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ABSTRACT

In this paper, we consider a generalized ranking and selection problem, where each system’s performance
depends on a continuous decision variable necessitating optimization. We focus on a fixed confidence
formulation, aiming to find a near-optimal system alongside its corresponding decision variable, meeting
specified error tolerances with prescribed confidence levels. To achieve this, we introduce a multi-stage
optimization-pruning framework. This framework alternates between optimizing systems using stochastic
gradient descent and evaluating their performance through feasibility checks. Our proposed approach offers
computational savings by identifying sub-optimal systems before investing effort in optimizing them to the
desired accuracy. We demonstrate its efficacy through a numerical study.

1 INTRODUCTION

Simulation optimization is a powerful tool in various industrial areas to select designs that can be modeled
by complex simulation systems. Among the large body of study on simulation optimization, ranking and
selection (R&S) is a typical class of problems with the goal to identify the best from a finite set of systems,
whose performance is random and unknown and needs to be estimated through repeated simulations. In
addition to the classic R&S (e.g., see Chen et al. (2000) and Kim and Nelson (2006)), R&S has been
studied in various different settings, which include but are not limited to contextual R&S (Shen et al. 2021;
Cakmak et al. 2024; Du et al. 2024), robust R&S (Gao et al. 2017; Fan et al. 2020), constrained R&S
(Hunter and Pasupathy 2013; Pasupathy et al. 2014), R&S with input uncertainty (Corlu and Biller 2015;
Wu and Zhou 2017; Xiao and Gao 2018; Song and Nelson 2019; Xiao et al. 2020; Xu et al. 2020) and
data-driven R&S (Yuhao Wang and Enlu Zhou 2024; Wu et al. 2022; Kim and Song 2022; Wang and
Zhou 2023).

Despite the variations in R&S methods discussed earlier, a commonality among them is that the
simulation system does not include any additional decision variables. However, in many application
problems, the system’s performance is a random function of some decision variables. Take, for example,
an inventory control problem where the manager seeks the optimal inventory policy. Candidate policies
often have simple structures, such as order-up-to or (s,S) policies, for reasons of managerial simplicity and
computational tractability. These policy types, such as order-up-to and (s,S) policies, can be viewed as
separate systems. Within a specific system, say the order-up-to policy system, the performance depends on
the chosen order-up-to level, which serves as the decision variable. The challenge then becomes identifying
the system that performs best under its optimal decision variable. Notably, this inventory example could also
be addressed using a classic R&S method by treating each policy with a specific value of the order-up-to
level as an individual system. However, considering each value of the decision variable as a separate system
requires discretizing the continuous decision variable, leading to an extremely large number of candidate
systems. Moreover, it prevents the use of additional information, such as convexity and gradients, further
increasing computational inefficiency. Motivated by these considerations, we explore a method for selecting
the best system with an optimized continuous variable, where each system’s performance is dependent on
the continuous decision variable.
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To address this problem, we adopt a fixed confidence approach aimed at identifying a system that is
near-optimal, along with its corresponding near-optimal decision variable, within a predetermined error
tolerance and confidence level. To achieve this, we develop a multi-stage optimization-pruning framework.
This framework entails alternating between optimizing the decision variable for each system and comparing
the performance of different systems across various stages. In relation to this topic, Si and Zheng (2022)
also consider the same R&S problem involving a continuous decision variable within each system, but our
approach differs significantly from theirs. Si and Zheng (2022) choose a fixed budget formulation with a
pre-specified total computing budget. In contrast, our method uses the desired confidence level and error
tolerance as input parameters, which determine the computing budget needed. Because of the difference in
formulations, the methodology we develop also diverges considerably from that of Si and Zheng (2022).

The rest of this paper is organized as follows: Section 2 provides our problem. Section 3 gives the
multi-stage framework to solve our problem. The optimization and pruning steps of the proposed framework
are discussed in Sections 4 and 5, respectively. Numerical results are shown in Section 6, followed by
concluding remarks in Section 7.

