
Proceedings of the 2024 Winter Simulation Conference

H. Lam, E. Azar, D. Batur, S. Gao, W. Xie, S. R. Hunter, and M. D. Rossetti, eds.

ADAPTIVE TRANSIT SIGNAL PRIORITY BASED ON DEEP REINFORCEMENT LEARNING

AND CONNECTED VEHICLES IN A TRAFFIC MICROSIMULATION ENVIRONMENT

Dickness Kakitahi Kwesiga1, Angshuman Guin1, and Michael Hunter1

1School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA

ABSTRACT

Model-free reinforcement learning (RL) provides a potential alternative to earlier formulations of adaptive

transit signal priority (TSP) algorithms based on mathematical programming that require complex and
nonlinear objective functions. This study extends RL-based traffic control to include TSP. Using a micro-
scopic simulation environment and connected vehicle data, the study develops and tests a TSP event-based
RL agent that assumes control from another developed RL-based general traffic signal controller. The TSP
agent assumes control when transit buses enter the dedicated short-range communication (DSRC) zone of
the intersection. This agent is shown to reduce the bus travel time by about 21 %, with marginal impact to

general traffic at a saturation rate of 0.95. The TSP agent also shows slightly better bus travel time compared
to actuated signal control with TSP. The architecture of the agent and simulation is selected considering the
need to improve simulation run time efficiency.

1 INTRODUCTION

Transit signal priority research (TSP) is mainly focused on developing optimization strategies to improve
bus performance while limiting impact to the general traffic. Using traffic microscopic simulation

environments, several studies have tested adaptive TSP algorithms that incorporate connected vehicle (CV)
data. Data from CVs enable the formulation of more precise actuation strategies and better evaluation of
traffic states (Cvijovic et al. 2022; Mohammadi et al. 2020; Wang et al. 2020).

Studies such as Li et al. (2011) attempt to formulate signal timing optimization algorithms for TSP
based on mathematical programming. However, these study’s complex and nonlinear objective functions
require high computational resources. Model-free RL approaches may be a suitable alternative requiring

reduced resources. Several previous studies have developed RL-based traffic control algorithms in simula-
tion environments and shown that under the right conditions these algorithms can outperform conventional
fixed and actuated signal timing plans (Bouktif et al. 2023; Li et al. 2020; Liu et al. 2022). Only a few recent
studies have attempted to extend the RL-based signal control algorithms to include TSP by modifying state
and reward function definitions (Cheng et al. 2022; Hu et al. 2023; Long et al. 2022; Shen et al. 2023; Yang
and Fan 2024; Zhong et al. 2023). Compared to general traffic, bus arrivals at intersections are often sparse

occurrences, which limits the number of available samples for RL algorithms to learn TSP control. The
majority of RL-based TSP studies inflate bus arrivals in simulation to generate sufficient training samples.
While the resulting algorithms may be optimal at high bus frequencies, non-priority movements may be
unfairly penalized at low bus frequencies.

To advance TSP, this study uses a microscopic simulation environment to develop and train two traffic
signal control RL agents. The first agent controls the intersection under general traffic conditions, i.e., in

the absence of a bus. The second agent is event-based, triggered to assume intersection signal control when
a bus enters the short-range communication (DSRC) zone dedicated to CVs of the intersection, providing
TSP. In testing the algorithm all buses are allowed to trigger the TSP agent, but logical conditions can easily
be added to limit TSP service to buses meeting certain criteria, for example buses behind schedule or above
a set occupancy. In addition to the RL agent development, the serialized online training in the simulation

1422979-8-3315-3420-2/24/$31.00 ©2024

Kwesiga, Guin, and Hunter

environment required improved run time efficiencies. The architecture of the algorithm is selected consid-
ering this need to improve simulation run time efficiency.

2 RELATED WORK

2.1 RL Traffic Signal Controllers

Several previous studies have developed RL-based traffic control algorithms. These studies have shown
that RL-based signal control can potentially be superior to conventional fixed-time and actuated signal
control. The control decisions and actions mainly involve deciding about the next phase in a fixed or
variable phasing sequence (Bouktif et al. 2023; Li et al. 2020; Li et al. 2016; Liu et al. 2022) and deciding
the green duration of the next phase in fixed phasing sequence (Aslani et al. 2019; Bálint et al. 2022; Casas

2017; Lee et al. 2022; Li et al. 2021; Shabestary et al. 2020). Most of the studies have used deep q-network
(DQN) and its variations, including double deep Q-networks (DDQN), dueling double deep Q-networks,
extended Dueling Double Deep Q-learning Networks, DQN with prioritized experience replay, etc. Other
studies have used actor-critic-based algorithms including advantage actor critic, double deep policy
gradients, and proximal policy optimization. Traffic states and rewards are defined using data that are – or
can be – available from traffic sensors in the network and signal controllers, and more recently from CVs.

