
Proceedings of the 2024 Winter Simulation Conference
H. Lam, E. Azar, D. Batur, S. Gao, W. Xie, S. R. Hunter, and M. D. Rossetti, eds.

USING COSIMLA WITHIN POLICY ITERATION FOR MDPS WITH LARGE STATE SPACES

Yifu Tang1, Peter W. Glynn2, and Zeyu Zheng1

1Dept. of Industrial Engineering and Operations Research, University of California, Berkeley, CA, USA
2Dept. of Management Science and Engineering, Stanford University, Stanford, CA, USA

ABSTRACT

Classical policy iteration methods to solve Markov Decision Processes (MDPs) incur a computational
complexity that critically depends on the size of state space. Such computational complexity can be
prohibitive when the size of state space is enormous or even countably infinite. To improve the computational
effectiveness, we develop a computational method that strategically integrates policy iteration and a recently
developed approach called COSIMLA (Combining Numerical Linear Algebra and Simulation). We provide
analysis for the proposed computational method and demonstrate its comparative advantages through
numerical experiments.

1 INTRODUCTION

Policy iteration has been a classical and markedly important approach for solving Markov decision process
(MDP) when the 4-tuple element (S,A,P,r) of the MDP is given. Usually, S represents the state space,
A represents the action space, P represents the transition probability, and r represents the rewards. In the
MDP framework, an agent aims to find an action according to every state, denoted as a policy, to maximize
the infinite sum of discounted rewards. The policy iteration method, a popular approach to solving MDP,
is briefly described as follows. The agent starts with an initial policy. At each step, the agent evaluates the
current policy and updates the policy corresponding to each state according to the evaluation. Formulations
are provided in Section 2 and we refer to PART I of (Agarwal et al. 2019) for a detailed review of MDP.

At each step of the policy iteration algorithm, a policy needs to be evaluated by computing the value
function or the Q-function (defined in Section 2). To evaluate a policy, a corresponding linear system of
the Q-function or the value function needs to be solved. Bertsekas (2011) reviews various approaches in
policy evaluation, including matrix-inversion-based algorithms (e.g., least-squares temporal difference), and
iterative algorithms (e.g., least-squares policy iteration and temporal difference TD(λ)). These simulation-
based approaches aim at solving the linear systems of the Q-functions or the value functions in policy
iteration processes.

The computational complexity of solving general MDP with infinitely discounted reward via policy
iteration has been shown in Corollary 4.1 of Ye (2011) to be a strongly polynomial time algorithm with
complexity O

(
m · |S|(|S||A|−1)

1−γ
log
(
|S|2
1−γ

))
, where γ < 1 is the discount rate, m is the complexity for each

iteration step, and |S|(|S||A|−1)
1−γ

log
(
|S|2
1−γ

)
is the number of iteration steps. In each iteration step, the agent

needs to solve a linear system of order |S| · |A|, m = O(|S|3); see section 1.3 of (Agarwal et al. 2019) for
reference. The computational need at each step (solving a linear system) can be prohibitive when the state
space |S| is enormously large, let alone for some scenarios where there is technically an infinite number
of states (i.e., |S|= ∞).

In this work, we provide an approach to strategically combine linear algebra and Monte Carlo simulation
that can lead to a significant reduction of computational need. We adopt the recently developed COSIMLA
(COmbined SIMulation and numerical Linear Algebra) approach by (Zheng et al. 2022) and (Glynn and
Zheng 2023) and integrate that with evaluating the value function or Q-function. We write the Q-function

371979-8-3315-3420-2/24/$31.00 ©2024

Tang, Glynn, and Zheng

into a regenerative form of cumulative rewards. The idea of COSIMLA is to decompose S into disjoint
subsets B and Bc = S−B. Then, we truncate the regenerative summation of rewards by a stopping time
denoting the first exit of the subset B, denoted by T . The cumulative rewards truncated up to the stopping
time T are expressed with a matrix-inversion formula while those outside the subset B can be simulated.
Since there is no need to solve linear equations in large state space, the computational complexity is reduced.
Besides, when the state space is countably infinite, the classical policy iteration is not fit for use. However,
our approach still works to give an evaluation of the Q-function.

In the rest of this paper, we introduce the notations and the formal problem settings in Section 2. In
Section 3, we propose the COSIMLA-Assisted policy iteration algorithm for large but finite state spaces
and analyze its complexity. In Section 4, we propose the local policy iteration algorithm with theoretical
results concerning infinite state spaces. Numerical experiments are conducted in Section 5 and conclusions
are presented in Section 6.

2 PROBLEM SETTING FOR MDP AND POLICY ITERATION

Let S be a finite or countably infinite state space, (Xn : n≥ 0) in S be the underlying Markov chain of the
Markov decision process, and A = {a1, · · · ,aK} be a finite action set. For each state s ∈ S, an action a ∈ A
will induce a transition from s to another s′ ∈ S with probability P(s′|s,a), where

P(s′|s,a) = P(X1 = s′|X0 = s,A0 = a).