2 PROBLEM STATEMENT

Consider the following problem.

min
k∈K ,xk∈Xk

f (k,xk) = Eξ [F(k,xk,ξ )] , (1)

where K = {1,2, . . . ,K} is a finite set of systems, xk is a continuous decision variable that affects the
(expected) output performance f (k,xk) for each k ∈K and Xk is the domain of f (k, ·). For a fixed xk,
one has access to a sequence of random simulation outputs F(k,xk,ξ1),F(k,xk,ξ2), . . .. Due to the random
simulation outputs, it is impossible to find the optimal system k∗ along with its corresponding optimal
decision variable x∗k with probability 1 under finite samples. As a consequence, we want to achieve the
following goal: with probability at least 1−α , find k̄ and x̄k̄ such that

f (k̄, x̄k̄)≤ f (k∗,x∗k∗)+ ε,

where ε > 0 represents the error tolerance of the decision maker. We say (k̄, x̄k̄) is an ε-optimal system-
decision solution and k̄ is an ε-optimal system.

3 MULTI-STAGE FRAMEWORK

3.1 A Direct Two-Step Optimization-Simulation Approach

To address the problem outlined in (1), a straightforward strategy involves initially identifying a near-optimal
decision variable x̄k for each system k ∈K , using an optimization technique such as stochastic gradient
descent (SGD). Subsequently, for each system k ∈K , an estimator f̂k of its expected performance f (k, x̄k)
under the decision variable x̄k is obtained through simulation. Suppose that, with probability at least 1−α1,
x̄k satisfies f (k, x̄k)− f (k,x∗k) ≤ ε1,∀k ∈K . Furthermore, suppose that, with probability at least 1−α ′1,
for each k, i ∈K , conditioned on x̄k and x̄i, |( f̂k− f̂i)− ( f (k, x̄k)− f (i, x̄i)) | ≤ ε ′1. Then, if we pick k̄ such
that k̄ = argmink f̂k, we have with probability at least 1−α1−α ′1,

f (k̄, x̄k̄)≤ f (k∗, x̄k∗)+ f̂k̄− f̂k∗+ ε
′
1 ≤ f (k∗,x∗k∗)+ f̂k̄− f̂k∗+ ε1 + ε

′
1 ≤ f (k∗,x∗k∗)+ ε1 + ε

′
1. (2)

That is, (k̄, x̄k̄) is an (ε1 + ε ′1)-optimal system-decision solution with probability at least 1−α1−α ′1. By
choosing α1 +α ′1 = α and ε1 + ε ′1 = ε , we obtain that (k̄, x̄k̄) is an ε-optimal system-decision solution.

While the described methodology serves our objective, its practical application may suffer from
computational inefficiency. Specifically, solving all systems to optimality or estimating their expected
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performance within narrow error tolerance requires substantial optimization and simulation efforts. In fact,
in order to obtain a near optimal system-decision solution, it is sufficient to first identify a near-optimal
system and then only solve this near-optimal system to optimality with high accuracy level. However,
since we do not know which system is the (near) optimal system, we need to solve for an optimal decision
variable within one tolerance (ε1) and estimate its expected performance conditioned on this decision
variable within another tolerance (ε ′1). According to the second inequality in (2), we know that, with
probability 1−α1−α ′1, for any two systems k 6= i,

f̂k− f̂i ≤ f (k,x∗k)− f (i,x∗i )+ ε1 + ε
′
1.

If system k is better than system i (i.e., f (k,x∗k)− f (i,x∗i )< 0), in order to identify that system k is better
than system i, it is sufficient to set ε1 + ε ′1 < f (i,x∗i )− f (k,x∗k). This leads to the following inequality:
f̂k− f̂i ≤ ε1 + ε ′1− ( f (i,x∗i )− f (k,x∗k)) < 0. Given that the system selection process entails choosing the
system associated with the lowest estimator, indicated by k̄ = argmink f̂k, system i will consequently be
excluded as the optimal choice. When the difference f (i,x∗i )− f (k,x∗k) significantly exceeds ε , a substantial
reduction in computational resources allocated for optimizing f (i, ·) and estimating f (i, x̄i) can be achieved
by opting for comparatively larger values of ε1+ε ′1 relative to ε instead of setting the sum equal to ε . This
strategic adjustment facilitates a more efficient allocation of computational efforts while maintaining the
accuracy of selection of the best system.