2.2 Traffic Simulation Environments

The reviewed studies have used microscopic, mesoscopic, and macroscopic simulation engines in
developing and testing RL models. In recent efforts, microscopic approaches are most common as they
provide detailed vehicle movement data useful for state and reward formulations. Studies commonly use
available off-the-shelf microscopic simulation models including SUMO (Bálint et al. 2022; Bouktif et al.
2023; Li et al. 2020; Li et al. 2021; Liu et al. 2022; Long et al. 2022; Pang and Gao 2019; Shabestary et al.

2020; Shen et al. 2023; Yang and Fan 2024; Zhong et al. 2023), PTV Vissim (Cheng et al. 2022), Aimsun
(Casas 2017; Hu et al. 2023) and Paramics (Li et al. 2016). In addition to allowing a realistic replication of
traffic flow in a network, to implement RL, microscopic simulation engines should allow interaction during
simulation, including state observation and signal control adjustment. For example, SUMO and PTV
Vissim provide the Traci and component object module (COM) application programming interfaces (API),
respectively (Lopez et al. 2018; PTV 2021). These interfaces allow access to most parameters during

simulation. Additionally, to allow running of several hundred or thousands of simulations within a
reasonable time frame, the selected simulation engine needs to provide a high level of run time efficiency.

2.3 RL-based TSP

A few recent studies have extended the RL-based signal control algorithms to include TSP. The common
approach of incorporating TSP is to modify either one or both of the state and reward functions to include
bus flow and its performance metrics (Cheng et al. 2022; Hu et al. 2023; Long et al. 2022; Shen et al. 2023;

Yang and Fan 2024; Zhong et al. 2023). Except for Hu et al. (2023), the rest of the studies design second
by second RL signal controllers incorporating bus parameters in the state and reward functions. The same
algorithm is deployed to control general traffic and buses with bus entries populated with zeros when there
are no buses on the approach. The majority of these studies inflate the bus arrival frequencies to generate
the necessary samples for the agent to learn TSP control. Long et al. (2022) consider 12 to 60 buses/hour,
Shen et al. (2023) consider 32 buses/hour, and Zhong et al. (2023) consider 37 buses/hour. Such frequencies

create scenarios where a bus arrives within the time horizon of the disruption in the traffic caused by the
TSP response to the previous bus. However, in the real world, bus arrivals are often scarce occurrences.
Agents trained with high bus frequencies may be biased to the priority movements and might penalize
nonpriority movements. Such responses would be unnecessary in the absence of the high-frequency bus
arrivals. One means to address this challenge is to implement event-based TSP algorithms that are activated
only in the presence of buses requiring TSP and are dormant otherwise.

1423

Kwesiga, Guin, and Hunter

3 METHODOLOGY

This section describes the formulation of the RL agents including the adapted simulation environment, the
agent structure, selected hyper parameters, training, and testing.

3.1 Overview of Deep Q-network and Double Deep Q-network

RL seeks to find the optimal mapping of states to actions, to achieve the highest numerical rewards. In
DQN, a Q-value function is computed using a deep neural network (DNN). The DNN outputs Q-values
corresponding to each action and the action with the highest Q-value is selected. The model is trained on
samples, also called experiences, stored in the memory at every time step. The stored experiences (et) at
every time step consist of a tuple of current state (st), action (at), next state (st+1), and reward (rt+1), as shown

in Equation (1). The stored experiences over time steps constitute what is termed “memory buffer”.

𝑒𝑡 = (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑟𝑡+1) (1)

The training objective is to minimize the temporal difference error, which is the difference between
target Q-values and Q-values predicted by the model. Target values are approximated using the Bellman
equation. During learning, the algorithm tries to strike a balance between exploration and exploitation,
commonly using decaying exploration probabilities. DDQN improve the stability of DQN by
approximating the target Q-value with a separate network, which is updated with the weights of the main

network after a given number of episodes instead of every episode. The term episode, which means a series
of steps from start to finish, shall be used interchangeably with simulation run in the context of this study.
Technical details of DQN can be found in Sutton and Barto (2018). Geron (2019) provides a good guide
for implementation of the algorithm.

