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ABSTRACT

The integration of Digital Twins into manufacturing environments unlocks significant value through a range
of benefits. In this work, we demonstrate the digitalization of a physical system. The chosen system is an
emulated automotive assembly process, for which we create a virtual representation of both the physical
system’s state and the product itself using Agent-Based Modeling techniques. To twin the physical and
virtual worlds, we leverage real-time data collected from automation systems and Internet of Things devices.
The motivation for this work lies behind the need to create Digital Twin models that can be used to integrate
bidirectional data flows into industrial simulation models.

1 INTRODUCTION

The concept of Digital Twins (DTs) was originally perceived as a tool to manage a product’s entire lifecycle
(Grieves 2014). Later, the focus shifted to DTs as digital replicas of physical machines, with the potential
to revolutionize manufacturing through constant monitoring and improvements (Stark et al. 2019). Today,
the concept of DTs has broadened. They are no longer limited to physical machines but can represent
anything – objects, processes, or entire systems – whether they exist in the real world, combine physical
and digital aspects, or are purely digital. This is achieved by combining real-time data with computational
models and simulation modeling techniques. DTs are increasingly important in various fields due to
their ability to optimize performance, predict outcomes, and improve decision-making (Rasheed et al.
2020). They are also used for status monitoring, simulation, and visualization, but there is potential for
them to offer value-added services and support autonomous intelligent agents (Ali et al. 2021; Huang
et al. 2021). Moreover, integrating DTs into manufacturing processes facilitates a deeper understanding
of human interactions within the context of smart manufacturing. By accurately modeling and simulating
these interactions, DTs enable manufacturers to improve workflow efficiency, enhance worker safety, and
mitigate risks associated with human error (Hou et al. 2021; Bevilacqua et al. 2020)

In industrial operations, DTs have significant roles in production and predictive maintenance (Melesse
et al. 2021). Their integration with Model-Based Systems Engineering (MBSE) can enhance system
simulation and support Internet of Things (IoT) applications (Madni et al. 2019). They enable data-driven
decision-making, complex systems monitoring, and product validation (Botín-Sanabria et al. 2022). Next,
they have a wide range of industry use cases, including manufacturing, smart cities, and the automobile
industry (Augustine 2020). DT technology uses a range of advanced tools, including the Internet of Things,
Machine Learning, and Cloud Computing (Prarthana et al. 2021).

Combining DT and Simulation techniques in manufacturing environments can offer considerable benefits.
These include the ability to experiment with new ideas and scenarios without disrupting production (Guerreiro
et al. 2020), improved time and cost-effectiveness, and enhanced production planning (Guerra-Zubiaga
et al. 2021). The integration of product specification and production and the use of DTs in product
development can lead to the creation of high-performance products (Wagner et al. 2019). DTs can also
provide diagnostic and prognostic support in complex manufacturing environments (Shen et al. 2023).
Integrating DT and manufacturing-focused simulation techniques in a Cyber-Physical System can create
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platforms that monitor and simulate manufacturing processes (Leng et al. 2021). Lastly, a holistic Digital
Twin approach can support the optimization and resilience of factories by considering human factors and
interdependencies between production assets (Bécue et al. 2020).

DTs have been integrated into simulation models in various ways. Especially in the case of manufacturing,
Bécue et al. (2020) proposed a holistic approach to the creation of DTs for factories of the future, considering
many aspects of manufacturing environments. Mykoniatis and Harris (2021) developed a DT emulator of
a modular production system using a data-driven hybrid modeling and simulation approach that combines
Discrete Event Simulation (DES) and Agent-Based Modeling (ABM). This approach allows for high-
fidelity representation of the physical system through near real-time data exchange with Programmable Logic
Controllers (PLCs) and can be used during the design phase, including testing different system configurations,
verifying system behavior, and predicting performance metrics. The hybrid simulation approach offers
advantages over traditional methods by overcoming the limitations of standalone simulation techniques
and allowing for better design decisions and performance optimization in production systems. Other
examples of integrating DTs into Simulation models consider simulation services for Automated Guided
Vehicles (AGVs) (Martínez et al. 2021) and engineering education (Wilking et al. 2023). Furthermore,
additional advancements cover the validation of technical systems (Dahmen et al. 2022), the dynamic
runtime integration of new models in DTs (Ejersbo et al. 2023), and the application of simulation techniques
in creating experimentable DTs for Industry 4.0 (Schluse et al. 2018). Lastly, van der Valk et al. (2020)
also contributed to the taxonomy of simulation models in DTs. These studies collectively demonstrate the
diverse and innovative ways in which DTs have been integrated into simulation models.

