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ABSTRACT

This study explores integrating Large Language Models (LLMs) into computer science education by
examining undergraduate interactions with a GPT-4-based chatbot during a formative assignment in an
introductory course. We aim to delineate optimal help-seeking behaviors and ascertain if effective problem-
navigating strategies correlate with improved learning outcomes. Using descriptive statistics and Structural
Topic Modeling (STM), we analyze the types of questions posed and their connection to task completion
success. Findings reveal a positive association between the number of attempts and help requests, indicating
more engaged students seek assistance. STM analysis shows high-ability students address abstract concepts
early, while lower-ability students focus on syntax-related issues. These insights underscore the need to
evaluate interaction behaviors to optimize chatbot use in education, leading to proposed guidelines to
enhance chatbot utilization, promoting responsible use and maximizing educational advantages.

1 INTRODUCTION

In the rapidly evolving landscape of educational technology, the integration of Large Language Models
(LLMs) into learning environments is an unavoidable trend that is set to continue growing (Kasneci et al.
2023; Yan et al. 2024). The promise of LLMs in education extends beyond their capacity to provide
information; they hold the potential to transform the learning process through meaningful and interactive
exchanges by optimizing and personalizing educational experiences in higher education (Meyer et al. 2023)
Large Language Models (LLMs) are currently being introduced into higher education through various
pilot programs and research initiatives aimed at enhancing teaching methodologies and improving student
learning outcomes. More specifically, chatbot assistants powered by LLMs are designed to offer 24/7
student support (H Abu-Rasheed 2024), provide career advising (Radhakrishnan and Dias 2023), and
answer queries ranging from course content to administrative processes (Bakas et al. 2023). Additionally,
LLM-powered platforms are being developed to facilitate interactive learning experiences, where students
can engage in simulated conversations with virtual tutors, thereby enriching their understanding of complex
subjects through immersive dialogue.

One of the key tasks to uncover this optimization is to systematically understand how students are currently
using LLMs and to identify any specific strategies that effective students are utilizing. By pinpointing
the tactics employed by students who successfully leverage LLMs to enhance their understanding and
performance, educators can develop guidelines and best practices that can be shared across the educational
community. This approach not only helps in promoting the responsible use of LLMs but also ensures
that all students can benefit from the potential educational advancements these technologies offer. Hence,
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this exploratory study investigates the optimal interactions between students and a GPT-4-based chatbot to
demonstrate learning outcomes within a time-constrained formative assignment.

Our study is guided by two primary research questions. First, we examine the types of questions or
help-seeking behaviors that are commonly exhibited by students when interacting with LLMs. Second,
we investigate whether identifiable differences exist in chatbot usage and help-seeking behaviors among
students, especially among those who navigate problems more effectively. By doing so, we aim to identify
strategies to optimize the interaction between students and an LLM-based chatbot, CodeHelp, to aid students’
code development. CodeHelp is a new tool powered by LLMs, designed to provide real-time assistance to
programming and computer science students with built-in safeguards that offer on-demand help without
directly revealing solutions (Liffiton et al. 2023). We will specifically focus on the help-seeking behaviors
and the topics of questions from high-achieving students—or those effectively navigating the problem—to
investigate the optimal interaction patterns, which could lead to shorter completion times (fewer attempts)
and correct answers to questions. The following research questions are addressed:

1. What topics of questions or help-seeking behaviors are most exhibited by students while using the
chatbot during quizzes?

2. Are there identifiable differences in the topics of questions and help-seeking behaviors among
students who are effectively navigating the problem?

