
   ≥55 0.95 

 
The annual death probabilities are modeled as a function of age, sex/sexual orientation, AIDS history, 

and virally suppression status. The maximum age was set to 100 in the model. Mortality probabilities were 
obtained through calibration (Table 5). We also used a 0.5% improvement in mortality rates in order to 
capture the improvement in life expectancy among PLWH. 

 

Table 5: The mortality probabilities used in the model. 

 With AIDS History Without AIDS History 

 Virally 

Suppressed 

Not Virally 

Suppressed 

Virally 

Suppressed 

Not Virally 

Suppressed 

MSM     
   13-24 0.0018 0.0225 0.0008 0.0016 
   25-34 0.0057 0.0261 0.0011 0.0026 
   35-44 0.0078 0.0270 0.0013 0.0050 
   45-54 0.0089 0.0347 0.0023 0.0086 

   55-64 0.0189 0.0472 0.0084 0.0168 
   65-74 0.0439 0.0715 0.0246 0.0307 
   75-84 0.1143 0.1860 0.0640 0.0800 
   85-99 0.3237 0.5267 0.1812 0.2265 
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MSW     
   13-24 0.0019 0.0242 0.0008 0.0017 

   25-34 0.0069 0.0313 0.0014 0.0032 
   35-44 0.0094 0.0324 0.0016 0.0060 
   45-54 0.0129 0.0503 0.0034 0.0125 
   55-64 0.0226 0.0566 0.0101 0.0201 
   65-74 0.0527 0.0858 0.0295 0.0369 
   75-84 0.1372 0.2233 0.0768 0.0960 

   85-99 0.3884 0.6320 0.2175 0.2718 

Female     
   13-24 0.0019 0.0242 0.0009 0.0017 
   25-34 0.0069 0.0302 0.0015 0.0034 
   35-44 0.0091 0.0315 0.0015 0.0059 

   45-54 0.0119 0.0465 0.0031 0.0116 
   55-64 0.0198 0.0496 0.0089 0.0176 
   65-74 0.0461 0.0751 0.0258 0.0323 
   75-84 0.1200 0.1953 0.0672 0.0840 
   85-99 0.3398 0.5530 0.1903 0.2379 

  
 
Age and health state-specific utility weights were obtained from published studies (Hanmer et al. (2006) 

and expert opinions. The utility values for patients in different health states are shown in Table 6.  
 

Table 6: The mortality probabilities used in the model. 

Parameter Value 

Age-specific utilities  
   20-29 0.928 

   30-39 0.918 

   40-49 0.887 

   50-59 0.861 

   60-69 0.84 

   70-79 0.802 

   80-89 0.782 

Health-state specific utilities  

   HIV  0.9 

   AIDS 0.8 

 
Lastly, the cost parameters for ART were obtained from McCann et al. (2020). We assumed that the 

inflation of ART costs would continue until 2040 at an approximate rate of 5% per year. We also applied a 
3% discount rate. All cost values are presented in 2023 US Dollars. 

2.3 Model Calibration 

We performed parameter calibration to identify both unobservable and unknown parameters in the model. 
Particularly, we calibrated variables including the distribution of CD4 counts among undiagnosed 
individuals, probabilities of HIV diagnosis, rates of treatment uptake, dropout, and adherence. In the 

calibration process, we matched the model outcomes with the CDC Atlas data, specifically focusing on 
observed data from 2011 to 2018. Given that some parameters are age-specific and show significant trends, 
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we conducted a two-step approach in our calibration process. We used two goodness-of-fit functions 
Absolute Percent Error (APE) measure and Euclidean Distance (ED) measures. 

 

𝐴𝑃𝐸𝑖 = |
∑ 𝐴𝑡

2018
𝑡=2011 −  ∑ 𝑀𝑖,𝑡

2018
𝑡=2011

∑ 𝐴𝑡
2018
𝑡=2011

| (4) 

𝐸𝐷𝑖
𝑇𝑖𝑚𝑒 = √ ∑ (𝐴𝑡 − 𝑀𝑖,𝑡)

2
2018

𝑡=2011

 (5) 

𝐸𝐷𝑖
𝐴𝑔𝑒

= √ ∑ ( ∑ 𝐴𝑎,𝑡

2018

𝑡=2011

− ∑ 𝑀𝑎,𝑖,𝑡

2018

𝑡=2011

)

𝑎 ∈{𝐴𝑔𝑒 𝑔𝑟𝑜𝑢𝑝𝑠}

2

 (6) 

 

 In Equation (4), 𝐴𝑃𝐸𝑖 shows the APE score of the parameter set 𝑖, 𝐴𝑡 denotes the observed values for 

an indicator for year t, Mi,t represents the values estimated by the model using parameter set i for year t. 

Equation (5, 6) shows two Euclidean measures used in the calibration, EDi
Time for the parameters where 

annual trends are important and EDi
Age

 for age-specific parameters. We calculated the Euclidean distance 

by comparing age-specific observed (Aa,t) and model estimated (Ma,i,t) values. 