Using simulation models as DTs is also growing as a research directive, mainly focused on DES models,
with ABM models or hybrid models covering only a small fraction of the research (dos Santos et al. 2022).
ABM refers to modeling approaches in which autonomous agents’ interactions are repeatedly simulated
within a system. ABM is suitable for simulating dynamic processes that rely on agent interaction, aiming
to optimize the collective agent behavior and achieve desired end-states (Macal and North 2009).

In this work, we showcase our initial efforts to digitalize the Tiger Motors Assembly Line, an educational
and training manufacturing facility. Launched in 2011, Tiger Motors is an educational and training facility
located at the Samuel Ginn College of Engineering, Auburn University. The facility provides students
and industry experts with hands-on experience in a simulated assembly line that produces cars made
from LEGO® bricks. Since its inception, Tiger Motors has allowed hundreds of students and industry
professionals to learn how to apply Lean Manufacturing concepts. Two different products are assembled in
this facility: a 234-piece SUV car and a 277-piece Speedster car. Figure 1 illustrates the two cars assembled
at Tiger Motors.

Figure 1: The 277-piece Speedster (left) and the 234-piece SUV (right).
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One of the primary goals of this facility is to educate students and industry professionals about Lean
Manufacturing concepts. Our digitalization efforts consider a multi-phase digitalization plan to transform
the Tiger Motors Assembly Line into a demonstration facility for Digital Manufacturing techniques, targeted
toward Industry 4.0 technology adoption by Small and Medium Manufacturers (SMMs). The initial phase
of this plan considered a hybrid simulation study of the facility’s operation, combining ABM and DES
techniques (Katsigiannis et al. 2024). That study aimed to assess the effect of the Lean Manufacturing
techniques applied in the facility. In this work, we describe the next step, which considers creating a digital
model that represents the physical assembly process using real-time data sources to demonstrate and assess
the use of DT technologies in assembly operations.

Our key contribution includes a systematic description of the twinning process we implemented for
real-time production tracking in assembly operations using ABM. The choice of creating a real-time digital
representation of the facility using ABM simulation techniques is based on our future plans to integrate
Digital Twin capabilities into the previously developed hybrid simulation model. The modeling choices
underlined in this work can be valuable for future research in integrating Digital Twin models into hybrid
simulation models.

2 REAL-TIME DATA ACQUISITION

In this section, we describe the assembly line we use as the case study for our digitalization efforts. First,
we describe the Tiger Motors Assembly Line, which emulates a high-volume automotive manufacturing
assembly plant that produces cars made from LEGO® bricks. Next, we describe the automation systems
installed in the facility and the types of data we collect through them. Finally, we describe how we
implemented the real-time tracking of entities throughout the system using Internet of Things devices and
barcode scanners.

2.1 The Tiger Motors Assembly Line

The Tiger Motor’s assembly line is divided into three work cells, each with five workstations. The cars
are assembled sequentially, and each car needs to go through all fifteen workstations. The facility operates
with a target takt time (available production time divided by customer demand) of 70 seconds and a target
cycle time of 60 seconds. A thorough description of the facility’s capabilities and operation can be found in
our previous work (Katsigiannis et al. 2024). In previous work, we assessed the transition from the Mass
Production mode of operation to implementing Lean Manufacturing techniques by developing a hybrid
simulation model of the facility. In that work, we evaluated an alternative scenario using the Just-In-Time
and Heijunka Lean Manufacturing techniques. In that scenario, the system’s lead time was reduced by
47.37%, and the work-in-progress of the workstations decreased by up to 56.73%.