2 BACKGROUND

2.1 Introduction of Chatbots in Education Environments

Chatbots act as conversational or interactive agents, providing users with instant responses (Smutny and
Schreiberova 2020). In today’s tech-driven world, where communication and many other activities heavily
rely on online platforms, chatbots are increasingly used to enhance student interaction. The progress
of chatbot technology has been significantly accelerated by recent breakthroughs in Natural Language
Processing (NLP), Machine Learning (ML), and the emergence of Large Language Models (LLMs). These
innovations have enabled chatbots to process and understand natural language, interact with users through
text and voice responses, and provide insightful feedback, laying the groundwork for their application
in education (Belda-Medina and Kokošková 2023). Given that most higher education students possess
smartphones and frequently use internet applications, chatbot systems can be deployed as mobile web
applications to aid learning. These systems can instantly provide students with standardized, detailed
information such as course content (Okonkwo and Ade-Ibijola 2021), exercises and answers (Ranoliya
et al. 2017), assessment criteria (Benotti et al. 2017), assignment deadlines, advice (Ismail and Ade-Ibijola
2019), campus directions, and learning materials. These systems not only enhance student engagement
and support but also significantly reduce the administrative workload of instructors, allowing them to focus
more on curriculum development and research (Okonkwo and Ade-Ibijola 2021). Despite the existence of
various interaction modes in education, such as email communication, student-to-student, and student-to-
instructor interactions, none facilitates a more convenient, personalized learning experience for students.
Chatbot technology can offer students a more personalized and engaging learning environment (Benotti
et al. 2017). Hence, learners can now engage in immersive conversational experiences within a supportive
and non-critical setting (El Shazly 2021; Skjuve et al. 2021).

Several recent studies have demonstrated the effectiveness of introducing chatbot technology to help
improve student learning experiences, such as by including chatbots for answering student questions
(Okonkwo and Ade-Ibijola 2021), learning computer programming concepts (Pham et al. 2018), and
providing assessments of student performance (Okonkwo and Ade-Ibijola 2021). Especially in computer
science education, previous studies have investigated the efficacy of chatbots in teaching complex computer
programming concepts, indicating that such tools can significantly enhance students’ understanding by
offering personalized learning experiences and interactive problem-solving sessions (Nguyen et al. 2019;
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Zhou et al. 2020). Additionally, in their systematic review of educational chatbots, Kuhali et al. (2023)
revealed how these technologies can not only accurately gauge learning outcomes but also provide insights
into areas where students may require further assistance or revision (Kuhail et al. 2023). Similarly, a study
exploring the application of the "gpt-3.5-turbo" model in programming assessments has shown that tasks
previously requiring hours for grading can now be completed in minutes. ChatGPT can evaluate individual
submissions and provide feedback in about 9.5 seconds, significantly reducing the time teachers spend
on grading (Jukiewicz 2024). Collectively, these studies underscore the multifaceted role of chatbots in
computer science education, from facilitating foundational learning to conducting sophisticated assessments,
thereby highlighting their growing importance as educational resources in this field.

2.2 Chatbots as Instructional Agents

Chatbots in an educational environment play multifaceted roles. When interacting with students, chatbots
can assume various roles such as instructional agents, peer agents, teachable agents, and motivational agents
(Baylor 2011). Instructional agents mimic the role of human teachers, offering instructions, examples,
posing questions (Wik and Hjalmarsson 2009), and providing immediate feedback (Kulik and Fletcher
2016). Conversely, peer agents act as learning companions to students, facilitating peer interaction. Agents
in this modality possess less knowledge than instructional agents. Nevertheless, peer agents can still guide
students along their learning path. Conversations with peer agents are typically initiated by students seeking
definitions or explanations on specific topics. Peer agents can also engage in educational dialogues with
other human peers. Students can teach teachable agents to facilitate incremental learning. In this approach,
the agent acts as a novice, requiring students to guide them along the learning path. Motivational agents
do not directly contribute to the learning process but act as companions to students, encouraging positive
behaviors and learning (Baylor 2011). Agents can function as instructional or peer agents as well as
motivational agents. Regarding interaction modes, dialogues with chatbots can be either chatbot-driven or
user-driven. Chatbot-driven dialogues are scripted, best represented as linear flows with a limited number
of branches dependent on acceptable user answers. Such chatbots are typically programmed using if-else
rules. Interactions feel smooth when users provide answers compatible with the script. However, deviations
from the scripted process present challenges. User-driven dialogues are powered by artificial intelligence,
allowing for flexible conversations when users choose the types of questions they pose, thus deviating from
the chatbot’s script. There are unidirectional and bidirectional user-driven chatbots. Unidirectional user-
driven chatbots use machine learning to understand what users say and select responses from a preformulated
set of answers. In contrast, bidirectional user-driven chatbots construct precise answers verbatim for users,
learning from previous user inputs in similar contexts (Wik and Hjalmarsson 2009).