A stationary policy π maps each state s ∈ S to an action, independent of the history, i.e. π : S→ A. For
each state s ∈ S and action a ∈ A, the reward function is given by r(s,a) : S×A→ [0,1], representing the
reward given to the agent at state s while taking action a. At each time point t ∈ Z≥0, with a given state
st ∈ S, a policy takes an action a in A and obtains a reward r(s,a). Then the state jumps to s′ ∈ S with
probability P(s′|s,a). For a discount factor γ ∈ (0,1), the performance of a policy given a state s ∈ S is
evaluated by the value function V π(s), defined as

V π(s) = E

[
∞

∑
t=0

γ
tr(st ,at)

∣∣∣∣π,s0 = s

]
.

The performance of a policy starting at s and a given action a, is evaluated by the Q-function, defined by

Qπ(s,a) = E

[
∞

∑
t=0

γ
tr(st ,at)

∣∣∣∣π,s0 = s,a0 = a

]
,

in which the sequence (st ,at)t≥0 is taken according to the deterministic policy π . The goal of solving MDP
is to find the optimal policy π∗ as defined by π∗(s) = argmaxπ Vπ(s),∀s ∈ S. This corresponds to solving
Bellman’s Optimality Equation of the Q-function Bellman (1956):

Q(s,a) = r(s,a)+ γEs′∼P(·|s,a)

[
max
a′∈A

Q(s′,a′)
]
, (1)

and it is characterized by the deterministic policy π(s) = argmaxa∈A Q∗(s,a) is the global optimal policy,
where Q∗(s,a) := supπ Qπ(s,a) and the expectation is taken with the probability distribution P(·|s,a). It
is shown in Theorem 1.8 of (Agarwal et al. 2019) that the optimal policy is deterministic, which is a
restatement of Bellman (1956). We only consider deterministic stationary policies in this paper. The policy
iteration algorithm is a well-adopted approach to obtain the optimal policy. The following are the steps of
classical policy iteration:

372

Tang, Glynn, and Zheng

Algorithm 1: Classical Policy Iteration
Input: Initial policy π0, k = 1, stopping criterion

1 Each step with policy πk;
2 while not stopping criterion do
3 for x ∈ S, a ∈ A do
4 Compute Q(s,a) via solving the linear system

Q(s,a) = r(s,a)+ γEs′∼P(·|s,a)Q(s′,π(s′)) (2)

5 end
6 Update πk(s) = argmaxa∈A Qπk−1(s,a) for each s ∈ S;
7 k← k+1;
8 end

Output: Final policy π

However, the drawbacks of the classical policy iteration algorithm include: (1) It requires solving large linear
systems of dimension |S|× |A| when computing Q-functions, which suffers a computational complexity
of order O(|S|3). (2) It cannot be adopted when |S| is infinitely large – even computing a Q-function is
prohibited since it requires solving a linear system of order ∞.

In this paper, we research the methods of computing Q-functions in large or infinite state spaces, and
in the latter case, we provide the local policy iteration algorithm with theoretical analysis and computing
processes.

3 COSIMLA-ASSISTED POLICY ITERATION FOR LARGE FINITE STATE SPACE MDP

In this section, we elaborate on the application of COmbining SIMulation and numerical Linear Algebra
(COSIMLA) algorithms into the computing process of solving Markov Decision Processes (MDP). We
focus on scenarios with finite and large state space, large to the extent that even solving a linear system
of equations can be prohibitive. In particular, we assume that |A| ≪ |S|< ∞ in this section.

3.1 COSIMLA for Q-function Computing

Let a state x ∈ S and an action a ∈ A, a discount factor γ ∈ (0,1), and a deterministic stationary policy π

be fixed. We introduce the process of computing Qπ(x,a). We adopt the notations in Section 2. For a
reward function r(s,a), denote rπ the vector (r(s,π(s)))s∈S of dimension |S|. A Markov chain is induced
with transition probability matrix Pπ : S×S→ [0,1], where

Pπ(x,y) = P(X1 = y|X0 = x,π(x)).

To compute the Q-function, we introduce a new Markov chain. Let z /∈ S be a new state. We define a larger
state space S̃ := S∪{z} with transition probabilities on S̃ defined as

P(X1 = s|X0 = z,π) = Pπ(x,s), ∀s ∈ S,
P(X1 = s|X0 = s′,π) = γPπ(s′,s), ∀s,s′ ∈ S,
P(X1 = z|X0 = s,π) = 1− γ, ∀s ∈ S.