The assembly line can be operated under different production styles. The reasons for allowing for
different production archetypes lie within the facility’s educational and training goals. Practitioners first go
through a production run where they follow the Mass Production mode of operation, where each work cell
operates independently according to a Master Production Schedule. Next, the practitioners get hands-on
experience regarding Lean Manufacturing concepts by running the facility under a Lean Manufacturing
Just-In-Time mode of operation. In this mode of operation, a push system and multiple Lean Manufacturing
principles are implemented, such as a leveled schedule based on a Heijunka box. The second workstation
of the first manufacturing cell is illustrated in Figure 2.

The assembly process begins at the first workstation of the first work cell. Then, the car under assembly
moves through the rest of the work cell’s five workstations. The process continues with the cars passing
through all the workstations of the second and third work cells. An inspection step is added at the final
workstation of each cell, where the cars are placed in front of inspection cameras, and the operators are
alerted of potential faults. If the car passes inspection, it is placed in a separate space, called the supermarket,
where cars can be batched before being transferred to the next work cell. When cars don’t pass inspection,
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Figure 2: The second workstation of the first work cell.

a supervisor is called, and they decide whether the car needs to be returned to a prior workstation for
rework or if the car is beyond repair. Cars that are deemed to be beyond repair are removed from the
system. The third and final work cell is equipped with a conveyor belt that does not stop moving unless
there is an assembly problem at one of the workstations or an emergency.

The process of how the cars travel through the assembly line is illustrated in Figure 3. In this figure,
the 15 workstations of the assembly line are denoted as W1 through W15, and the supermarkets at the end
of the first two work cells are denoted as Supermarket 1 and Supermarket 2, respectively. The three work
cells are denoted as Cell 1, Cell 2, and Cell 3, respectively.

2.2 Data Sources

The facility is equipped with an automation system controlled by an Omron Programmable Logic Controller
(PLC). The automation system includes Andon Lights at each section, a conveyor belt, inspection cameras,
and an Omron Cobra 650 SCARA robot. As part of our digitalization efforts, we have equipped each
workstation with an Internet of Things (IoT) device that collects data from barcode scanners and allows
for the real-time tracking of the cars in the facility.

All data collected from the assembly operations is stored and processed at a central computer in the
facility. This computer is the central hub responsible for connecting to all required networks, running
required data collection services and databases, processing the incoming data, and running the simulation
software. The computer is connected to two different networks; the first network provides the computer
access to the automation network, and the second network provides access to the IoT devices.

The data acquisition from the automation system is performed using a MySQL database. The PLC that
controls the automation system is connected to the central computer using a wired Ethernet network. A ladder
logic program facilitates the connection to the MySQL database, allowing bi-directional communication.
From the PLC, we collect data about the state of the Andon lights at each station and the conveyor belt. The
Andon lights are three-colored lightning systems that standardize communication between the operators,
supervisors, and maintenance staff. Under normal operation, the light shines a green color. Whenever an
operator faces a problem during assembly, they can press a button on their station, and the Andon light for
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Figure 3: The flow of cars through the assembly line.

this station turns yellow. This indicates to the supervisor that a problem has occurred. If the problem has
not been fixed within a certain amount of time, the light turns red. In the case of a red light, the assembly
process halts until the issue is resolved. When the issue is resolved, the operator presses the same button
they used to bring attention to the problem, and the Andon light turns back to green.