As an illustrative example, consider a set of two systems, denoted as K = {1,2} with expected
performances described by f (1,x1) = x2

1 + 10 and f (2,x2) = x2
2. The objective is to identify an ε = 1-

optimal system-decision solution, which is (2, x̄2), with a confidence level of at least 1−α . Employing
a direct approach necessitates determining ε1 and ε ′1 such that ε1 + ε ′1 = ε = 1 and solving both f (1,x1)
and f (2,x2) to at least 1-optimal since ε1 ≤ ε = 1. However, by selecting ε1 = 5 and ε ′1 = 4, it can be
demonstrated with a probability of at least 1−α that:

f̂2− f̂1 ≤ f (2, x̄2)− f (1, x̄1)+ ε
′
1 ≤ f (2,x∗2)− f (1,x∗1)+ ε1 + ε

′
1 = 0−10+5+4 =−1 < 0.

This identifies system 2 as the optimal system despite the larger tolerances ε1 and ε ′1. Once we identify
system 2 as the optimal system with ε1 = 5 and ε ′1 = 4, we can spend the remaining computational resources
to optimally solve only system 2 by re-setting ε1 = 1. This example illustrates that when there is a large
performance differences between systems, exhaustive optimization across all systems or precise estimation
of their expected performances becomes unnecessary. This approach enables a more efficient allocation of
computational resources by focusing efforts on systems with a higher likelihood of being optimal.

3.2 Multi-Stage Optimization-Pruning Framework

Addressing the issue of sampling inefficiency inherent in the aforementioned direct approach, We propose
a multi-stage Pruning framework that utilizes a sequence of progressively narrowing error tolerances.
Specifically, the framework operates on two sequences of tolerances: ε1 > ε2 > .. . > εN and ε ′1 > ε ′2 >

.. . > ε ′N , where εt is the error tolerance for solution x̄t
k at stage t and ε ′t is the tolerance for estimation f̂ t

k− f̂ t
i

at stage t, which satisfies ε ′N +εN = ε . The number of tolerance levels, N, such as N = dlog2 Ke, where K
represents the total number of systems, plays the role of balancing computational efficiency and accuracy
of the optimization and simulation process. The methodology begins with a comparatively larger tolerance
value, which is then gradually narrowed down to the target tolerance. At any given stage t ≤ N, the process
involves optimizing each of the "remaining systems" (i.e., those not yet classified as sub-optimal) to find
a solution that is εt-optimal. By discarding systems demonstrated to be inferior relative to others early
on, computation resources can be saved for later stages. This multi-stage optimization-pruning process
efficiently identifies the optimal system by progressively concentrating efforts on the most promising
candidates, thereby enhancing overall efficiency.
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To be specific, let Rt be the remaining set at the beginning of stage t, with R1 = K representing the
initial set of all systems. At the start of each stage t, with initial solutions x̄t−1

k for each system k within
Rt , a predetermined number Lk (which depends on εt and αt) of SGD steps are executed for system k.
This process yields updated solutions x̄t

k for all k ∈Rt , ensuring that, with probability αt ,

f (k, x̄t
k)≤ f (k,x∗k)+ εt , ∀k ∈Rt .

This procedure is referred to as the Optimization step at stage t.
Following the Optimization step at stage t, we next construct an estimator f̂ t

k− f̂ t
i that approximates

the difference f (k, x̄t
k)− f (i, x̄t

i) for all pairs of systems i 6= k within the remaining set Rt . This estimator
is constructed by executing a number of simulation runs, which guarantee the estimation achieves an error
tolerance of ε ′t with a specified probability 1−α ′t .