Then, the probability transition matrix on S̃ is expressed as

P̃π
x,a :=

(
γPπ (1− γ)eN×1
pa,x 0

)
,

373

Tang, Glynn, and Zheng

where pa,x = (P(y|x,a))y∈S ∈ R1×|S| is a row vector, and e|S|×1 ∈ R|S|×1 is a column vector whose every
element is 1. Let τz = inf{n≥ 1 : Xn = z}. For some fixed x ∈ S and a policy π , denote P(·),E(·) the
probability and expectation under the matrix Pπ , while P̃π(·), Ẽπ(·) represents those under the matrix P̃π

x,a.
We denote Ps(·) := P(·|X0 = s), and Es(·) :=E(·|X0 = s), where s represents any state in S. For any function
w : S̃ = S

⋃
{z}→ [0,1] with w(z) = 0, we define

κ
π
x,a(w) := Ẽπ

z

[
τz−1

∑
j=0

w(X j)

]
,

representing that, under probability distribution P̃π , the expected cumulated reward of w from the beginning
to the first absorbing time τz. The following Theorem 1 presents a regenerative formula with respect to S̃
to compute Qπ(x,a).
Theorem 1 For any state x ∈ S and action a ∈ A, we have

Qπ(x,a) = γκ
π
x,a(r

π)+ r(x,a). (3)

Theorem 1 gives an approach to computing the Q-function through a regenerative formula of a newly
constructed Markov Chain S̃. From Theorem 1, we only need to compute or simulate κπ

x,a(r). To compute
κπ

x,a(r), we apply the COSIMLA procedure, provided in page 2344-2345 of (Zheng et al. 2022). The
specific process is elaborated as follows.

Assume that B is some subset of S̃ containing z such that inverting a matrix of order |B| − 1 is
computationally applicable. Let Bz = B−{z} be a subset of B, pc =

(
P̃π

y (X1 ∈ Bc)
)

y∈Bz
and r0 = (rπ(y))y∈Bz

be column vectors of dimension |Bz| , ϕz = (P̃π
x,a(z,x))x∈Bz be a row vector of dimension |Bz|, B0 = P̃π

x,a|Bz ∈
R|Bz|×|Bz|, and T = inf{n≥ 0 : Xn ∈ Bc}. Then

κ
π
x,a(r) = ϕz(I−B0)

−1r0 + P̃π
z (T < τz)Ẽπ

z

[
τz−1

∑
j=T

r(X j)

∣∣∣∣T < τz

]
,

P̃π
z (T < τz) = P̃π

z (X1 ∈ Bc)+ϕz(I−B0)
−1 pc,

P̃π
z (XT = y|T < τz) =

P̃π
x,a(z,y)+ϕz(I−B0)

−1 py

P̃π
z (X1 ∈ Ac)+ϕz(I−B0)−1 pc

.

We refer to the proof and the asymptotic convergence in Section 2 of (Zheng et al. 2022). COSIMLA
combines numerical linear algebra and simulation to compute κπ

x,a(r) using the above formulas. The
computation processes are elaborated as follows:

1. Compute κ1 := ϕz(I−B0)
−1r0, using numerical linear algebra to solve the linear system of order

|B0|;
2. Compute κ2 := P̃π

z (T < τz). The value of P̃π
z (X1 ∈ Bc) is directly computed and ϕz(I−B0)

−1 pc is
computed via applying numerical linear algebra to solve the linear system of order |B0|;

3. Simulate Ẽπ
z

[
∑

τz−1
j=T r(X j)

∣∣∣∣T < τz

]
, using Monte Carlo Simulation.

In the simulation process, we simulate n paths. The starting point y of each path follows the distribution
P̃(XT = y|T < τz). We stop simulating each path when it achieves the endpoint z. Denote the cumulative
rewards by R̄1, · · · , R̄n. Since

Ẽπ
z

[
τz−1

∑
j=T

r(X j)

∣∣∣∣T < τz

]
= ∑

y∈S
P̃π

z (XT = y|T < τz)Ẽπ
z

[
τz−1

∑
j=T

r(X j)

∣∣∣∣T < τz,XT = y

]
,

374

Tang, Glynn, and Zheng

1
n ∑

n
i=1 R̄i is an estimation of Ẽπ

z

[
∑

τz−1
j=T r(X j)

∣∣∣∣T < τz

]
. In conclusion,

Q̂(x,a) := γ ·

(
κ1 +κ2 ·

1
n

n

∑
i=1

R̄i

)
+ r(x,a)

is our estimation of Q(x,a).
Remark 1 The above processes can be done in parallel to save computation time. The expected computational
complexity of computing a single Q(s,a)’s value is of order O(|Bz|3)+O(nEXT τz). Considering the O(|S|)
complexity of setting z in S̃, the expected computational complexity is at most O(|Bz|3 + n

(1−γ)2 + |S|).
If we assume further that any state s ∈ S can only transfer to no more than M states in one step, where

M is a positive integer, then the computational complexity of computing the value Q(s,a) can potentially
reach O(|Bz|3+ n

(1−γ)2 +M), a constant regarding to |S|. The complexity of each step can potentially reach
O(|S|) dependency on S in this case.
Remark 2 To increase the computational accuracy, it is suggested to choose B such that (i) P̃z(X1 ∈ B) is
near to 1; (ii) XT is easy to simulate; (iii) |B| is as large as possible.

3.2 COSIMLA-Assisted Policy Iteration

In the policy iteration process, at each step, we use our approach proposed above to solve the Q-function.
We conclude the COSIMLA-assisted policy iteration as follows.