3.2 RL Agent Architecture

The conceptual architecture of the developed RL agents is shown in Figure 1. The architecture consists of

a PTV Vissim simulation engine and two DDQN models, one for signal control of general traffic (DDQN-
SC) in absence of a bus and one for implementing TSP (DDQN-TSP). First, DDQN-SC is formulated and
trained. It is then used as the background signal controller in the training of DDQN-TSP. During training
of DDQN-TSP and in the testing and implementation of the two trained algorithms, DDQN-SC controls
the intersection until a bus requesting TSP enters the DSRC zone of the intersection. At this time, control
shifts to DDQN-TSP until the bus checks out. Figure 1 shows the training stage of DDQN-TSP. At the

point of switching, the agent coming online takes the last state of the agent going offline. Over several
episodes the agents learn to take actions that allow smooth transitions at these points.
 Preliminary training was performed to select model hyperparameters. The final selected
hyperparameters for both DDQN-SC and DDQN-TSP include learning rate = 0.01, discount rate (gamma)
= 0.99, exploration probability decay rate = 0.01, memory buffer capacity = 2000, neurons in two hidden
layers = 64 and 128, and target network update frequency = 10 episodes. For brevity, the process and results

of hyperparameter tuning are not included in this paper. The state, reward, and actions shown in Figure 1
are discussed in detail later, after describing the simulation environment.

3.3 Vissim Simulation Environment

Figure 2 provides details of the simulation environment and its interaction with the agent. PTV’s Vissim, a
widely used microscopic simulation platform, is selected as the simulation environment. As with other
microscopic traffic simulation tools, PTV Vissim uses a combination of car following, lane changing, and

gap acceptance models to model vehicle interactions and provides features to realistically represent road
networks. The study utilizes a hypothetical single isolated intersection running actuated signal control in
free mode (no fixed cycle). All approaches have stop bar detectors for fully actuated signal control. The

1424

Kwesiga, Guin, and Hunter

network has a four-lane E-W major street and a two-lane minor street (N-S). All left turn movements on
the major and minor streets have exclusive turn lanes and protected signal phases. For simplicity, right
turning movements are omitted from both streets. The model consists of a bus route on the main street (E-

W), with a far-side bus stop immediately downstream of the intersection. For model training, traffic
volumes are selected to achieve a volume to capacity ratio (v/c) of approximately 0.95 when running fixed
signal timings. Main street volumes are set to 1,440 veh/h and 171 veh/h for the through and left turn
movements, respectively, while minor street volumes are 275 veh/h and 250 veh/h, for through and left turn
movements, respectively. During the training of the DDQN-TSP, buses enter the simulation with an average
headway of 15 minutes (900 seconds) with a random term between -120 and +120 seconds, added to

generate random arrivals. The 15-minutes period is deemed sufficient to allow dissipation of the impacts
of the prior TSP, before another bus enters the system.

Figure 1: RL agent architecture during the training of DDQN-TSP.

At each time step, the agent (either DDQN-SC or DDQN-TSP, whichever is active) provides new signal
settings to the PTV Vissim intersection simulation, and the new state and reward values are computed with

data extracted from the simulation and fed to the agent. PTV Vissim provides a COM interface, an API that
enables interaction with the simulation in run time. However, running the simulation through COM can
significantly increase the run time, especially if there is continuous interaction to exchange data with the
simulation. As shall be seen in the results section, hundreds of episodes were required for each agent to
learn the optimal policy. Thus, run time efficiency becomes of great essence. This study adopts event-based
scripts, a less widespread alternative to COM available in PTV Vissim. Event-based scripting in Vissim

involves embedding a script in the simulation and specifying functions to execute at given simulation time
steps. In this study using event-based scripts was significantly faster than using COM.

However, using event-based scripts instead of COM required manually bridging model data, including
1) the training data (memory buffer) described earlier, 2) the learned weights for both main and target

1425

Kwesiga, Guin, and Hunter

network models as model parameters, and 3) the exploration probability as it progressively decays. After
each simulation run, the data are stored temporarily in a database and re-loaded at the start of the next run.
Figure 2 depicts the temporary storage module and its linkages.

