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ABSTRACT

We consider the problem of determining feasible systems among a finite set of simulated alternatives
with respect to a probability constraint, where observations from stochastic simulations are Bernoulli
distributed. Most statistically valid procedures for feasibility determination consider constraints on the
means of normally distributed observations. When observations are Bernoulli distributed, one can still use
the existing procedures by treating batch means of Bernoulli observations as basic observations. However,
achieving approximate normality may require a large batch size, which can lead to unnecessary waste of
observations in reaching a decision. This paper proposes a procedure that utilizes Bernoulli-distributed
observations to perform feasibility checks. We demonstrate that when the observations are Bernoulli
distributed, our procedure outperforms an existing feasibility determination procedure that was developed
for a constraint on normally distributed observations.

1 INTRODUCTION

We consider the problem of identifying feasible systems among a finite number of simulated alternatives
when observations are Bernoulli distributed. This problem occurs when a decision-maker considers a
constraint on probabilities. For example, in a military operation, a commander may set the criterion of
operation success as eliminating at least 70% of the enemy forces. The commander would aim to minimize
the probability of operation failure. In this case, the commander can consider a constraint that the probability
of eliminating at least 70% of the enemy forces by the end of the operation is less than or equal to h = 1%.
Such scenarios are not limited to military operations but frequently arise in manufacturing and service
systems. For example, in an (s, S) inventory policy, a decision maker may want to identify inventory
policies whose probability of yearly total cost exceeding 1.4 million dollars is no more than h = 1%. As
one can see from these two examples, we have a stochastic constraint in the sense that the probability needs
to be estimated based on stochastic observations. Furthermore, basic observations are Bernoulli distributed
with 1 (an event of interest occurs) or 0 (an event of interest does not occur).

Feasibility determination is a branch in the field of ranking and selection (R&S). R&S procedures have
primarily been used to find a system with the best performance measure among a finite number of simulated
systems where the definition of the best depends on the problem at hand. Kim and Nelson (2006b) and
Hong et al. (2015) discuss four selection problems in simulation studies: selection of the best, comparison
with a standard, multinomial selection, and Bernoulli selection. Among the four problems, the selection of
the best is studied the most. In the selection of the best, observations are usually assumed to be normally
distributed, and several approaches have been developed. For example, Nelson et al. (2001) and Kim and
Nelson (2001) consider the fully-sequential indifference zone (IZ) approach with an IZ parameter δ > 0,
which is the smallest difference worth detecting between two systems. Chen et al. (2000) and Lee et al.
(2010) propose optimal computing budget allocation (OCBA) procedures, while Frazier and Powell (2008)
and Xie and Frazier (2013) employ the Bayesian approach.

If the decision maker considers finding a system with the largest or smallest probability of an event,
Bernoulli selection can be used. Sobel and Huyett (1957) propose a procedure for selecting the system with
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the highest probability of success using an IZ approach that utilizes the difference between probabilities.
Bechhofer et al. (1968) present a method for solving the Bernoulli selection problem sequentially using
a random walk model and an IZ approach that utilizes the odds-ratio between probabilities. Research
on solving the Bernoulli selection problem using the random walk model is also conducted by Tamhane
(1985), and Paulson (1994) improves performance by proposing a method that eliminates inferior systems
during the procedure in Koopman-Darmois populations including Bernoulli observations. Wieland and
Nelson (2004) discuss three types of indifference-zone formulations in Bernoulli selection experiments
(i.e., absolute difference, odds-ratio, and relative risk) and solve the Bernoulli selection problem with a
gambler’s ruin problem (Ross 2014) using the odds-ratio IZ parameter, aiming to create a more efficient
procedure by narrowing down the decision-making region for selection as the procedure progresses.

While the selection of the best deals with a single performance measure, constrained R&S considers
optimizing a primary performance measure subject to constraints on secondary performance measures.
Thus, in constrained R&S, both feasibility determination and comparison are required. Several approaches
have been developed for solving constrained R&S. For example, Lee et al. (2012), Hunter and Pasupathy
(2013), Pasupathy et al. (2014), and Gao and Chen (2017) propose sampling frameworks that approximate
the optimal computing budget allocation while considering stochastic constraints. Among the procedures
that use the IZ approach, Andradĺőttir and Kim (2010), Healey et al. (2013), and Healey et al. (2014)
propose constrained R&S procedures that find the best feasible system, while Batur and Kim (2010) identify
a set of feasible solutions in the presence of multiple constraints. Hong et al. (2015) propose statistically-
valid procedures that solve constrained selection of the best problem with secondary performance measures
satisfy probabilistic constraints. For the Bayesian approach, Xie and Frazier (2013) discuss a Bayes-optimal
policy for determining a set of simulated solutions with mean performances exceeding a fixed threshold
value.