Algorithm 2: COSIMLA-Assisted Policy Iteration for Large Finite State Space
Input: Initial policy π0, k = 1, stopping criterion

1 Each step with policy πk;
2 while not stopping criterion do
3 while x ∈ S do
4 Construct P̃k−1

x ;
5 Compute Qπk−1(s,a) for every pair (s,a) via COSIMLA in Section 3.1;
6 Update πk(s) = argmaxa∈A Qπk−1(s,a), s ∈ S;
7 end
8 k← k+1
9 end

Output: Final policy π

When |Bz|<< |S|, then the COSIMLA-Assisted Policy Iteration Algorithm in computing the Q-function
has a computational complexity of order O(|S|2) dependency on |S|, which reduces the computational
complexity compared to O(|S|3) dependency on |S| of classical policy iteration in one single step.

4 INFINITE STATE SPACE WITH LOCAL POLICY ITERATION

We research policy improvement in the case |S|= ∞ in this section. Let S0 ⊂ S be a finite subset. Assume
that every policy induces a positive recurrent Markov chain and that any state can only transfer to a finite
number of other states in one jump (finite transfer). Our approach for |S| = ∞ is to only update policies
locally on S0 and keep the actions on the remaining states unchanged. The local policy iteration is defined
as

πk+1(s) =

{
argmaxa∈A Qπk(s,a),s ∈ S0,

πk(s),s ∈ Sc
0.

(4)

375

Tang, Glynn, and Zheng

Definition 1 A policy π̃∗ is called locally optimal if it satisfies the following equation:

Qπ̃∗(s,a) = r(s,a)+ γ ∑
s′∈S0

P(s′|s,a)max
a′∈A

Qπ̃∗(s′,a′)+ γ ∑
s′∈Sc

0

P(s′|s,a)Qπ̃∗(s′,π0(s′)). (5)

(5) is called the local-Bellman Optimality Equation. Furthermore, for a policy π and discount factor
γ ∈ (0,1), the local Bellman optimality operator T̃ : Π×R|S|×|A|→ R|S|×|A| is defined to be

(T̃ (π,Q))(s,a) := r(s,a)+ γ ∑
s′∈S0

P(s′|s,a)max
a′∈A

Q(s′,a′)+ γ ∑
s′∈Sc

0

P(s′|s,a)Q(s′,π(s′)).

For simplicity, T̃ (π,Qπ) is denoted by T̃ Qπ .
We next show that the locally optimal policy π̃∗ exists and the local policy iteration process converges

to some limit π̃∞, i.e., πk→ π∞. Then, we show π̃∗ = π∞. Furthermore, the globally optimal policy π∗ is
defined to be satisfying (1). We give bounds for the error gap between the Q-functions of π∞ and π∗, i.e.,
∥Qπ∞−Qπ∗∥∞.
Theorem 2 Given any deterministic policy π0, there exists π̃∗, satisfying that

Qπ̃∗(s,a) = r(s,a)+ γ ∑
s′∈S0

P(s′|s,a)max
a′∈A

Qπ̃∗(s′,a′)+ γ ∑
s′∈Sc

0

P(s′|s,a)Qπ̃∗(s′,π0(s′)).

Furthermore, T̃ (π̃∗,Qπ̃∗) = Qπ̃∗ , π̃∗|S0 = π0|S0 , and local policy iteration converges to π̃∗.
Corollary 3 (Convergence rate) For any k ≥ 1,

∥Q∗−Qπk+1∥
∞
≤ γ ∥Q∗−Qπk∥

∞
.

Intuitively, given the deterministic policy π0, updating the policy in a finite subset S0 will locally
increase the reward of the policy. Since the policy outside S0 remains unchanged, this process will not
make the policy "worse".

We next bound the difference between the locally optimal policy π∞ = π̃∗ and the globally optimal
policy π∗. The following definition is to give measurements to the optimality of the initial policy π0.

A policy π is called 1-step locally optimal in Sc
0 if π(s) = argmaxa∈A r(s,a). The total variance difference

of two probability distributions p1 and p2 on S is defined as ∥p1− p2∥TV := 2supA(p1(A)− p2(A)), in
which the sup is taken through all the subsets of S. We then have the following theorem.
Theorem 4 Assume that π0 is 1-step locally optimal in Sc

0. Denote the locally optimal policy by π̃∗, the
globally optimal policy by π∗, and Q̃ = Qπ̃∗ ,Q∗ = Qπ∗ . Then we have

∥Q∗− Q̃∥∞ ≤
γ2

2(1− γ)2 sup
s′∈Sc

0

max
a′∈A
∥P(·|s′,a′)−P(·|s′,π0(s′))∥TV

≤ 2γ2

(1− γ)2 .

Remark 3 Theorem 4 provides both an instance-dependent error bound and a worst-case bound of the
error between the locally optimal policy and the globally optimal policy.
To evaluate a policy in S0, Theorem 1 and the computing procedure of κπ

x,a still works when |S|= ∞. We
conclude the local policy iteration as follows.