Figure 2: Traffic simulation and RL modules.

3.3.1 Simulation Execution

As the network is based on a hypothetical intersection, a default model calibration for car following was

assumed, utilizing the Wiedemann 74 model with default parameters. Lane change behavior, acceleration,
etc. also utilize default parameters. Each episode lasts for 30 minutes during the training of DDQN-SC and
four hours during the training of the DDQN-TSP. More time is taken for the DDQN-TSP to allow for
sufficient bus samples at 15-minute headways. For both agents, random seeds remain unchanged during
training. During testing, different random seeds are used for each run. Training on different random seeds
showed slightly more instability and did not provide any meaningful benefits during testing compared to

training on one random seed. Only results for one random seed training are included in the learning curves
in the results section. Simulation runs and agent training are performed on an x64-based PC equipped with
12th Gen Intel(R) Core i9-12900, 2400 MHZ, 16 Core(s), 24 Logical Processor(s), 128 GB of RAM, Intel
(R) UHD Graphics 770 GPU, and Windows 11 operating system.

3.4 State, Action and Reward Definitions

3.4.1 DDQN for General Traffic Control

3.4.1.1 State

As shown in Figure 1, the DDQN for General Traffic Control (DDQN-SC) state is defined by two vectors:
(1) a vector of size 10 populated with the number of vehicles (“vehs state” in Figure 1 in each of ten
approach lanes and (2) a vector of size four populated with the green duration (“signal state” in Figure 1)
for each signal phase. For the vehs state vector, the study assumes knowledge of the number of vehicles
within 800 ft of the stop line for all inbound movements. The 800ft are assumed as the DRSC range. In the

real world, the number of vehicles in each lane may not be readily available from the commonly deployed
field sensors but may in future be available from CVs broadcasting their locations as they approach the
intersection. Green duration measures how long the current phase has been green. It can be derived from
Signal Phasing and Timing data.

1426

Kwesiga, Guin, and Hunter

3.4.1.2 Action

The next phase is selected as the action. For simplicity, four phases are defined, North/South Left,
North/South Through, East/West Left, and East/West Through. All movements in a phase terminate at the

same time. At every decision point (∆t of simulation time), the agent selects which phase to assign green.
If the next phase is different from the current phase, a three-second Yellow indication and one-second Red
are implemented to end the current Green and transit to the next phase. At the start of a phase, minimum
green will be served. From the onset of yellow to the end of minimum green, the agent does not take any
action. If the next phase selected is the same as the current phase, green time is extended by ∆t. DQN-SC
is trained and tested with ∆t values of 1 second and 3 seconds. The training time was significantly higher

for ∆t = 1 compared with ∆t = 3, and the training was less stable. Therefore, ∆t of 3 seconds was selected.
For brevity, the results with ∆t = 1 are not included in this paper.

In addition to minimum green, the maximum green needs to be specified as well. Maximum green was
computed by taking the fixed time green required for a v/c of 0.95, for each phase, and multiplying by 1.25
as recommended by Federal highway administration’s signal timing manual. In this study, an invalid action
masking algorithm is used to implement maximum green for each phase. When green duration of the current

phase reaches maximum green, the predicted Q-value of the current phase is replaced with a large negative
number to prohibit selection of the same phase.

3.4.1.3 Reward

Base reward is defined as negative average delay for all vehicles. Negative of the delay is used in the reward
function as delay is a disutility metric and the algorithm needs to move in the direction of positive or less
negative rewards. As shown in Equation 2, average delay is obtained by summing delay for each vehicle

(di) and dividing by the total number of vehicles, n. To enable faster convergence, two penalty terms are
introduced: (1) subtract a big number (N) from the base reward if queue length (ql) on any side street lane
exceeds a set threshold (qlThr1) and (2) subtract a big number (M) from the reward if the agent switches
phase from ϕt to ϕt+1 when the movement currently receiving green still has a queue length (qlϕt) exceeding
a set threshold (qlThr2). Training the agent with and without these penalties showed that the final model
weights do not change significantly, but with the penalties the models converge significantly faster.