With a combined probability of 1−αt −α ′t , it follows that for every pair of distinct systems k and i
within the remaining set Rt ,

f (k,x∗k)− f (i,x∗i )≥ f (k, x̄t
k)− f (i, x̄t

i)− εt ≥ f̂ t
k− f̂ t

i − εt − ε
′
t ,

for all k 6= i ∈Rt . Therefore, if for any system i ∈Rt , the condition f̂ t
k− f̂ t

i ≥ εt +ε ′t is met, system k can
be eliminated from Rt as it is inferred to be no better than system i. In cases where no such system i
meets this criterion with respect to system k, then system k is retained within Rt . This process is denoted
as the Pruning step in stage t.

The multi-stage Optimization-Pruning Framework is outlined in Algorithm 1. Details regarding the
procedures involved in the Optimization and Pruning steps, including their input parameters, are elaborated
in Sections 4 and 5, respectively.

Algorithm 1 Multi-stage Optimization-Pruning Framework
1: Input: System set K , sequences of tolerance (ε1, . . . ,εN) and (ε ′1, . . . ,ε

′
N), initial point for decision

variable x̄0
k for k ∈K , input parameter r0 for Pruning.

2: Initialize: R1←K . t← 1.
3: while t < N and |Rt |> 1 do
4: For each k ∈Rt , update the decision variable to x̄t

k by running Optimization
(
Rt ,{x̄t−1

k }k∈Rt ,εt
)
.

5: Rt+1← Pruning
(
Rt ,{x̄t

k}k∈Rt ,εt ,ε
′
t ,r0
)
.

6: t← t +1.
7: end while
8: if t < N then
9: Let k be the unique system in Rt . Update the decision variable to x̄N

k by running Optimiza-
tion

(
Rt ,{x̄t−1

k }k∈Rt ,ε
)
.

10: end if
11: Output: Any (k, x̄N

k ) for k ∈Rt as the ε-optimal system-decision solution.

4 OPTIMIZATION STEP

We use the stochastic mirror descent, a typical SGD algorithm, from Lan (2020). Let g(k,xk) ∈ ∂ f (k,xk)
represent a sub-gradient of f (k,xk) with respect to xk and G(k,xk,ξ ) ∈ ∂F(k,xk,ξ ) be a sub-gradient of
F(k,xk,ξ ) with respect to xk. Let ‖ · ‖2 denote the L2-norm. Then we make the following assumption:

Assumption 1

1. f (k, ·) and F(k, ·,ξ ) are convex for every system k and almost every ξ .
2. Eξ [G(k,xk,ξ )] = g(k,xk).
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3. There exists σG,k > 0, such that G(k,xk, ·) is σG,k-sub-Gaussian random variable. In particular, a
random variable X is σ -sub-Gaussian if

E[eλ 2X2
]≤ eλ 2σ2

, ∀|λ | ≤ 1
σ
.

4. There exists Mk > 0, ‖G(k,xk)‖2 ≤Mk.
5. There exists Dk > 0, D2

k = supx,y∈Xk

‖x−y‖2
2

2 < ∞.

Consider a fixed system k. Since now we focus on conducting SGD within a stage, we drop the
superscript t for notational simplicity, and let xk,` denote the current solution for system k at iteration `.
When employing SGD, at each iteration one has access to a stochastic sub-gradient G(k,xk,`,ξk,`), which
is utilized to execute a single step of the SGD update. To be specific, let γk,` be the step size. Then, the
update rule is

xk,`+1 = arg min
x∈Xk

γk,` < G(k,xk,`,ξk,`) ,x >+
‖x− xk,`‖2

2
2

.

Let Lk denote the number of SGD iterations required to achieve the desired tolerance and confidence
level. Then, to determine Lk, we utilize the concentration results presented in Lan (2020):

Lemma 1 (Proposition 4.1 in Lan (2020)) Suppose Assumption 1 holds. For a fixed system k, let
(xk,`)`≥1 be the sequence given by the stochastic mirror descent algorithm. If we choose a constant step

size γk,` =

√
D2

k
Lk

(
M2

k +σ2
G,k

)
∀`= 1, . . . ,Lk and let x̄k,Lk =

1
Lk

∑
Lk
`=1 xk,`. Then, ∀λ ≥ 0,

P
(

f (k, x̄k,Lk)− f (k,x∗k)≥
3Dk√

Lk

(√
M2

k +σ2
G,k +λσG,k

))
≤ e−λ + e−

λ2
3 .