376

Tang, Glynn, and Zheng

Algorithm 3: COSIMLA-Assisted Local Policy Iteration for Infinite State Space
Input: Initial policy π0, k = 1, stopping criterion, A finite subset S0

1 Each step with policy πk;
2 while not stopping criterion do
3 for s ∈ S0 do
4 Compute Qπk−1(s,a) for every pair (s,a) via COSIMLA in Section 3.1;
5 Update πk(s) = argmaxa∈A Qπk−1(s,a) for s ∈ S0;
6 end
7 k← k+1
8 end

Output: Final policy π

Remark 4 Taking the notations defined in Section 3, the computational complexity of a Q-function is
O(|Bz|3+ n

(1−γ)2), which is finite. The positive recurrent assumption guarantees that the simulation process
can stop within a finite time.

5 NUMERICAL EXPERIMENT

In this section, we design experiments in finite S settings to research the accuracy and efficiency of
COSIMLA-assisted policy iteration. Notations in Section 2 are adopted. We design an MDP on a birth-
death chain on a subset of non-negative integers S = {0,1, · · · ,T}. Let the action space be A = {a1, · · · ,aK}.
For each s ∈ S and i ∈ [K], let p(i)s and q(i)s be randomly generated positive real numbers satisfying that
p(i)s +q(i)s ≤ 1, and r(s,ai) ∈ [0,1] is also chosen randomly. The states (Xn : n≥ 0) are defined as

Xn+1 = max(min(Xn +Zn−1,T),0),

where Z′ns are independent random variables taking values in {0,1,2}. For any state s and action ai, Zn is
defined to follow the probability distribution according to action ai and state Xn = s,

P(Zn = 0|ai,Xn = s) = q(i)s ,P(Zn = 2|ai,Xn = s) = p(i)s ,P(Zn = 0|ai,Xn = s) = 1− p(i)s −q(i)s ,

and on the boundary,

P(Zn ∈ {0,1}|ai,Xn = 0) = p(i)0 ,P(Zn = 2|ai,Xn = 0) = 1− p(i)0 ,

P(Zn = 0|ai,Xn = T) = q(i)T ,P(Zn ∈ {1,2}|ai,Xn = T) = 1−q(i)T .

Then, with a given deterministic stationary policy π , the transition matrix is

Pπ =

1− pπ(0)
0 pπ(0)

0 0
qπ(1)

1 1−qπ(1)
1 − pπ(1)

1 pπ(1)
1 . . .

0 qπ(2)
2 1−qπ(2)

2 − pπ(2)
2 pπ(2)

2
. . .

...
.

qπ(T)
T 1−qπ(T)

T

,

which is of dimension |S|. In the COSIMLA-assisted algorithm, for each state s ∈ S and positive integers
b and n, we set B0 = {(s−b)∨0,(s−b)∨0+1, · · · ,(s+b)∧|S|} and simulate n paths of cumulative
rewards. We design the following two experiments. In every experiment setting, the classical algorithm

377

Tang, Glynn, and Zheng

and the COSIMLA-assisted algorithm work on a task to compute the Q-function with a given policy π . We
denote the Q-function computed via classical algorithm by Q̂1, and that via COSIMLA-assisted algorithm
by Q̂2.

Experiment 1. Let K,γ , and the number of simulation paths n be fixed. We increase the size of state
space, |S|, to compare the implementation CPU time between the classical algorithm and the COSIMLA-
assisted algorithm. The truncation set size b is fixed throughout this experiment. Results are presented in
Table 1.

Experiment 2. We fix |S| and compute the Q-function via the COSIMLA-assisted algorithm on different
sizes b and different numbers of simulation paths n. We run our approach to compute the Q-function for
N = 20 times, denoted as Q̂(1)

2 , · · · , Q̂(N)
2 . We regard Q̂1 as the true value of the Q-function in our setting

and report the mean l∞ error Ẽ, defined as Ẽ = 1
N ∑

N
i=1 ∥Q̂1− Q̂(i)

2 ∥∞. Results are presented in Table 2.
All experiments are conducted on a Mac Book Pro laptop with an 8-core CPU and 16GB memory.

The implementation CPU time and the result of the estimations of Qπ are recorded.

Table 1: The CPU time comparison of Classical Algorithm and COSIMLA-assisted Algorithm.

Settings Classical COSIMLA-assisted
|S|= 1×103 K = 3 γ = 0.85, n = 50 1.9 s 21.8 s
|S|= 5×103 K = 3 γ = 0.85, n = 50 1 min 15 s 2 min 10 s
|S|= 1×104 K = 3 γ = 0.85, n = 50 6 min 47 s 3 min 50 s
|S|= 2×104 K = 3 γ = 0.85, n = 50 Memory Crashed 9 min 3 s
|S|= 103 K = 3 γ = 0.7, n = 50 1.9 s 12.8 s
|S|= 5×103 K = 3 γ = 0.7, n = 50 1 min 11 s 1 min 15 s
|S|= 104 K = 3 γ = 0.7, n = 50 8 min 40 s 3 min 1s
|S|= 1×103 K = 2 γ = 0.8, n = 10 1.2 s 3.3 s
|S|= 5×103 K = 2 γ = 0.8, n = 10 36.4 s 24.4s
|S|= 1×104 K = 2 γ = 0.8, = 10 2 min 54 s 1 min 6 s
|S|= 2×104 K = 2 γ = 0.8, n = 10 >20 min 3 min 34s

In Experiment 1, whenever the classical algorithm provides Q̂1, the l∞ differences between Q̂1 and Q̂2 are
less than 10−6. In Experiment 2, the mean of the ∥Q∥l∞ in each setting is greater than 1, thus we report
the absolute mean error. Furthermore, we have the following observations.