𝑟𝑒𝑤𝑎𝑟𝑑 =

{

 −

∑ 𝑑𝑖
𝑛
1

𝑛
, 𝑥 < 0

−
∑ 𝑑𝑖
𝑛
1

𝑛
− 𝑁, 𝑞𝑙𝑗 > 𝑞𝑙𝑇ℎ1

−
∑ 𝑑𝑖
𝑛
1

𝑛
−𝑀, 𝜙𝑡+1 ≠ 𝜙𝑡, 𝑞𝑙𝜙𝑡 > 𝑞𝑙𝑇ℎ2

⬚

(2)

3.4.2 DDQN for Transit Signal Priority

3.4.2.1 State

The state definition for general traffic is expanded to include bus flow parameters as shown in Figure 1. In
addition to the two vectors defined for DDQN-SC, two additional vectors are added for transit bus position

and speed on the approach. It is assumed that all buses are connected, broadcasting their location and speed
utilizing basic safety messages as they approach the intersection. The DSRC range is taken as 800 ft and,
thus, the bus only starts to communicate with the signal controller at 800 ft from the intersection. The 800
ft of the approach link is divided into 32 cells, each of 25 feet. The 25 ft cell size is selected to ensure that

1427

Kwesiga, Guin, and Hunter

there is at most one bus in each cell at any given time step. Two vectors of length 32 with each entry
representing a cell are created to represent bus position and speed. Both position and speed vectors are
initialized with zeros. When the bus position on the link corresponds to the cell number, the cell value in

the position vector is changed to 1, while the cell value in the speed matrix is populated with the bus speed.
All other cell values in the position and speed vectors are kept to zero.

3.4.2.2 Action

The action for DDQN-TSP is also the selection of the next phase in the variable phasing sequence. The
time step (∆t) between the same successive actions is kept at threee seconds like in DDQN-SC.

3.4.2.3 Reward

Negative bus delay is taken as the reward and the same penalties are applied as in the DDQN-SC described
above. Importantly, the penalty for side street queuing (N) and the side street queueing threshold are
selected to balance tradeoffs between side street traffic delay and bus travel time.

4 RESULTS AND DISCUSSION

This section presents and discusses the study results. First the DDQN-SC agent is compared to actuated
signal control (A-SC) to validate the agent’s ability to generate signal timings that perform as well as well-

timed current control strategies and qualify its use as a background controller in training DDQN-TSP. The
second part of the results shows the performance of the TSP agent including the learning progress during
training and impacts on bus travel time and general traffic delay during the testing phase.

4.1 Performance of DDQN–SC

Figure 3 shows the learning curve for the DDQN-SC with the episode number on the x-axis and average
reward for each episode on the y-axis. The average reward for an episode is computed by averaging rewards

gained at each step in the episode. The algorithm progressively learns the best policy by exploration and
exploitation, eventually converging after approximately 400 episodes. For the specified computer, each
episode of 30 minutes requires on average 36.5 seconds for loading the model and all associated files and
parameters, running the model for 30 simulation minutes, training the model at the end of episode, and
saving the output. It is seen from the graph that stability improves and variability decreases as the model
converges. However, there is room for improving the stability, which may potentially be accomplished

through other variations of DQN, including prioritized experience replay, extended dueling, and others.
Figure 4 shows a comparison of vehicle delay for four selected movements at the intersection for

DDQN-SC and A-SC controls at (a) v/c =0.6 and (b) v/c= 0.95. A-SC uses the inbuilt ring barrier controller
in PTV-Vissim running in free mode, with the same minimum and maximum green times as set for DDQN-
SC. Eastbound through (EB_TH) is the main street through movement, southbound through (SB_TH) is
the side street through movement, southbound left turn (SB_LT) is the side street left turn movement and

eastbound left turn (EB_LT) is the main street left turn movement. The results are from ten replicate runs,
where each replicate is one hour long, with 15 minutes of warm-up time and 45 minutes of data collection.
The plotted data are the average vehicle delay from each replicate run and, thus, each box has ten data
points. The red square in the plot represents the average of the ten replicate run delays. For the side street
movements (SB_TH and SB_LT), DDQN-SC results in lower delay compared to A-SC, with the difference
more pronounced at v/c = 0.6. The main street through (EB_TH) delay is significantly lower for DDQN-

SC at v/c = 0.6 and almost identical for both controls at v/c = 0.95. For main street LT (EB_LT), A-SC
shows less delay at both levels of v/c, but again the difference is more evident at v/c = 0.6.