Hence, after completing a sufficient number of SGD iterations at the beginning of each stage, we
can then simulate under the averaged solution, which is the mean of all solutions generated by the SGD
iterations. The number of SGD iterations for system k to guarantee εt accuracy with confidence level 1−αt
can be obtained by first calculating

λ = min
{

λ
′ : e−λ ′+ e−

(λ ′)2
3 ≤ αt

}
,

and then setting

Lk =

⌈
9D2

k

ε2
t

(√
M2

k +σ2
G,k +λkσG,k

)2
⌉
.

The nominal error αt is set to α

2N|Rt | , considering |Rt | as the count of remaining systems at stage t. The
details of the Optimization step is presented in Algorithm 2.

5 FULLY SEQUENTIAL PRUNING STEP

In this section, we elaborate on the Pruning step introduced in Section 3. Recall in Section 3 we want
to construct estimator f̂ t

k,∀k ∈Rt such that the absolute difference between the estimator f̂ t
k− f̂ t

i and the
actual performance difference ( f (k, x̄t

k)− f (i, x̄t
i)) does not exceed ε ′t for any pair of distinct systems k 6= i

within Rt . Such estimator can be obtained through Monte Carlo simulation with a number of samples
determined by leveraging some concentration inequality of F(k, x̄t

k, ·),k ∈Rt , similar as how to determine
the number of SGD in Section 4.

Nonetheless, such a static approach that pre-determines the number of simulations at the beginning can
be inefficient in terms of samples, especially when compared to a fully sequential approach that determines
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Algorithm 2 Optimization

1: Input: Remaining set Rt ; initial solution xt−1
k for k ∈Rt ; and tolerance εt .

2: Initialize: xk← xt−1
k ∀k ∈Rt ; αt ← α

2N|Rt | ; and λ = min
{

λ ′ : e−λ ′+ e−
(λ ′)2

3 ≤ αt

}
.

3: For each k ∈R, let

Lk←
⌈

9D2
k

ε2
t

(√
M2

k +σ2
G,k +λσG,k

)2
⌉

4: Set zk←
xk,0
Lk

, xk← xk,0.
5: for each k ∈K do
6: γk←

√
D2

k
Lk(M2

k+σ2
G,k)

.

7: for ` from 1 to Lk do
8: Obtain a stochastic gradient G(k,xk,ξ ).
9: xk← argminx∈Xk γk < G(k,xk,ξ ) ,x >+

‖x−xk‖2
2

2
10: zk← zk +

xk
Lk

11: end for
12: end for
13: Output: {zk}k∈Rt

whether more simulation is needed sequentially. Specifically, the reason of constructing the estimator
f̂ t
k− f̂ t

i is to infer the value of f (k, x̄t
k)− f (i, x̄t

i). We are interested in whether the following two inequalities
are satisfied: for any two systems i 6= k and i,k ∈Rt ,

f (i, x̄t
i)− f (k, x̄t

k)≤ ε
′
t (3)

f (i, x̄t
i)− f (k, x̄t

k)≥−ε
′
t (4)

To see why (3) and (4) are of interest, if there exists i 6= k such that (3) does not hold, then we know with
probability 1−αt ,

f (i,x∗i )≥ f (i, x̄t
i)− εt > f (k, x̄t

k)+ ε
′
t − εt ≥ f (k,x∗k)+ ε

′
t − εt . (5)

Suppose ε ′t > εt , which can be easily satisfied as the tolerance sequences are chosen by the decision maker.
We obtain f (i,x∗i )> f (k,x∗k), which implies system k is superior to system i. Hence, there is no need to
run more simulations or SGD iterations for system i, and we remove system i from the remaining set, i.e.,
let Rt = Rt\{i}. Otherwise, if (3) holds for a fixed i and all k ∈Rt , we obtain

f (i, x̄t
i)− f (k,x∗k)≤ f (i, x̄t

i)− f (k, x̄t
k)+ εt ≤ ε

′
t + εt .