• From Experiment 1, we observe that, starting from approximately |S|= 104, the COSIMLA algorithm
is less time-consuming and more memory-preserving, compared to the classical algorithm.

• From Experiment 2, we observe that, for a fixed number of simulation times n, when the size of
truncation set b increases, the error between the Q̂2 and the true Q-function decreases beyond the
order of magnitude.

• From Experiment 2, we observe that, for a fixed size of truncation set b, when the number of
simulation times n increases, the error between Q̂2 and the true Q-function decreases, yet remains
in the same order of magnitude.

378

Tang, Glynn, and Zheng

Table 2: The CPU time and the mean l∞ error of COSIMLA-assisted Algorithm for different numbers of
simulation paths n and truncation set size b.

Settings Mean Error Ẽ Mean CPU Time
|S|= 1×103 K = 2, γ = 0.8

n = 10, b = 10 3.9×10−3 2.4 s
n = 25, b = 10 2.6×10−3 5.4 s
n = 50, b = 10 1.8×10−3 9.9 s
n = 10, b = 20 1.4×10−6 2.7 s
n = 25, b = 20 8.5×10−7 5.5 s
n = 50, b = 20 5.8×10−7 10.3 s
n = 10, b = 30 2.16×10−10 3.4 s
n = 25, b = 30 1.29×10−10 6.4 s
n = 50, b = 30 9.8×10−11 11.4 s

|S|= 5×103 K = 3, γ = 0.77
n = 10, b = 10 2.5×10−3 23.9 s
n = 25, b = 10 1.5×10−3 42.6 s
n = 50, b = 10 1.0×10−3 1 min 14 s
n = 10, b = 20 1.6×10−6 27.7 s
n = 25, b = 20 8.6×10−7 45.0 s
n = 50, b = 20 6.6×10−7 1 min 15 s
n = 10, b = 30 1.14×10−10 29.6 s
n = 25, b = 30 6.5×10−11 49.7 s
n = 50, b = 30 4.67×10−11 1 min 21 s

6 CONCLUSION

In this paper, we propose an approach to compute Q-functions (Theorem 1) in Markov Decision Processes
with the assistance of combining numerical linear algebra and simulation (COSIMLA) (Zheng et al. 2022)
to evaluate κπ

x,a in Theorem 1. We also introduce a local policy iteration approach in infinite state space
Markov Decision Processes with COSIMLA’s assistance and give a convergence rate of the local policy
iteration algorithm and a bound for the error between the local optimal policy and the global optimal policy.
The COSIMLA-Assisted Policy iteration shows high accuracy, low computational complexity, and low
memory consumption in large state spaces.

ACKNOWLEDGMENTS

We would love to express our appreciation and thanks to the anonymous reviewers, for their time, comments
and suggestions. They are very helpful to the improvement of our manuscript.

379

Tang, Glynn, and Zheng

A PROOFS OF THEOREMS

A.1 Proof of Theorem 1

For s ∈ S, we have

V π(s) = Es

[
∞

∑
j=0

γ
jrπ(X j)

]
=

∞

∑
j=0

∑
t∈S

Ps(X j = t)γ jr(X j)

=
∞

∑
j=0

∑
t∈S

γ
jP j(s, t)r(X j) =

∞

∑
j=0

∑
t∈S

(γP) j(s, t)r(X j)

=
∞

∑
j=0

∑
t∈S

P̃π
s (X j = t,τz > t)r(X j) = Ẽπ

z

[
τz−1

∑
j=0

r(X j)

∣∣∣∣X0 = s

]
.

Note that

κ
π
x,a(r) = Ẽπ

z

[
τz−1

∑
j=0

r(X j)

]
= ∑

s∈S
P̃π

x,a(z,s)Ẽπ
x

[
τz−1

∑
j=0

r(X j)

∣∣∣∣X0 = s

]
= ∑

s∈S
P(s|x,a)V π(s),

thus, Qπ(x,a) = γκπ
x,a(r)+ r(x,a). Hence, we complete the proof. □

A.2 Proof of Theorem 2

First, we show Qπk+1 ≥ Qπk . For any action a, any state s and any policy π , denote

π(a|s) =

{
1, if π(s) = a,
0, otherwise.