1428

Kwesiga, Guin, and Hunter

Figure 3: DDQN-SC learning curve.

(a) (b)

Figure 4: Comparing DDQN-SC and A-SC general traffic delay for (a) v/c = 0.6 and (b) v/c = 0.95.

The observed relatively higher difference in performance of the two control types at v/c= 0.6 compared to
v/c=0.95 is intuitively reasonable. At v/c= 0.95, the intersection is close to capacity and most movements
consistently max out, resulting in operation close to fixed time control for both DDQN-SC and A-SC. At
v/c = 0.6, where there is more flexibility for the optimization, DDQN-SC shows more benefits for
movements with the highest volume. For example, on the main street, the EB_LT volume is 10 % of the

total approach volume and thus DDQN-SC favors EB_TH over EB_LT. Constraints in the reward function
could be modified to alleviate this trade-off, if desired.

4.2 Performance of DDQN-TSP

Figure 5(a) shows the learning curve for the DDQN-TSP with the episode number on the x-axis and average
reward for each episode on the y-axis. As indicated in the methodology section, each episode is four hours
long and includes twelve buses, with DDQN-TSP only running and collecting training data when the bus

1429

Kwesiga, Guin, and Hunter

is on the approach. Figure 5(b) shows the average bus delay during each episode. Each data point is an
average of delay for the 12 buses in the episode. Bus delay progressively decreases with increasing episodes.
From the figures it is seen that the algorithm converges after approximately 150 episodes.

Bus travel time with and without TSP at v/c =0.95 is shown in Figure 6(a). For without TSP, DDQN-
TSP is not invoked, and DDQN-SC provides signal timing while the bus is present. Each simulation run
contains twelve buses and lasts for four hours. Bus headway is 15 minutes, with a random term between -
120 and +120 seconds, added to generate random bus arrivals. Overall bus travel time is reduced by
approximately 21 % with DDQN-TSP. Additional benefits could be realized by extending the agent control
from a single intersection to multiple intersections, which is a subject of an ongoing study.

(a) (b)

Figure 5: DDQN-TSP learning process; (a) learning curve; (b) average bus delay during training.

Figure 6(b) shows the general traffic delay for three selected movements with and without TSP, for ten
simulation runs. The vehicles included in the analysis traverse the intersection in the time interval 5 minutes
(300 seconds) after bus check-in. The interval of 300 seconds is chosen following a study by Guin et al.
(2023), who showed that for v/c of 0.95 side-street delay change persists up to about 300 seconds. It is seen
that delay for the side-street movements (SB_TH and SB_LT) marginally increases, while the delay for

main line through movement marginally reduces with TSP. This is intuitively reasonable as the main street
through traffic benefits from increased green time given to the bus at the expense of side street traffic.

Lastly, a comparison is made between DDQN-TSP and A-SC TSP based on the bus travel time, Figure
7(a), and general traffic delay Figure 7(b). ASC_TSP and ASC_NoTSP stand for A-SC control with and
without TSP while RL_TSP and RL_NoTSP respectively stand for DDQN-TSP control with and without
TSP. For TSP with A-SC, the inbuilt TSP algorithm in PTV Vissim’s RBC is used with green extension,

red truncation, and skipping of the conflicted phases allowed. Maximum green extension is set to 20
seconds. It is seen that DDQN-TSP performs slightly better in reducing bus travel time. For the side street
impact, the two algorithms have very comparable performance. DDQN-TSP leads to a slightly greater
decrease in main through movement (EB_TH) with TSP, which is consistent with providing more priority
to the bus. The delay difference for SB_TH is almost the same for both algorithms, while for SB_LT, A-
SC seems to have less impact. Under the stated conditions, the two algorithms show a very comparable

performance, as evaluated from bus travel time and general traffic delay. Differences are likely if the
algorithms are extended to multiple intersections, which is a subject of an ongoing study.

1430

Kwesiga, Guin, and Hunter

(a) (b)

Figure 6: Comparison with and without TSP: (a) bus travel time; (b) general traffic delay.

(a) (b)

Figure 7: Comparison of DDQN-TSP and A-SC TSP based on (a) bus travel time and (b) general traffic
delay.