Setting k = k∗, then we conclude that (i, x̄t
i) is an (εt + ε ′t )-optimal system-decision solution. Similarly,

if there exists i 6= k such that (4) does not hold, then k is identified as a sub-optimal system and we
let Rt = Rt\{k}. Otherwise, if for a fixed k and all i ∈ Rt such that (4) hold, we have (k, x̄t

k) is an
(εt + ε ′t )-optimal system-decision solution. That is, if a pair of systems, i and k, are feasible with respect
to (3) and (4), then both systems remain Rt . However, if either (3) or (4) is infeasible, one system is
eliminated.

To efficiently determine the feasibility with respect to (3) and (4) in a sequential manner, we draw
upon the methodology outlined in Zhou et al. (2022), which provides a feasibility determination procedure
for a constraint with threshold, qt , and an indifference-zone (IZ) parameter, τt . Note that Zhou et al.
(2022) name the IZ parameter τt tolerance level, which is different from our tolerance εt or ε ′t . To avoid
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confusion, we call τt the acceptance level. To apply the methodology in Zhou et al. (2022), we set
threshold qt =

ε ′t+εt
2 and acceptance level τt =

ε ′t−εt
2 . We construct a confidence interval of the target

value f (i, x̄t
i)− f (k, x̄t

k). The confidence interval shrinks as more samples are available and possesses a
crucial property: with high probability, the true target value remains within this interval throughout the
entire sampling process, adhering to an acceptance level of τt . When qt reaches the upper bound of the
confidence interval, we declare (3) as feasible. Based on the statistical guarantee of Zhou et al. (2022),
it holds with high probability that f (i, x̄t

i)− f (k, x̄t
k) ≤ qt + τt = ε ′t . Conversely, if qt reaches the lower

bound of the confidence interval, we declare (3) as infeasible. In this case, it holds with high probability
that f (i, x̄t

i)− f (k, x̄t
k)≥ qt−τt = εt . Following similar arguments in (5), we then obtain f (i,x∗i )≥ f (k,x∗k)

and, consequently, we can remove i from Rt . The feasibility of (4) can be determined in a similar way.
Based on the outcome of this feasibility check, we can then proceed with the Pruning step as discussed
previously, effectively eliminating sub-optimal systems from consideration.

Let yt
k = f (k, x̄t

k),∀k∈K be the expected outcome for system k at decision variable x̄t
k andY t

k =F(k, x̄t
k,ξ )

be corresponding stochastic simulation outputs. Furthermore, letY t
k,1,Y

t
k,2, . . . denote a sequence of samples of

Y t
k at current solution x̄t

k for all k∈K . We make the following assumption for the validity of the Pruning step:

Assumption 2

1. The random simulation outputs follow a multivariate normal distribution:
Y t

1

Y t
2

...

Y t
K

∼N




yt

1

yt
2

...

yt
K

 ,Σ(x̄t)

 , (6)

where x̄t = (x̄t
1, . . . , x̄

t
K) and Σ(x̄t) is a K×K covariance matrix of x̄t .

2. Conditioned on Rt and x̄t, {Y t
i,`−Y t

k,`}∞
`=1 are independent and identically distributed (i.i.d.) for

i < k ∈Rt .
3. The tolerance sequence {εt}N

t=1 and {ε ′t}N
t=1 satisfy ε ′t > εt , t = 1, . . . ,N.

Assumption 2.1 assumes normal simulation noises, which can be satisfied with batched simulation
outputs. Assumption 2.2 assumes i.i.d. simulation outputs.

With Assumption 2, the confidence interval of f (i, x̄t
i)− f (k, x̄t

k) with r samples is specified as Ȳi−Ȳk±
R(r; ·)/r, where (i) Ȳi and Ȳk, estimators of yt

i and yt
k, are sample average of r i.i.d. simulation outputs from

system i and k, respectively; and (ii) R(r; ·) is a non-negative function that decreases to 0 as r increases,
which is computed as

R(r;v,η ,z) := max
{

0,
(r0−1)ηz

v
− v

2
r
}
.