2.3 CodeHelp

Providing effective automated assistance to novice programmers has long been a research challenge. Con-
siderable attention has been devoted to the development and evaluation of so-called intelligent programming
tutoring systems, sometimes referred to as Intelligent Programming Tutors (IPT). These systems vary widely
and include a range of supplementary features (Crow et al. 2018). Much effort has focused on various
methods for generating effective hints (Leinonen et al. 2023; Mahdaoui et al. 2022) and feedback (Keun-
ing et al. 2018). With the advancement of Large Language Models (LLMs), research has demonstrated
tremendous potential of LLMs in generating resources such as programming exercises, code explanations,
and model solutions (Denny et al. 2024). Recent studies have even suggested that code explanations by
LLMs are more useful to students than those produced by their peers (Leinonen et al. 2023).

CodeHelp is a new tool powered by LLMs, designed to provide real-time assistance to students of
programming and computer science, with built-in safeguards that offer on-demand help to programming
students without directly revealing solutions (Liffiton et al. 2023). The primary difference between
CodeHelp and prior efforts in this field is its underlying use of LLMs, which enables it to respond to
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a much wider range of requests, thus eliminating or significantly reducing the need for specific class
context configuration or setup. Similar tools without the LLM foundation had to rely on various rule-based
and machine learning-based natural language processing techniques, which, while making the tools more
specialized, also made them more brittle. For example, they could only support a single programming
language or type of support request. In contrast, CodeHelp supports any programming language with
sufficient coverage in the underlying LLM’s training set, especially those commonly used in computing
education. Furthermore, CodeHelp can effectively respond to a variety of request types.

A key contribution of CodeHelp is its deliberate design of appropriate safeguards to prevent students
from becoming overly reliant on code generated by the model. These guardrails are crucial in maintaining
the educational integrity of the tool, ensuring that it serves as a learning aid rather than a solution provider.
This significantly justifies the use of CodeHelp over more generalized tools like ChatGPT, which lack these
specialized safeguards and might inadvertently encourage students to bypass the learning process. The tool
uses a three-stage process to ensure that responses to student queries are useful and relevant while avoiding
direct solutions to promote student learning and thinking (Liffiton et al. 2023). First, by performing a
sufficiency check, the system evaluates whether the student’s query is complete and specific. Then, during
the “primary response” phase, the system generates two different responses based on the carefully designed
prompts, scoring and filtering them to avoid containing any code blocks or critical elements that the teacher
specified for this course need to be avoided. If the response contains a code, the final stage “code removal”
is triggered. CodeHelp will use another LLM prompt to clean up the response, removing parts of the code
while retaining useful information. This process uses two LLM models from OpenAI: gpt-3.5-turbo-0301
for "sufficiency check" and "main response," and text-davinci-003 for "code removal" to ensure the speed
and cost of response (Liffiton et al. 2023). The CodeHelp team deployed the tool in classrooms; however,
their evaluation lasted 12 weeks (about 3 months), during which they sought to explore how students
interacted with it outside of the scheduled classroom setting.

3 METHODS

This exploratory study is conducted in two phases. First, we collected and analyzed the interaction data
between the chatbot, CodeHelp, and the undergraduate students enrolled in an introductory programming
course. We initially explored the common help-seeking behaviors and the types of questions that students
ask when interacting with CodeHelp. We then evaluated whether students who navigated the problems
more effectively showed distinct patterns from other students in their interactions with CodeHelp.

3.1 Context and Participants

This study took place in a large-enrollment computer science class at a public, research-intensive institution
in the southern region of the United States. The class had 669 students enrolled during the Spring 2024
semester. The class was mostly composed of sophomore students, primarily from the computer science
and computer engineering majors. The class focused on programming fundamentals and was the sequel
to the introductory course in Python programming. The current course centered around object-oriented
programming using C++. Topics included fundamental structures, object-oriented programming, dynamic
memory, file I/O, inheritance, and polymorphism. In terms of assessment, this class has three projects, three
exams, nine weekly quizzes, and six laboratories. Most assignments use Codio (https://www.codio.com),
an online platform designed for programming assignments, allowing students to work on the platform or
submit their assignments to be auto graded. The auto grader and assignments are designed and managed
by the instructional team. This study is concerned only with the quizzes portion of the assessment.

Before Spring 2024, the quizzes were summative assessments meant to evaluate what students had
learned in the laboratories. Nonetheless, in Spring 2024, the weekly quizzes were transformed into formative
assessments for students to study, comprehend, and practice the concepts taught in lectures. The quizzes
occur before the corresponding lab is due (see Figure 1); students are given 2.5 hours to complete the
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Figure 1: Timeline of lectures, quizzes, and labs using the CodeHelp supported quizzes in Spring 2024.