5 CONCLUSIONS AND RECOMMENDATIONS

This study utilizes a microscopic simulation environment and connected vehicle data to develop and test an

event-based RL agent that assumes intersection control from another RL-based traffic signal controller
when transit signal priority (TSP) buses enter the dedicated short-range communication zone of the
intersection. The background general traffic controller is trained and tested, demonstrating comparable
performance with an actuated controller for a single intersection. The trained RL-based TSP agent is seen
to reduce the bus travel time by about 21 %, with marginal impacts to general traffic at a saturation rate of
0.95. The TSP agent also shows slightly better performance in improving bus travel time compared to

actuated signal control with TSP. To improve run time efficiencies, PTV Vissim’s event-based scripting is
used instead of the commonly used COM API. Performance comparisons are limited to the traditional
actuated signal control TSP systems, but this could be expanded to include other RL-based systems that
have previously been proposed. In an ongoing study, the developed agents are being tested on multiple

1431

Kwesiga, Guin, and Hunter

intersections in coordination. Additionally, software-in-the-loop simulation with an emulator running the
same software as field signal controllers will be used to further test the developed algorithms.

REFERENCES

Aslani, M., M.S. Mesgari, S. Seipel, and M. Wiering. 2019. "Developing Adaptive Traffic Signal Control by Actor-Critic and

Direct Exploration Methods". Proceedings of the Institution of Civil Engineers: Transport, 172(5):289–298.

Bálint, K., T. Tamás, and B. Tamás. 2022. "Deep Reinforcement Learning Based Approach for Traffic Signal Control".

Transportation Research Procedia, 62:278–285.

Bouktif, S., A. Cheniki, A. Ouni, and H. El-Sayed. 2023. "Deep Reinforcement Learning for Traffic Signal Control with Consistent

State and Reward Design Approach". Knowledge-Based Systems, 267.

Casas, N. 2017. "Deep Deterministic Policy Gradient for Urban Traffic Light Control". arXiv preprint arXiv:1703.09035.

Cheng, H. K., K. P. Kou, and K. I. Wong. 2022. "Transit Signal Priority Control with Deep Reinforcement Learning". 10th

International Conference on Traffic and Logistic Engineering (ICTLE),

Cvijovic, Z., M. Zlatkovic, A. Stevanovic, and Y. Song. 2022. "Conditional Transit Signal Priority for Connected Transit Vehicles".

Transportation Research Record, 2676(2):490-503.

Geron, A. 2019. Hands-on Machine Learning with Scikit-Learn, Keras, and Tensorflow: Concepts, Tools, and Techniques to Build

Intelligent Systems. 2nd ed. 1005 Gravenstein Highway North, Sebastopol, CA 95472. O'Reilly Media, Inc.

Guin, A., S. Roy, D. Kwesiga, G. N. S. Kumar, and M. P. Hunter. 2023. Strategy Analysis and Evaluation for Emergency Vehicle

Preemption and Transit Signal Priority with Connected Vehicles Using Software in the Loop Simulation. Georgia Department

of Transportation, Office of Performance-Based Management and Research.

Hu, W. X., H. Ishihara, C. Chen, A. Shalaby, and B. Abdulhai. 2023. "Deep Reinforcement Learning Two-Way Transit Signal

Priority Algorithm for Optimizing Headway Adherence and Speed". IEEE Transactions on Intelligent Transportation Systems,

24(8):7920-7931.

Lee, H., Y. Han, Y. Kim, and Y. H. Kim. 2022. "Effects Analysis of Reward Functions on Reinforcement Learning for Traffic

Signal Control". PLoS ONE, 17(11 November).

Li, D., J. Wu, M. Xu, Z. Wang, and K. Hu. 2020. "Adaptive Traffic Signal Control Model on Intersections Based on Deep

Reinforcement Learning". Journal of Advanced Transportation.

Li, L., Y. Lv, and F. Y. Wang. 2016. "Traffic Signal Timing Via Deep Reinforcement Learning". IEEE/CAA Journal of Automatica

Sinica, 3(3):247-254.

Li, M., Y. Yin, W.-B. Zhang, K. Zhou, and H. Nakamura. 2011. "Modeling and Implementation of Adaptive Transit Signal Priority

on Actuated Control Systems". Computer-Aided Civil and Infrastructure Engineering, 26(4):270–284.

Li, Y., J. He, and Y. Gao. 2021. "Intelligent Traffic Signal Control with Deep Reinforcement Learning at Single Intersection". In

Proceedings of the 7th International Conference on Computing and Artificial Intelligence, 23rd–26th April, Tianjin, China, 399–

406.