Here, η = 1
2

(
(2α ′t )

− 2
r0−1 −1

)
is a function of the nominal error α ′t := α

2N|Rt |(|Rt |−1) for the feasibility check

and z = S2
ik is a one-time variance estimator for Y t

i −Y t
k with r0 samples. We refer the reader to Kim and

Nelson (2006) for more details on the construction of the confidence interval. Algorithm 3 provides the
full description of the Pruning step introduced in Section 3.

6 NUMERICAL STUDY

We consider a newsvendor example from Si and Zheng (2022). Suppose there are K products to be selected.
For each product 1≤ i≤ K, there is an order cost ci and a price pi. Furthermore, the demand di for product
i follows a Poisson distribution with mean λi. The decision maker wants to find the product as well as
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Algorithm 3 Fully Sequential Pruning
1: Input: Remaining set Rt ; current solution x̄t

k for k ∈Rt ; tolerance εt ,ε
′
t ; initial number of simulations

r0.
2: Initialize: Set qt ← εt+ε ′t

2 and τt ← ε ′t−εt
2 ; set α ′t ← α

2N|Rt |(|Rt |−1) ; compute η ← 1
2

(
(2α ′t )

− 2
n0−1 −1

)
;

set ON←Rt ; and set STOPik,1← False and STOPik,2← False, ∀i < k ∈Rt .
3: For each k ∈ Rt , generate r0 i.i.d. samples (Yk,`)

r0
`=1 of Y t

k and compute Ȳk ← 1
r0

∑
r0
`=1Yk,`; compute

S2
ik←

1
r0−1 ∑

r0
`=1 (Yi,`−Yk,`− Ȳi− Ȳk)

2, ∀i < k ∈Rt ; and set r← r0.

4: while |ON | ≥ 2 do
5: for i < k ∈ ON do
6: Zik← R(r;τt ,η ,S2

ik)
7: if STOPik,1 = False and Ȳi− Ȳk− Zik

r ≥ qt then
8: STOPik,1 = True, Rt = Rt\{i}, ON = ON\{i}.
9: else if STOPik,1 = False and Ȳi− Ȳk +

Zik
r ≤ qt then

10: STOPik,1 = True.
11: end if
12: if STOPik,2 = False and Ȳi− Ȳk +

Zik
r ≤−qt then

13: STOPik,2 = True, Rt = Rt\{k}, ON = ON\{k}.
14: else if STOPik,2 = False and Ȳi− Ȳk− Zik

r ≥−qt then
15: STOPik,2 = True.
16: end if
17: end for
18: for k ∈ ON do
19: if STOPik,1 = STOPik,2 = True,∀i < k ∈ON and STOPki,1 = STOPki,2 = True,∀i > k ∈ON then
20: ON = ON\{k}.
21: end if
22: end for
23: r← r+1. Generate 1 more sample Yk,r of Yk and update Ȳk,∀k ∈ ON.
24: end while
25: Output: Set Rt .

its corresponding optimal ordering amount, which obtains the largest expected profit. In particular, with
ordering amount xi and a realization of demand di, the profit is

F(i,xi,di) = pi min{di,xi}− cixi.

The corresponding expected profit for product i is then

f (i,xi) := piE [min{di,xi}]− cixi.

The goal is to find the ε-optimal system (product)-decision (ordering amount) solution. We set K = 10,
ci = 1+0.2(i−1), pi = 2+0.8(i−1), and λi = 6−0.5(i−1) for i = 1,2, . . . ,10. The true optimal product
is k∗ = 5 with optimal ordering amount x∗5 = 4 and optimal expected profit f (5,x∗5) = 8.277. Meanwhile,
the second optimal product is the 4th product with optimal expected profit f (4,x∗4) = 8.083. We set the
tolerance ε = 0.1 such that product 5 is the unique ε-optimal product. We also set the nominal error to be
α = 0.1 in running the algorithm.