 To improve computational efficiency, we adopted a two-step calibration process. First, we calibrated 

the distribution of CD4 counts and diagnosis probabilities among undiagnosed People Living with HIV 

(PLWH), stratifying by sex/sexual orientation and CD4 count levels, using a grid-based approach. This 

approach resulted in a total of 615 unique CD4 count distribution sets. We then generated a random number 

(γ) between 0.15 and 0.25, representing the range of AIDS diagnoses at initial HIV diagnosis. Using γ and 

the observed HIV diagnosis data from 2011 (𝐴2011), we calculated the diagnosis probability for PLWH 

with a CD4 count under 200 (𝑝<200
𝑑𝑥 ). We assumed a descending order of diagnosis probability based on 

CD4 count levels (𝑝<200
𝑑𝑥 ≥ 𝑝200−349

𝑑𝑥 ≥ 𝑝350−499
𝑑𝑥 ≥ 𝑝≥500

𝑑𝑥 ). We selected parameter sets with APE scores 

under 10%, ranked them based on 𝐸𝐷𝑖
𝑇𝑖𝑚𝑒 , and identified the top 50 sets. We followed this process 

separately for MSM, MSW, and women.  

 In the second phase of calibration, we focused on parameters associated with HIV progression. Using 

a similar method to the first phase, we computed the APE and identified the top 50 solutions based on the 

𝐸𝐷𝑖
𝐴𝑔𝑒

 metric, matching model-generated AIDS prevalence with observed AIDS prevalence rates. We 

generated 5000 different parameter sets. As in the initial step, we refined each parameter set across 50 

iterations, comparing APE values. In this step, we calibrated the variables including opportunistic infection 

(OI) probabilities, Nadir CD4 distribution among diagnosed PLWH, and the uptake of HIV medications. 

In the final stage, we calibrated mortality probabilities by comparing the annual HIV-related deaths 

generated by the model with reported deaths in the CDC Atlas. 

3 RESULTS 

We calibrated the model using data from the CDC Atlas from 2011 to 2018, matching model outcomes 
with observed values for HIV diagnosis, HIV deaths, AIDS prevalence, and HIV prevalence. Here, we 
identified the values for the unknown and unobservable parameters detailed in Section 2. For validation, 
we compared our model outcomes with observed data from 2019 to 2021. Figure 2 displays the results of 
our model and comparison with observed values (Figure 2.A for HIV diagnosis, Figure 2.B for HIV deaths, 

Figure 2.C for AIDS prevalence, and Figure 2.D for HIV prevalence). 
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Figure 2: Results of our model and comparison with observed values. (A) for HIV diagnosis, (B) for HIV 
deaths, (C) for AIDS prevalence, and (D) for HIV prevalence. 

 

Overall, the model offers promising validation results. It is important to note that the year 2020, marked 
by the COVID-19 pandemic, may significantly affect HIV diagnosis rates. Additionally, our model 
overestimated deaths for the years 2017-2019. Despite this, the Absolute Percentage Errors (APE) for both 
calibration and validation phases remain below 10%. 
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B. 

  
Figure 3: HIV prevalence projections by (A) Age, and (B) AIDS Status. 

 
The projected number of people living with HIV (PLWH) in the United States is expected to increase 

from 1.20 million in 2022 to 1.24 million by 2030, as shown in Figure 3. After 2030, the prevalence of HIV 

is estimated to start declining, with the number of PLWH decreasing to 1.21 million by 2040. Figure 3.A 
shows a shift in age distribution, with individuals over 55 years increasing from 38% in 2022 to 51% in 
2040, while those under 35 years decreased from 19% to 6%. Figure 3.B displays the distribution and 
burden of AIDS prevalence, projecting a continuous decline post-2022 as the proportion of PLWH with 
AIDS drops from 46% in 2022 to 37% in 2040, due to increased antiretroviral therapy (ART) usage and 
improved linkage to care. 

 

  

Figure 4: Economic burden projections of antiretroviral therapy. 
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Regarding the financial projections for HIV ART treatment from 2020 to 2040, it's assumed the annual 
cost of ART will rise by 5%, increasing the economic burden from $38.33 billion in 2023 to $60 billion in 
2040 (Figure 4). 

4 DISCUSSION 

This study is the first to estimate and project the economic burden of antiretroviral therapy (ART) for people 
living with HIV (PLWH) in the United States. We updated and recalibrated our previous model by defining 
more granular age groups and re-calibrating input parameters to more accurately represent the US PLWH 
population. The inclusion of ART cost parameters was crucial to estimate the economic burden. These cost 
estimates and economic burden projections are crucial in decision-making for HIV prevention interventions 

(Freedberg et al. 2015). Our model estimated a similar burden of $25.5 billion (in 2018 US dollars) as 
reported by The IQVIA Institute in 2019, which estimated $22.5 billion. This estimated increasing 
economic burden underscores the necessity of curbing the trend of rapidly escalating ART costs. 
 Antiretroviral drug prices in the United States continue to rise annually at a rate of 4 to 6 times faster 
than inflation (McCann et al. 2020). Martin and Shackman (2018) demonstrated that switching from brand-
name to available generic formulations of ART regimens could yield a 25% reduction. Additionally, our 

projections suggest that an increasing number of PLWH will significantly impact the overall economic 
burden of ART on the US economy.  

From a modeling perspective, our microsimulation model has several strengths that contribute to its 
robustness and applicability. As a microsimulation, it is capable of analyzing specific subpopulations 
among PLWH. This capability enables the model to flexibly simulate the dynamics of other diseases that 
may affect PLWH, providing a comprehensive overview of comorbid health scenarios. 

Furthermore, the model's architecture allows for detailed evaluations of the effectiveness and cost-
effectiveness of various treatment regimens and behavioral interventions. By integrating these elements, 
our model can adapt to assess a wide range of health interventions, making it a valuable tool for health 
policymakers and researchers. It provides insights into how different strategies may perform in real-world 
settings, thereby supporting informed decision-making in public health and clinical practice. This flexibility 
highlights the model's potential to influence the optimization of healthcare resources and strategies aimed 

at improving the lives of PLWH. 
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