The automation system receives feedback from the model via the same MySQL database, as any
changes in the database are accessible to the facility’s PLC. By querying the database, the PLC can adjust
its programmed variables, changing the timing of the Andon lights and turning the conveyor belt on or off.
Furthermore, we are currently integrating the inspection cameras and the SCARA robot installed at the end
of the production line into our ABM model. This integration will allow us to experiment with additional
ways for the digital model to control the automation system.

2.3 Real-Time Tracking of Products Using Internet of Things

A main requirement for our digitalization plan of the facility was to create the capability to track where
each car under assembly is located in the assembly line. We equipped each workstation with a handheld
barcode scanner to accommodate this need. When a new car begins the assembly process, the operator at the
initiating workstation places a preprinted barcode at the bottom of the car. These barcodes contain a unique
code containing information about the specific type of assembled car, akin to the Vehicle Identification
Number (VIN) found in automobiles. We used CODE 128 formatting for the barcodes, as this type is
compact and can encode a large amount of data. The workstations are also equipped with a card that
contains codes that indicate faults that may occur. Whenever an operator recognizes a fault with the car
they are currently assembling, they can scan the corresponding code on the card, and the car is tagged with
the fault in the developed system. Figure 4 illustrates an example of these barcodes.

The barcodes scanned at each workstation are acquired using IoT devices. These IoT devices combine
a microcomputer, barcode scanners, and required communication software. The microcomputer of choice
was the Raspberry Pi 4B, running the Raspbian operating system. The reason behind using the Raspberry
Pi 4B as the controller of the IoT devices was the low cost, adequate processing power, and networking
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Figure 4: Example of barcodes used to track the cars through the assembly process and the fault codes.

capabilities. More importantly, these microcomputers are supported by online documentation and active
communities that provide support when creating new applications. Given the educational and training focus
of the facility, we required a solution that allows for the future development of applications by the students
and researchers who use the facility during their studies. The IoT devices communicate with the central
computer through a separate Wi-Fi network created by a wireless router. Using a separate network provides
increased security, as any application that uses the IoT data cannot access the automation network.

The IoT devices are placed on the work cells to facilitate data collection, and the barcode scanners
are connected to them via USB. The barcode scanners are installed on the workstations using 3D-printed
holders and are within reach of the operators while they are working. Next, we developed software that
allows the microcomputer to read the codes scanned by the scanners and recognize which scanner belongs
to which workstation. The workstation recognition is enabled using a configuration file created and stored
in the device’s memory. This configuration file maps each available USB port to a specific workstation.
By following this approach, we allow multiple scanners to connect to a single IoT device. Finally, the
developed code is set up to run every time the operating system boots, thus allowing for the headless
operation of the devices.

The communication between the IoT devices and the facility’s central computer is performed using the
MQTT communication protocol. The MQTT protocol is based on a publisher and subscriber architecture
and uses broker software as the middleware to enable communication. The IoT devices serve as publishers,
sending data to the broker. Then, the broker makes the data available to all subscriber software in the
network. We installed the Eclipse Mosquitto software, an open-source MQTT broker, on the central
computer to serve as the communication middleware. The transmitted data contains the scanned barcode
and a timestamp of when the code was scanned. The IoT devices publish this data to separate MQTT
topics. We use one topic per workstation, allowing any developed application to collect data directly from
specific workstations. Another benefit of this approach is that the topics allow subscriber applications to
distinguish between which workstation they received data from.

Subsequently, the operators perform the scanning process manually. The operator scans the associated
barcode whenever a new car enters a workstation. If a fault with the car is recognized, the operator pushes
a button at the workstation. This button is connected to the PLC and is responsible for changing the
status of the Andon lights. In this case, the operator also scans a fault-related barcode with the help of
the supervisor. This process is the same for all workstations, with the workstations that are equipped with
additional inspection capabilities being the stations to recognize faults more frequently. After the operator
finishes their assembly process, they scan the barcode associated with the car once more to signal the end
of the process. We illustrate the process flow diagram of this process in Figure 5.