Figure 2: Online set up of the quizzes. Student has access to both Codio and CodeHelp at the same time.
The arrows lead to some of the data collected from each platform.

quiz, they have unlimited attempts in open-ended questions, and they get feedback with each attempt about
whether they passed or not the test cases for the problem. Finally, the quiz uses Honorlock as a proctoring
system, and students can consult any resource on the course page during the quiz. This study uses Quiz 5
(out of 9 quizzes), which is centered around the topic of dynamic memory and linked list data structures.

3.2 Data

The data used in this study come from two sources. The first source is Codio, which is the submission
platform for students. Codio collects granular data about students’ usage of resources. On the quizzes
side, it records the number of attempts students make on each question, whether the student was able
to achieve the points allocated for the question, and the time frame in which the student worked on the
exam. The second source is CodeHelp. CodeHelp logs the students’ questions, the tool’s answers, and the
timestamps. CodeHelp has three fields that students can use to ask questions: Code, Error Message, and
Issue/Question. Users of CodeHelp can choose to fill out one, some, or all of these fields. The three fields
are collected separately in the data. Quiz 5 used in this study consisted of ten multiple-choice questions
and one open programming question. The last question is generally the most challenging for students, as
they must apply the concepts learned to solve a programming assignment. The open programming question
for Quiz 5 states: “You will need to implement the Big Three (copy constructor, assignment operator, and
destructor) for the class dynamically. Everything else has already been written for you. The class simply
holds a pointer to a dynamically allocated array. This means that when making a copy of the object, it
should allocate an entirely new array with all the same elements as the old one.” A single test case checks
whether the student has implemented it correctly and passes any errors encountered back to them, in case
they fail the task.

3.3 Optimal Behaviors Descriptive Statistics

In order to understand the help-seeking behaviors are optimal when using the CodeHelp tool, we assume
that optimal use of the tool would involve measuring the following performance indicators: success in
the assignment, time spent on the assignment, and number of attempts. Specifically, it is expected that
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an optimal interaction with the tool will lead to successful completion of the task, less time spent on the
assignment, and fewer attempts. With this in mind, we evaluated some of the help-seeking behaviors that
could be retrieved from the data collected and correlated them with these key performance indicators. These
behaviors include: the number of questions asked, the number of tokens used when explaining the issue
to the tool, the average time spent between questions, and whether they included an issue in their query.

3.4 Natural Language Processing (NLP) Analysis: Structural Topic Modeling (STM) Approach

In order to understand the common topic of the questions from the students’ interaction with CodeHelp, we
adopted the Structural Topic Modeling analysis. Structural Topic Modeling (STM) is a Bayesian mixed-
membership model that extends traditional topic modeling approaches by incorporating document-level
metadata to explain variation in topic prevalence and content. STM allows a more in-depth exploration of
the latent thematic structure within a corpus while examining how these themes correlate with document-
level covariates (Roberts et al. 2014). This integration of text data with document attributes, in our
case, students’ interaction log data (e.g., number of attempts, number of mistakes or ability) enables a
more detailed investigation into the dynamics between textual content (i.e., their dialogic interaction with
CodeHelp) and its contextual factors. By employing STM, we could identify the core themes present in a
dataset and understand how these themes are influenced by or associated with the structural characteristics of
the documents, or the students associated with the documents. In our analysis, we adopted STM to evaluate
the underlying differences in the type (or topic) of questions that students raise during the assessment
(as documents), while associating them with the contextual factors drawn from students’ log information
(number of attempts and number of wrong attempts or ability level).

Given a corpus of D documents, each document d consisting of Nd words drawn from a vocabulary
of size V , STM seeks to uncover K topics, where each topic is a distribution over the vocabulary. The
generative process of STM can be described as where a distribution over word for each topic k is drawn
βk ∼ Dirichlet(η), where η represents the prior on the word distributions. Then for each document, d, we
draw topic proportion are drawn, θd |xd ∼ LogisticNormal(µ(xd),∑(xd)), where xd represent the document-
level covariates, which allows the document metadata, in our case, student log information, influence
the mixture of topics in the documents. Because STM models the dependence of topic proportions and
content on observed covariates, through regression models, this information directly into the estimation of
θd and β . Last, for each word n in the document d, a topic assignment z(d,n) is drawn given θd , where
z(d,n) represent a categorical variable indicating the topic assignment of the word n .Similarly, the word
distribution, w(d,n) is drawn from a categorical distribution given β(z(d,n)). Specifically, we used the
"stm“ package in R-4.4.0. The main corpus we analyzed combined the main "query“ or "issue“ students
raised as well as the response they received from CodeHelp.