Liu, S., G. Wu, and M. Barth. 2022. "A Complete State Transition-Based Traffic Signal Control Using Deep Reinforcement

Learning". 2022 IEEE Conference on Technologies for Sustainability, SusTech 2022.

Long, M., X. Zou, Y. Zhou, and E. Chung. 2022. "Deep Reinforcement Learning for Transit Signal Priority in a Connected

Environment". Transportation Research Part C: Emerging Technologies, 142:103814.

Lopez, P. A., M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd, R. Hilbrich, et al. 2018. "Microscopic Traffic Simulation

Using Sumo". In Proceedings of the 21st IEEE International Conference on Intelligent Transportation Systems, 4th–7th

November, Maui, HI.

Mohammadi, R., C. Roncoli, and M. N. Mladenovic. 2020. "Transit Signal Priority in a Connected Vehicle Environment: User

Throughput and Schedule Delay Optimization Approach". In IEEE Forum on Integrated and Sustainable Transportation

Systems, 3rd–5th November Delft, Netherlands, 252–257.

Pang, H., and W. Gao. 2019. "Deep Deterministic Policy Gradient for Traffic Signal Control of Single Intersection". Chinese

Control And Decision Conference, 3rd–5th June, Nanchang, China,5861–5866,

PTV, A. 2021. "Ptv Vissim 2021 User Manual". PTV AG: Karlsruhe, Germany.

Shabestary, S. M. A., Abdulhai, B., Ma, H., and Huo, Y. 2020. "Cycle-Level Vs. Second-by-Second Adaptive Traffic Signal

Control Using Deep Reinforcement Learning". 2020 IEEE 23rd International Conference on Intelligent Transportation

Systems (ITSC),

Shen, W., L. Zou, R. Deng, H. Wu, and J. Wu. 2023. "A Bus Signal Priority Control Method Based on Deep Reinforcement

Learning". Applied Sciences, 13(11):6772.

Sutton, R. S., and A. G. Barto. 2018. Reinforcement Learning: An Introduction. 2nd ed. Cambridge, Massachusetts. MIT Press.

Wang, Q., X. Yang, B. D. Leonard, and J. Mackey. 2020. "Field Evaluation of Connected Vehicle-Based Transit Signal Priority

Control under Two Different Signal Plans". Transportation Research Record, 2674(7):172–180.

Yang, T., and W. Fan. 2024. "Transit Signal Priority under Connected Vehicle Environment: Deep Reinforcement Learning

Approach". Journal of Intelligent Transportation Systems, 1–13.

1432

Kwesiga, Guin, and Hunter

Zhong, N., K. Liu, and Y. Li. 2023. "Deep Q-Learning Network Model for Optimizing Transit Bus Priority at Multiphase Traffic

Signal Controlled Intersection". Mathematical Problems in Engineering, 2023:9137889.

AUTHOR BIOGRAPHIES

DICKNESS KAKITAHI KWESIGA is a Ph.D. student and a graduate research assistant in the School of Civil Engineering at

Georgia Institute of Technology. His research interests include modeling, simulation, and optimization of arterial corridor

operations, traffic signal systems, Transit signal priority, emergency vehicle preemption, connected vehicles, and AI/ML

applications in traffic operations. His email is dkwesiga3@gatech.edu.

ANGSHUMAN GUIN is a Senior Research Engineer in the School of Civil and Environmental Engineering at the Georgia Institute

of Technology. His research attempts to find answers through innovations in the development of effective means of data collection,

quality assurance, and processing to convert these data into informative metrics across a range of time scales from near real time

to decades. Dr. Guin's current research projects at Georgia Tech are broadly in freeway operations, connected and autonomous

vehicles, intelligent transportation systems (ITS), transportation safety, traffic simulation and data management. His email is

angshuman.guin@ce.gatech.edu.

MICHAEL HUNTER is a Professor in the School of Civil and Environmental Engineering at Georgia Institute of Technology.

His primary teaching and research interests are in transportation operations and design, specializing in adaptive signal control,

traffic simulation, freeway geometric design, and arterial corridor operations. His email is michael.hunter@ce.gatech.edu.

1433

mailto:dkwesiga3@gatech.edu
mailto:angshuman.guin@ce.gatech.edu
mailto:michael.hunter@ce.gatech.edu