In R&S for feasibility checks, constraints are usually imposed on the expectation of normally distributed
data. To the best of our knowledge, although there exist methods that formulate the Bernoulli feasibility
problem as a hypothesis test on a probability (e.g., Fleiss et al. (2003)), there does not exist a statistically-
valid fully-sequential procedure that solves the Bernoulli feasibility problem (where the observations are
Bernoulli random variables). Theoretically, when observations are Bernoulli distributed, one can still apply
existing procedures for feasibility determination by treating batch means of Bernoulli distributed data
as basic observations. However, it is well known that a large batch size could cause inefficiency with
unnecessary waste of observations in reaching a decision, especially in fully sequential type procedures, as
pointed out in Kim and Nelson (2006a). Our proposed procedure collects only one basic observation from
the systems in contention at each stage, which is expected to reduce the overall simulation effort required
to find the set of feasible systems since we are able to identify apparently infeasible systems early in the
experimentation. In this paper, we develop a fully-sequential IZ procedure for checking the feasibility
of systems when a constraint is placed on a probability, which is the expectation of Bernoulli-distributed
data with outputs of 1 (“success”) or 0 (“failure”). The contributions of this paper are as follows: we
(i) discuss how the IZ parameter based on an odds-ratio is formulated in feasibility determination on a
probability constraint, (ii) solve such feasibility determination problems, (iii) prove the statistical validity
of the proposed procedure, and (iv) demonstrate that our procedure outperforms an existing feasibility
determination procedure for a constraint with normal observations due to Andradĺőttir and Kim (2010).

The rest of this paper is organized as follows: Section 2 provides our problem and notation. Our
procedure is given in Section 3. Experimental results are shown in Section 4, followed by concluding
remarks in Section 5. A more detailed version of this paper is provided by Kim et al. (2024).

2 PROBLEM, NOTATION, AND CORRECT DECISION

In this section, we describe our problem and notation in Section 2.1 and then define the correct decision
event in Section 2.2.
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2.1 Problem

We consider stochastic and terminating simulations of k systems. Let Ω = {1, . . . , k} denote the index
set of all possible systems. Observations Yin represent whether an event of interest occurs (Yin = 1) or
not (Yin = 0) from the nth replication of the ith system where i ∈ Ω and n = 1, 2, . . .. We denote the
probability of system i as pi = E[Yin]. Observations are assumed to satisfy the following assumption:
Assumption 1 For each i ∈ Ω, Yin are independent and identically distributed Bernoulli distributed random
variables with probability pi.

If we do not use common random numbers (CRN), then observations from different systems, i.e., Yin
and Yi′n for i 6= i′, are independent. Note that CRN is not recommended in Bernoulli selection (Kim and
Nelson 2006b) or feasibility determination (Zhou et al. 2022). Therefore, we do not consider the case
when CRN is applied in this paper.

2.2 Correct Decision

In Bernoulli selection, whose goal is to find a system with the largest success probability of an event among
k systems, three types of IZ settings are considered (Wieland and Nelson 2004). Let pi denote the success
probability for system i for i = 1, 2, . . . , k and pk > pk−1 ≥ · · · ≥ p1. Then, a statistically valid selection
procedure guarantees the selection of system k with at least 1− α probability under one of the following
three types of IZ settings:

• Difference: pk − pk−1 ≥ δ > 0.
• Odds-ratio: pk

(1−pk)/
pk−1

(1−pk−1)
≥ θ > 1.

• Relative risk: pk/pk−1 ≥ θ > 1.