For any two states s,s′ ∈ S and any two actions a,a′ ∈ A, define P̄π ∈ R|S||A|×|S||A| by
P̄π(s′,a′|s,a) := P(X1 = s′,A1 = s′|X0 = s,A0 = a). Then, we have

Qπk(s,a) = r(s,a)+ γ ∑
s′∈S

P(s′|s,a) ∑
a′∈A

πk(a′|s′)Qπk(s′,a′)

≤ r(s,a)+ γ ∑
s′∈S

P(s′|s,a) ∑
a′∈A

πk+1(a′|s′)Qπk(s′,a′)

= r(s,a)+ γ ∑
s′∈S

∑
a′∈A

P̄πk+1(s′,a′|s,a)Qπk(s′,a′)

≤
∞

∑
j=0

γ
j(P̄πk+1) j(s′,a′|s,a)r(s,a) = Qπk+1(s,a),

in which we used the definition of local policy iteration (4). Since any Q-function is bounded by 1
1−γ

, the
sequence {Qπk}∞

k=1 has a limit. We next show that Qπk+1 ≥ T̃ Qπk .

Qπk+1(s,a) = r(s,a)+ γ ∑
s′∈S

P(s′|s,a) ∑
a′∈A

πk+1(a′|s′)Qπk(s′,a′)

= r(s,a)+ γ ∑
s′∈S

P(s′|s,a)Qπk+1(s′,πk+1(s′))

≥ r(s,a)+ γ ∑
s′∈S

P(s′|s,a)Qπk(s′,πk+1(s′))

= r(s,a)+ γ ∑
s′∈S0

P(s′|s,a)max
a′∈A

Qπk(s′,a′)+ γ ∑
s′∈T0

P(s′|s,a)Qπk(s′,π0(s′))

= (T̃ Qπk)(s,a).

380

Tang, Glynn, and Zheng

Observing that T̃ Qπk ≥ Qπk , we then obtain

· · · ≤ Qπk(s,a)≤ T̃ Qπk(s,a)≤ Qπk+1(s,a)≤ ·· ·

For any two Q-functions with the same policy π0 in Sc
0,

sup
s∈S,a∈A

|T̃ Q1(s,a)− T̃ Q1(s,a)|= sup
s∈S,a∈A

γ

∣∣∣∣ ∑
s′∈S0

P(s′|s,a)
(

max
a′∈A

Q1(s′,a′)−max
a′′∈A

Q2(s′,a′′)
)

+ ∑
s′∈Sc

0

P(s′|s,a) ∑
a′∈A

π0(a′|s′)(Q1(s′,a′)−Q2(s′,a′))
∣∣∣∣

≤ sup
s∈S,a∈A

γ ∑
s′∈S

P(s′|s,a)max
a′∈A
|Q1(s′,a′)−Q2(s′,a′)|

≤ sup
s∈S,a∈A

γ|Q1(s,a)−Q2(s,a)|.

In other words, ∥∥T̃ Q1− T̃ Q2
∥∥

∞
≤ γ ∥Q1−Q2∥∞

. (6)

Let Q̃∗(s,a) = limk→∞ Qπk(s,a) for every (s,a) ∈ S×A, then we note that∥∥T̃ Q̃∗− Q̃∗
∥∥

∞
≤
∥∥T̃ Q̃∗− T̃ Qπk

∥∥
∞
+
∥∥T̃ Qπk −Qπk

∥∥
∞
+
∥∥Qπk − Q̃∗

∥∥
∞

≤ (γ +1)
∥∥Q̃∗−Qπk

∥∥
∞
+∥Qπk+1−Qπk∥

∞

→ 0,

as k→ ∞. Thus, T̃ Q̃∗ = Q̃∗, and π̃∗(s) := argmaxa Q̃∗(s,a),s ∈ S0 satisfies (5). Hence we complete the
proof. □

A.3 Proof of Corollary 3

Since (6), we have ∥Q∗−Qπk+1∥
∞
≤
∥∥Q∗− T̃ Qπk

∥∥
∞
=
∥∥T̃ Q∗− T̃ Qπk

∥∥
∞
≤ γ ∥Q∗−Qπk∥

∞
.Then we complete

the proof. □

A.4 Proof of Theorem 4

Note that,
Q̃(s,a) = r(s,a)+ γ ∑

s′∈S0

P(s′|s,a)max
a′∈A

Q̃(s′,a′)+ γ ∑
s′∈Sc

0

P(s′|s,a)Q̃(s′,π0(s′)),

and
Q∗(s,a) = r(s,a)+ γ ∑

s′∈S
P(s′|s,a)max

a′∈A
Q∗(s′,a′).

Taking the difference between them and noting that π̃∗|S0 = π0|S0 , we have,

Q∗(s,a)− Q̃(s,a)

=γ ∑
s′∈S

P(s′|s,a)(max
a′∈A

Q∗(s′,a′)−max
a′∈A

Q̃(s′,a′))+ γ ∑
s′∈Sc

0

P(s′|s,a)(max
a′∈A

Q̃(s′,a′)− Q̃(s′,π0(s′)))

≤γ ∑
s′∈S

P(s′|s,a)max
a′∈A

(Q∗(s′,a′)− Q̃(s′,a′))+ γ ∑
s′∈Sc

0

P(s′|s,a)(max
a′∈A

Q̃(s′,a′)− Q̃(s′,π0(s′)))

≤γ∥Q̃−Q∗∥∞ + γ ∑
s′∈Sc

0

P(s′|s,a)(max
a′∈A

Q̃(s′,a′)− Q̃(s′,π0(s′))).