4 RESULTS

4.1 Description of the Help-seeking behaviors: Descriptive Analysis Results

Table 1 presents the descriptive statistics of the dataset. Out of the 669 students enrolled in the class,
90 students (comprising 81 with correct and 9 with incorrect final submissions) utilized CodeHelp during
Quiz 5, contributing to a total of 373 questions asked. This results in an average of 4.11 questions per
student (SD = 4.98). Furthermore, students who used CodeHelp made an average of 21.26 attempts and
spent approximately 38 minutes on the quiz (M = 37.22, SD = 20.20). A positive correlation was observed
between the number of questions students asked and their total number of attempts to solve the problem
(ρ = 0.280***, p = 0.008). Similarly, the total time spent on the task was positively related to the total
number of attempts (ρ = 0.770***, p = 0.001). The ability to complete the programming task successfully
was negatively associated with the total number of incorrect responses the students made in the preceding
parts of the assessment on other items (ρ = -0.401***, p = 0.001). This suggests that students who avoided
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making incorrect responses in earlier parts of the assessment were more likely to perform successfully on
this programming assignment, as expected.

Table 1: Descriptive Statistics Results. Note. *total number of tokens after removing stopword.

Mean SD Mean SD
Number of codes 3.45 5.06 Number of Attempts 21.26 18.51
Number of issues 2.74 3.70 Total Time spent (minutes) 37.22 20.20

Number of questions 4.11 4.98 Number of tokens* (question) 271.04 206.33

The number of attempts and number of wrong attempts are two variables that we will use as a meta-
variable and, therefore, require further description. From Figure 3, it is possible to observe that the number
of attempts varies from a minimum of 0 to a maximum of 180, with only two students reaching more than
100 attempts. The total number of wrong attempts was calculated based on the total number of incorrect
attempts students made on other items included in the assignment. This total number of wrong attempts
was included in our analysis as a proxy for students’ ability levels, later converted into a binary variable
(1=students with no evidence of incorrect attempts; 0=students with at least one incorrect attempt). The
descriptive analysis indicated that approximately 68% of the students showed no evidence of incorrect
attempts in the assignment, while the remaining students made at least one wrong attempt. Only 0.1% of
the students made more than three wrong attempts.

Figure 3: Distribution of the student-level interaction variables associated with the topic prevalence.

Figure 4: Comparisons between the Successful vs. Unsuccessful groups in the programming task.

Figure 4 presents box plots that illustrate a comparison between students who did not complete a task
correctly (the False group) and those who did (the True group). Students in the False group spent more time
on tasks, as indicated by the higher median and larger spread in the ’Time Spent’ distribution. Interestingly,
they also had a marginally lower median number of help requests from CodeHelp that explicitly included
the issue component, though with greater variability and outliers. In terms of assistance from CodeHelp,
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both groups received a similar median number of tokens in the responses, but the False group exhibited
less variability, suggesting that CodeHelp provided a consistent response length regardless of outcome. In
contrast, the True group showed significant variance in the response length received, which may imply that
factors such as the quality of the questions asked by these students contributed to the variance in CodeHelp’s
responses. As for the tokens related to the questions posed by students, the True group demonstrated a
notably wider range, suggesting a greater variation in the length of the questions they posed to CodeHelp.

Figure 5: Comparisons between the students with different number of incorrect responses (wrong count).

Similar to previous findings, the box plots comparing groups of students based on their total number of
incorrect responses in the preceding assignment questions (wrong count) revealed corresponding trends (see
Figure 5). Given that only one student indicated having four incorrect responses previously (see Figure 3),
we consolidated the data into three categories within the box plot: 0, 1, and 2 or more incorrect responses.
The first plot shows an increasing median in the total number of questions with issues as the wrong count
ascends from 0 to 2 or more, suggesting that a greater number of incorrect responses might be associated
with a higher incidence of problematic queries. Contrarily, the second plot displays a decrease in both
the median and interquartile range for the total number of questions with issues as we move from 0 to
2 incorrect responses. The third plot offers a comparative analysis of the average tokens received from
CodeHelp vis-à-vis the wrong count, exhibiting a slight upward trend in the median value as the wrong
count increases, although the trend is not markedly evident. The final box plot shows a small increase in
the median from 0 to 1 incorrect response, after which it levels off from 1 to 2 or more incorrect responses.