The odds-ratio represents how the number of successes per failure in one system compares to the
number of successes per failure in another system. According to Wieland and Nelson (2004), there are two
advantages of using the odds-ratio. First, as the probability approaches 0 and 1, it amplifies the difference
between the two probabilities. For instance, when pk−1 = 0.9 and θ = 1.2, pk should be more than 0.915
for system k to satisfy the odds-ratio IZ setting. On the other hand, with the same θ, if pk−1 = 0.5, the
corresponding value of pk should be more than 0.545. That is, a 1% difference between two probabilities
close to 1 is considered as a larger difference than a 1% difference in two probabilities close to 50% in
terms of the odds-ratio. The same argument applies to two probabilities close to 0. This is desirable as
it tends to take more effort to further increase a probability close to 1 or decrease a probability close to
0. Therefore, when the performance measure is a probability, using the odds-ratio is more appropriate.
Second, the odds ratio makes it possible to use the gambler’s ruin approach, which does not require either
an initial sample size for variance estimation or the normality of observations (thus no batching). For these
reasons, we employ the odds-ratio IZ setting in this paper.

In this paper, an odds-ratio IZ parameter is denoted by θ > 1 and its value is specified by the decision
maker. For a constraint that the probability of system i is less than or equal to a threshold h, similar as
in Andradĺőttir and Kim (2010), we introduce the sets of desirable, unacceptable, and acceptable systems
due to the fact that it is nearly impossible to guarantee a correct feasibility decision in terms of a stochastic
constraint. Depending on the user-specified odds-ratio IZ parameter, the three sets are defined as follows.

• Any system i that satisfies h/(1−h)
pi/(1−pi) = (1−pi)h

pi(1−h) ≥ θ is considered desirable with respect to threshold
h. The set of all desirable systems with respect to threshold h is denoted as D:

D =

{
i ∈ Ω

∣∣∣∣∣ (1− pi)h
pi (1− h)

≥ θ

}
.
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For those systems, we are expected to declare them feasible to threshold h.
• Any system i with pi/(1−pi)

h/(1−h) = pi(1−h)
(1−pi)h ≥ θ is considered unacceptable with respect to threshold h,

placing them in set U :

U =

{
i ∈ Ω

∣∣∣∣∣ pi (1− h)

(1− pi)h
≥ θ

}
.

For those systems, we are expected to declare them infeasible to threshold h.
• The remaining systems are considered acceptable and are placed in set A:

A = Ω \ (D ∪ U) .

When performing feasibility check for system i, we use CDi to denote a correct decision event, and
it is an event such that system i is declared feasible if i ∈ D and infeasible if i ∈ U . For systems in A,
any decision is considered as a correct decision. Then, a statistically-valid procedure that determines the
feasibility of the k systems should satisfy the following statement:

PCD = Pr
(
∩ki=1CDi

)
≥ 1− α, (1)

where 1− α is the nominal confidence level.

3 PROCEDURE

In this section, we present our proposed procedure, namely BerF. The BerF procedure employs a random-
walk model to process Bernoulli data without the need to employ batch means and estimate system variance.
We need some additional notation before presenting BerF. First, for the overall confidence level 1−α, the
parameter β, which corresponds to the nominal probability of error for each system, is defined as follows:

β = 1− (1− α)1/k. (2)

Then, H is defined as the smallest integer such that

β ≥ 1

1 + θH
. (3)

Finally, for i ∈ Ω, we let Ii1, Ii2, . . . represent independent and identically distributed dummy Bernoulli
data with probability h independent of Yi1, Yi2, . . ..

The BerF procedure declares the feasibility of system i with respect to threshold h as{
feasible if

∑r
n=1 (Yin − Iin) ≤ −H,

infeasible if
∑r

n=1 (Yin − Iin) ≥ H,
(4)

where r denotes the number of observations collected so far. In other words, the feasibility of system i
with respect to threshold h is determined by assessing whether

∑r
n=1(Yin − Iin) first reaches either −H

or H . Figure 1 shows a sample path where system i is declared feasible with respect to threshold h. A
detailed description of the procedure is provided in Algorithm 1.

Theorem 1 proves the statistical validity of our proposed procedure. The proof is provided in Kim
et al. (2024).
Theorem 1 For k systems with a probability constraint and threshold h, BerF guarantees PCD =
Pr(∩ki=1CDi) ≥ 1− α.