For comparison baselines, to our best knowledge, only Si and Zheng (2022) and this paper consider
the generalized R&S with an optimized continuous decision variable. Moreover, the method by Si and
Zheng (2022) can only be applied when a computing budget (total number of SGD iterations) is given
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ahead while our method determines this computing budget with the given tolerance ε as well as the nominal
error α . For these reasons, it is difficult to compare our method with Si and Zheng (2022). Therefore, we
only test our method with different choices of N = 1,2, . . . ,6 for the number of stages. For the sequence
of tolerance values, we set εt =

2
5 2N−tε and ε ′t =

3
5 2N−tε, t = 1, . . . ,N. Note that N = 1 corresponds to

the direct approach in Section 3.1. For more implementation details, we set the sub-Gaussian parameter
σG,i =

1
4 pi and Mi = pi− ci. The domain of possible ordering amounts for each product is set to [0,10],

thus Di = 5
√

2. The initial solution for all products is set to x̄0
k = 0 for 1≤ k ≤ K.

We run 100 macro-replications for each N. For each macro-replication run, we say one trial of an
algorithm is a success if it outputs an ε-optimal system-decision solution, which is the optimal product along
with its ε-optimal ordering amount. In the following table, we list the average total number of iterations
of SGD (denoted as SGD), the average total number of simulation outputs (denoted as simulation) and the
average success rate (denoted as success rate, which is the number of successes divided by the number of
macro-replications).

Table 1: Performance comparison for different choices of N.

N N=1 N=2 N=3 N=4 N=5 N=6

SGD 9.03×107 2.9×107 1.53×107 1.22×107 1.17×107 1.18×107

simulation 2.06×106 1.75×106 1.71×106 1.86×106 1.87×106 1.93×106

success rate 1.0 1.0 1.0 1.0 1.0 1.0

As Table 1 indicates, in terms of the total number of SGD iterations, Algorithm 1 runs the least number
of iterations of SGD, 1.17×107, when N = 5, which is 87% less than that by Algorithm 1 when N = 1.
The average number of simulation outputs for the feasibility check ranges from [1.71,2.06]×106, which
does not vary much among different choices of N. The reason why N > 1 reduces the total number of SGD
iterations can be explained by Table 2, where we list, for each N, the average number of (sub-optimal)
systems removed by Algorithm 1 with different error tolerances (i.e., εt +ε ′t = 2N−tε, t = 1, . . . ,N). As we
can see, when N = 1, all systems are solved to ε-optimal, which requires a large number of SGD iterations.
As N increases, some designs are removed with a large tolerance, which requires less number of SGD
iterations and help reduce the total number of SGD iterations required by Algorithm 1. Regarding the

Table 2: Average number of systems removed with different error tolerances.

tolerance 6.4 3.2 1.6 0.8 0.4 0.2

N=1 9.0

N=2 9.0 0.0

N=3 8.0 1.0 0.0

N=4 7.14 0.86 1.0 0.0

N=5 6.0 1.27 0.73 1.0 0.0

N=6 4.06 1.94 1.29 0.71 1.0 0.0

average success rate, Algorithm 1 consistently achieves the ε-optimal system-decision solution across 100
macro-replications for various selections of N. However, the average success rate surpasses the targeted
confidence level of 90%, indicating potential conservativeness in the sample efficiency of Algorithm 1. One
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major factor contributing to this conservativeness is the concentration result in Lemma 1, which induces an
unnecessarily large number of SGD iterations to ensure the specified error tolerance and confidence level.

7 CONCLUSION AND FUTURE WORK

In this paper, we have introduced a multi-stage optimization-pruning framework for addressing the generalized
ranking and selection problem where system performance depends on a continuous decision variable. The
proposed framework alternates between optimizing the decision variable for each system and comparing
the performances of different systems. This framework is designed to enhance computational efficiency
by identifying and pruning sub-optimal systems with low accuracy early on, thereby avoiding redundant
computational efforts associated with optimizing these systems.

Further refinements and extensions of our framework could be explored as future work. This in-
cludes investigating alternative optimization techniques to mitigate conservativeness in the Optimization
step, incorporating additional constraints or higher-dimensional decision variables, and considering the
distributional uncertainty of underlying random variables.
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