4.2 Common Topic of the Questions: STM Results

The STM analysis revealed distinct topic labels, suggesting a variety of subjects covered in the documents.
Exclusivity and semantic coherence metrics were computed, offering insights into the distinctiveness and
meaningfulness of the identified topics. The optimal topic number was identified as 9, as evidenced by
its exclusivity score of 9.125, indicating distinct and well-differentiated topics. This choice also shows a
comparatively low residual value of 1.276, reflecting a good fit of the model to the data. Moreover, the
improvement in held-out likelihood to -5.217 for K = 9 underscores an optimal balance between predictive
accuracy and topic coherence, supporting the decision for this specific number of topics. The exclusivity
and the semantic coherence scores of the final topic model (K=9) are presented in Table 2. Table 3 gives
an overview of the topic description (θ ), top keywords for each topic.

Table 2: STM topic modeling results.

Topics 1 2 3 4 5 6 7 8 9
Exclusivity 9.27 9.06 9.27 9.22 9.48 9.09 0.28 0.23 8.97
Coherence -29.58 -42.99 -38.15 -129.02 -11.49 -33.31 -14.55 -41.57 -32.36
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Table 3: STM topic modeling results and description.

Topic Labels Topic Words Description θ

Linked List Con-
ceptual

node (0.11), List (0.09), N (0.04),
pointer (0.04), next (0.04), link
(0.03), head (0.02)

Understanding of linked lists at a more
abstract level. The appearance of the
word node might suggest that students
have a strong conceptual understanding
of Linked Lists.

0.165

Use of arrays Array (0.12), element (0.05),
size (0.04), n (0.04), access
(0.02), use (0.02), variable (0.02)

Represents topics that try to understand
how to keep track of the size in a dy-
namic array.

0.077

Syntax heavy
questions

Const (0.09), object (0.05), oper
(0.04), n (0.03), function (0.03),
return (0.03), refer (0.02)

Topics mostly related to the syntax of
the problem in C++.

0.086

Working in a dif-
ferent assignment

N (0.05), contact (0.04), re-
move (0.03), element (0.02),
your (0.02), file (0.02), person
(0.02)

These students might be working on
the following assignment, which is not
related to the quiz.

0.044

Copy assignment
operator

Memory (0.08), copy (0.08), as-
sign (0.06), oper (0.04), alloc
(0.04), n (0.03), object (0.03)

These students are most likely under-
standing what developing a copy as-
signment operator entails.

0.255

In the process
of understanding
link lists

Element (0.07), list (0.06), ac-
cess (0.04), link (0.04), node
(0.03), n (0.03), data (0.03)

These students might be asking practi-
cal questions about the general under-
standing of what a linked list is.

0.058

Syntax heavy
concerned with
the copy assign-
ment operator
task

Copi (0.09), n (0.06), object
(0.05), constructor (0.05), re-
sourc (0.04), destructor (0.03),
class (0.03)

These students might understand the
syntax for the copy assignment operator
and the destructor.

0.127

Using error infor-
mation pertaining
to classes and
function

Class (0.05), error (0.03), n
(0.03), function (0.02), type
(0.02), use (0.02), name (0.01)

These students might be using infor-
mation directly from the errors in their
programs to give context. These errors
seem concerned with classes and func-
tions.

0.074

Using error infor-
mation pertaining
to memory allo-
cation

Memori (0.06), n (0.06), delete
(0.05), alloc (0.04), error (0.04),
your (0.03), program (0.03)

These students might be using infor-
mation directly from the errors in their
programs to give context. These errors
seem concerned with memory.