The main idea in the proof of Theorem 1 is to compare systems individually, with statistical guarantee
of 1− β, with a dummy system whose success probability is h and determine which system has a larger
probability. Notice that whenever an observation Yir is collected, a dummy random variable Iir is also
collected, and Yir − Iir takes values in {−1, 0, 1}. Therefore, we are able to use the monitoring statistics∑r

n=1(Yin − Iin) for r = 1, 2, . . . as states in a discrete-time Markov chain and model a state-change
process as a random-walk process. The detailed proof is included in Kim et al. (2024).
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Figure 1: An example of a feasible decision with respect to the threshold h for BerF.

Algorithm 1 Procedure Bernoulli Feasibility, BerF

[Setup:] Choose confidence level 1 − α, threshold h, and odds-ratio IZ parameter θ > 1. Set Ω =

{1, 2, . . . , k} and H as the smallest integer such that Equation (3) holds, where β is determined as in
Equation (2).
for each system i ∈ Ω do

[Initialization:]
Set r = 1 and Zi = −1.
Generate Yir and Uir ∼ U(0, 1) independent of Yir.
[Feasibility Check:]
Set Iir = 1 if Uir ≤ h and 0 otherwise.
If
∑r

n=1(Yin − Iin) ≤ −H , set Zi = 1;
Else if

∑r
n=1(Yin − Iin) ≥ H , set Zi = 0.

[Stopping Condition:]
If Zi 6= −1, return Zi. Otherwise, set r = r+ 1, obtain Yir and Uir, and go to [Feasibility Check].

end for

4 EXPERIMENTS

In this section, we demonstrate the performance of the proposed procedure BerF when a single system
is considered (i.e., k = 1). We compare the performance of BerF with F due to Andradĺőttir and Kim
(2010). As discussed in Section 1, we use batch means of the data as basic observations for F since F is
designed for feasibility checks with respect to normally distributed data.

We set the true probability of the single system p1 to either 0.01 or 0.15. We consider two values
for the odds-ratio, i.e., θ ∈ {1.2, 1.5}. We choose the threshold under the so-called slippage configuration
(SC) and non-SC. Note that the SC corresponds to the most difficult case to solve in the odds-ratio IZ
setting (Bechhofer and Goldsman (1986)) where the mean of the system falls exactly on the boundary
of the desirable or unacceptable set of the threshold. In particular, we consider threshold h such that
p1(1−h)
(1−p1)h = θ, which means that the threshold is set as h = p1

p1+(1−p1)θ . With this value of h, the system
becomes unacceptable. For the two values of odds-ratio considered, h = 0.008347 when θ = 1.2 and
h = 0.006688 when θ = 1.5. On the other hand, in the non-SC, we halve the value of h from the SC and
set it as a new threshold value.
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To ensure a fair comparison, we choose the tolerance level ε of F as the absolute difference between
the threshold h of the SC and p1. We set n0 = 10 for F to perform the required variance estimation.
Furthermore, since the basic observations of F are batch means, we consider the batch size b ∈ {1, 32, 100}
for both θ ∈ {1.2, 1.5} and further include b ∈ {300, 400, 500} for θ = 1.2 and b ∈ {200, 300} for θ = 1.5
when p1 = 0.01. Those additional values of the batch size are used to demonstrate the required batch size
to ensure the desired statistical guarantee.

Table 1 shows the experimental results when p1 = 0.01, where we report the estimated PCD and
the required number of observations to conclude the feasibility decision (OBS). Firstly, from the PCD
perspective, F does not provide statistical guarantee of 1−α when b ∈ {1, 32, 100, 300, 400} when θ = 1.2
and when b ∈ {1, 32, 100, 200} when θ = 1.5 under the SC. This is expected because Bernoulli data with
p1 = 0.01 are heavily skewed, requiring a large batch size to achieve approximate normality of batch
means. We see that one needs roughly a batch size of 500 for θ = 1.2 and 300 for θ = 1.5 to ensure
the statistical guarantee of F . When b = 500, BerF requires slightly fewer OBS compared with F when
θ = 1.2, but 37% fewer OBS than F when b = 300 and θ = 1.5 under the SC. On the other hand, under
the non-SC, which is an easier case in terms of feasibility determination, the superiority of BerF is obvious,
resulting in up to 67% reduction in OBS.