381

Tang, Glynn, and Zheng

This implies that

(1− γ)∥Q̃−Q∗∥∞

≤ sup
s∈S

γ ∑
s′∈Sc

0

P(s′|s,a)(max
a′∈A

Q̃(s′,a′)− Q̃(s′,π0(s′)))

≤ γ sup
s′∈Sc

0

(
max
a′∈A

Q̃(s′,a′)− Q̃(s′,π0(s′))
)

= γ sup
s′∈Sc

0

max
a′∈A

(
r(s′,a′)+ γ ∑

s′′∈S
P(s′′|s′,a′)Q̃(s′′, π̃∗(s′′))− r(s′, π̃∗(s′))− γ ∑

s′′∈S
P(s′′|s′, π̃∗(s′))Q̃(s′′, π̃∗(s′′))

)
≤ γ

2 sup
s′∈Sc

0

max
a′∈A

∑
s′′∈S

(P(s′′|s′,a′)−P(s′′|s′, π̃∗(s′′)))Q̃(s′′, π̃∗(s′))

≤ γ2

1− γ
sup
s′∈Sc

0

max
a′∈A

∑
s′′∈S

(
P(s′′|s′,a′)−P(s′′|s′, π̃∗(s′))

)
+

≤ γ2

2(1− γ)
sup
s′∈Sc

0

max
a′∈A
∥P(·|s′,a′)−P(·|s′,π0(s′))∥TV ,

where (x)+ denotes max(x,0) for any real number x. Finally, noting that ∥P(·|s′,a′)−P(·|s′,π0(s′))∥TV ≤ 2
always holds, we complete the proof. □

REFERENCES
Agarwal, A., N. Jiang, S. M. Kakade, and W. Sun. 2019. “Reinforcement Learning: Theory and Algorithms”. CS Dept., UW

Seattle, Seattle, WA, USA, Tech. Rep 32:96.
Bellman, R. 1956. “Dynamic programming and Lagrange Multipliers”. Proceedings of the National Academy of Sci-

ences 42(10):767–769.
Bertsekas, D. P. 2011. “Approximate Policy Iteration: A Survey and Some New Methods”. Journal of Control Theory and

Applications 9(3):310–335.
Glynn, P. W. and Z. Zheng. 2023. “Cosimla with General Regeneration Set to Compute Markov Chain Stationary Expectations”.

In 2023 Winter Simulation Conference (WSC), 469–479. IEEE.
Ye, Y. 2011. “The Simplex and Policy-iteration Methods are Strongly Polynomial for the Markov Decision Problem with a

Fixed Discount Rate”. Mathematics of Operations Research 36(4):593–603.
Zheng, Z., A. Infanger, and P. W. Glynn. 2022. “Combining Numerical Linear Algebra with Simulation to Compute Stationary

Distributions”. In 2022 Winter Simulation Conference (WSC), 2342–2353. IEEE.

AUTHOR BIOGRAPHIES
YIFU TANG is currently a PhD Student at University of California, Berkeley. His email address is yifutang@berkeley.edu.

PETER W. GLYNN is the Thomas Ford Professor in the Department of Management Science and Engineering (MS&E) at
Stanford University. He is a Fellow of INFORMS and of the Institute of Mathematical Statistics, has been co-winner of Best
Publication Awards from the INFORMS Simulation Society in 1993, 2008, and 2016, and was the co-winner of the John
von Neumann Theory Prize from INFORMS in 2010. In 2012, he was elected to the National Academy of Engineering. His
research interests lie in stochastic simulation, queueing theory, and statistical inference for stochastic processes. His email
address is glynn@stanford.edu and his homepage is https://web.stanford.edu/~glynn/index.html.

ZEYU ZHENG is an associate professor in the Department of Industrial Engineering & Operations Research at University of
California Berkeley. His email address is zyzheng@berkeley.edu and his homepage is http://zheng.ieor.berkeley.edu.

382

mailto://yifutang@berkeley.edu
mailto://glynn@stanford.edu
https://web.stanford.edu/~glynn/index.html
mailto://zyzheng@berkeley.edu
http://zheng.ieor.berkeley.edu

	INTRODUCTION
	PROBLEM SETTING for MDP and Policy Iteration
	COSIMLA-ASSISTED POLICY ITERATION FOR LARGE FINITE STATE SPACE MDP
	COSIMLA for Q-function Computing
	COSIMLA-Assisted Policy Iteration

	INFINITE STATE SPACE WITH LOCAL POLICY ITERATION
	NUMERICAL EXPERIMENT
	CONCLUSION
	Proofs of Theorems
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Corollary 3
	Proof of Theorem 4