0.113

In our STM analysis, we estimated the effects of binary ability and the number of attempts on the
distribution of topics across documents. This estimation revealed significant and insightful variations across
different topics, which are pivotal for understanding the underlying patterns of topic prevalence. Figure 6
provides a graphical representation of this trend while comparing the two groups. The topic proportion
in Figure 6 (y-axis) represents the extent to which a specific topic (e.g., Topic 1 or Topic 5) is present
within the set of queries submitted by students. The x-axis represents the total number of attempts students
submitted before they completed the task, while the two colors represent the low (red) and high (blue)
ability group students. For Topic 1, the significant main effect of the students’ ability level indicated that
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(β=0.397, p < .001), Topic 1 was statistically significantly more addressed in a higher ability level group
(1) when compared to the lower ability level group (0). In terms of at which point of students’ attempt to
respond to this question they prevalently addressed this question, the interaction effect indicated interesting
results. The interaction between students’ ability level and the number of attempts showed a relatively
small coefficient, but still negative (β= -0.011, p < .001), indicating that higher ability students showed a
decrease in the prevalence of raising a question within this topic with an increasing number of attempts.
In other words, higher ability students raised questions in CodeHelp that are associated with Topic 1
much more prevalently in their earlier attempts to respond, when compared to the lower ability students.
In contrast, Topic 5 and Topic 8 showcased the questions where the lower ability students prevalently
introduced. In addition, significant positive interactions (β = 0.005, p= .009 for Topic 5; β = 0.003, p=.017
for Topic 8), suggesting topics that gain more emphasis with a higher number of attempts among students
with greater ability, potentially indicating areas of challenging content that require more engagement as
students’ understanding deepens. Moreover, Topic 9’s significant negative coefficient for ability binary (β
= -0.117, p=.023). These findings underscore the nuanced influence of student ability and engagement (via
the number of attempts) on the thematic focus and the dialogic interaction they showcased on CodeHelp.
Such insights can guide educators in tailoring instructional strategies and content to better cater to the
varying needs and learning trajectories

Figure 6: A graphic representation of the topic proportion changes in Topic 1 (left) and Topic 5 (right).

5 DISCUSSION

This study aligns with recent advancements in educational technology by examining help-seeking behaviors
and question topics that correlate with optimal interactions with a chatbot, specifically CodeHelp (Liffiton
et al. 2023). The investigation highlights the significance of understanding these behaviors and topics to
enhance student performance with Artificial Intelligence (AI) tools and suggests new directions for research
into potential biases within large models, particularly in supporting less proficient students. The initial phase
of the study focused on analyzing behaviors such as the number of questions students asked, the intervals
between questions, and their correlation with three defined metrics of success: completion success, time
spent, and number of attempts. However, this descriptive statistical analysis did not reveal any common
help-seeking patterns. The interpretation of these results could vary. One possible explanation is that the
experience and expertise of the students might influence the outcomes. For instance, more experienced
students might respond more quickly or require fewer attempts, irrespective of the number of questions
they ask, the time taken to answer, or the context provided.

Furthermore, the lack of a human-like user interface in CodeHelp (Liffiton et al. 2023) might limit the
significance of certain behaviors in the optimal use of the tool. These observations indicate that alternative
analytical methods may be necessary to fully harness the natural language data from students’ queries,
potentially uncovering more intricate patterns that go beyond simple numerical statistics. The second phase
of the study entailed a topic analysis of the students’ questions, which effectively identified patterns in their
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inquiries. Nine distinct topics emerged from this analysis. Significantly, Topics 1 and 5 showed different
associations with the students’ abilities. Topic 1 was associated with high-ability students and indicated
a focus on the fundamental elements of the problems. In contrast, Topic 5 was more prevalent among
low-ability students, focusing on the specific syntax of programming tasks.

These findings, detailed in Table 2, shed light on the topics’ descriptions and their relationships
with student abilities. The contrasting topic focuses might reflect different problem-solving approaches:
high-level strategies encompassing broader problem-solving techniques for Topic 1, as opposed to a more
detail-oriented approach concerning specific programming syntax for Topic 5. Another perspective considers
how the language and keywords students use may affect their efficiency and effectiveness in completing
programming tasks. The design of language-based tools and training might inadvertently disadvantage
those who do not naturally use broad, general keywords. Recognizing this potential bias is crucial, as
suggested by studies (El Shazly 2021; Skjuve et al. 2021) which recommend using these technologies
in non-critical settings to reduce risk. This is particularly pertinent when employing LLM tools during
assessments, as it could lead to less equitable strategies in educational technology. Ensuring equitable
benefit from these tools for all students, regardless of their initial problem-solving methods, is imperative.
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