Table 1: Estimated PCD and OBS for a single system with p1 = 0.01.

b
SC non-SC

PCD OBS PCD OBS

θ = 1.2

BerF 0.959 9441.6 1 2917.6

F

1 0.095 8567.1 0.100 6622.6
32 0.888 8542.9 0.961 6505.5
100 0.919 8592.3 1 6453.8
300 0.936 8932.7 1 6707.0
400 0.946 9153.6 1 6844.2
500 0.951 9514.8 1 7166.9

θ = 1.5

BerF 0.960 2214.7 1 1199.9

F

1 0.097 2625.7 0.095 2986.9
32 0.876 2579.3 0.958 3083.2
100 0.918 2688.5 1 3165.5
200 0.945 2971.7 1 3310.9
300 0.965 3506.2 1 3689.2

Table 2 shows the experimental results when p1 = 0.15. As the Bernoulli data in this case are less
skewed, F achieves estimated PCD above the nominal level when b = 32 and θ ∈ {1.2, 1.5}. With b = 32,
BerF needs slightly more OBS than F when θ = 1.2, while BerF spends 50% fewer OBS than F when
θ = 1.5 under the SC. BerF clearly outperforms F under the non-SC, bringing as large as 75% reduction
in OBS when b = 32.

5 CONCLUSION

In this paper, we address the problem of identifying feasible systems among a finite number of simulated
alternatives in the presence of a probability constraint. Due to the nature of the probability constraint,
the observations follow a Bernoulli distribution. We develop a novel procedure that employs a random
walk model with an odds-ratio IZ parameter. Our procedure is statistically valid and does not need either
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Table 2: Estimated PCD and OBS for a single system with p1 = 0.15.

b
SC non-SC

PCD OBS PCD OBS

θ = 1.2

BerF 0.957 707.6 1 197.8

F
1 0.785 600.9 0.806 388.8
32 0.951 655.0 1 440.3
100 0.980 1058.4 1 1000.7

θ = 1.5

BerF 0.964 166.1 1 82.3

F
1 0.787 169.0 0.800 179.3
32 0.983 328.2 1 325.7
100 1 1000.0 1 1000.0

an initial sample size for variance estimation or batching to achieve the approximate normality of basic
observations. Our experimental results show that the proposed procedure outperforms an existing procedure
that is originally designed for normally distributed data.
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Andradĺőttir, S. and S.-H. Kim. 2010. “Fully Sequential Procedures for Comparing Constrained Systems via Simulation”. Naval

Research Logistics (NRL) 57(5):403–421.
Batur, D. and S.-H. Kim. 2010. “Finding Feasible Systems in the Presence of Constraints on Multiple Performance Measures”.

ACM Transactions on Modeling and Computer Simulation (TOMACS) 20(3):1–26.
Bechhofer, R., J. Kiefer, and M. Sobel. 1968. Sequential Identification and Ranking Procedures with Special Reference to

Koopman-Darmois Populations. Chicago:University of Chicago Press.
Bechhofer, R. E. and D. M. Goldsman. 1986. “Truncation of the Bechhofer-Kiefer-Sobel Sequential Procedure for Selecting the

Multinomial Event Which Has the Largest Probability (II): Extended Tables and an Improved Procedure”. Communications
in Statistics-Simulation and Computation 15(3):829–851.

Chen, C.-H., J. Lin, E. Yücesan, and S. E. Chick. 2000. “Simulation Budget Allocation for Further Enhancing the Efficiency
of Ordinal Optimization”. Discrete Event Dynamic Systems 10:251–270.

Fleiss, J. L., B. Levin, and M. C. Paik. 2003. Statistical Methods for Rates and Proportions. 3rd ed. Hoboken, NJ: John Wiley
& Sons.

Frazier, P. and W. B. Powell. 2008. “The Knowledge-Gradient Stopping Rule for Ranking and Selection”. In 2008 Winter
Simulation Conference, 305–312. IEEE.

Gao, S. and W. Chen. 2017. “Efficient Feasibility Determination With Multiple Performance Measure Constraints”. IEEE
Transactions on Automatic Control 62(1):113–122.

Healey, C., S. Andradóttir, and S.-H. Kim. 2014. “Selection Procedures for Simulations with Multiple Constraints under
Independent and Correlated Sampling”. ACM Transactions on Modeling and Computer Simulation (TOMACS) 24(3):1–25.
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