3 AGENT-BASED DIGITAL TWIN MODEL

This section explores how the collected data is transformed into an Agent-Based Digital Twin model
(ABDTM), which digitalizes the information and tracks the state of the assembly process. For the
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Figure 5: The assembly process at each workstation, including the scanning steps.

development of the ABDTM, we used the AnyLogic 8.8.6 simulation modeling software. The first step of
this process is creating a Communication agent that can subscribe to the MQTT topics created by the IoT
devices and connect to the automation system MySQL database. Next, we created agents that keep track
of each car in the assembly line and agents that keep track of the state of each workstation, namely the
Car and Workstation agents.

All agents are created in the Main agent of the AnyLogic model, which is responsible for initiating the
processes when the model is run. The Main agent includes the Communication agent, a population of 15
Workstation agents, and an initially empty population of Car agents. The Main agent also contains an event
that runs at the model start and is responsible for initiating the Communication and Workstation agents.
Finally, we included an additional recurring event with a recurrence time of 1 milliseconds. This event
allows the model to update at regular intervals while running, ensuring that the agents’ communication is
performed promptly. We observed that the synchronization between the model and the data sources was
not functioning optimally without including a recurring event.

3.1 The Communication Agent

To receive messages sent by IoT devices, we imported the Eclipse Paho MQTT Java Client library into
our model. Using this library, the Communication agent can receive messages from the MQTT broker
transmitted by the IoT devices. The Communication agent is responsible for receiving the messages,
parsing the contents, and then passing the equivalent messages to the Car agent. If the Communication
agent receives a product code for a car not currently in the system, it creates a new Car agent and adds it to
the corresponding agent population. If the received message corresponds to a car already being assembled,
the Communication agent is responsible for finding this specific car in the population and reading its current
state. Depending on the current state of the Car agent, the Communication agent sends a message to the Car
and Workstation agents to update their state charts. Finally, if a fault-related code is received, a message is
sent to the Car agent to update its state chart, and the fault code is inserted into a corresponding collection
element.

The Communication agent is also responsible for querying the MySQL database which contains
information about the automation system. Whenever the PLC inserts a new entry in the database, the agent
reacts by sending a message to the corresponding Workstation agent to update its state chart. We currently
monitor only the state of the Andon lights, but we plan to add additional logic to incorporate the data from
the inspection cameras, SCARA robot, and conveyor belt in later phases of our digitalization efforts. The
process flow of the logic we implemented for the Communication agent is illustrated in Figure 6.

3.2 The Car Agent

The Car agent is responsible for tracking the location and state of each car assembled in the facility. To
achieve real-time tracking of the cars within the facilities, we implemented an Agent-Based state chart that
describes the current state of each car. The unique identification number, the car type (Speedster or SUV),
and the current workstation for each car are stored in variables within the agents.
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Figure 6: The process flow of the Communication agent’s logic.

A new car agent is created every time a new barcode is scanned at the entering workstation of the
assembly line. The starting state of the agent is the "assembly_at_station" state, which resides within
the "being_made" composite state. This composite state also contains the "wait_in_queue" state, which
denotes that the car is queued for assembly as soon as the assigned workstation is free. The transitions
between the "assembly_at_station" and "wait_in_queue" states are performed using messages sent by the
Communication agent.

A message is sent to the corresponding Car agent whenever a fault is detected during assembly, and
the agent enters the "fault_detected" composite state. Within this state, necessary statistics are gathered,
and depending on the type of detected error, the car resumes the assembly process, gets transferred to a
different workstation, or leaves the system. All detected faults are added using identifiers to a collection
within the agent. Finally, whenever a car goes through all fifteen workstations, it transitions to the "finished"
state, and we gather important statistics about key performance indicators, such as lead time and types
of detected faults. The state chart of the Car agent is illustrated in Figure 7, as it was created using the
AnyLogic 8.8.6 software.

Figure 7: The Agent-Based Modeling state chart of the Car agent.
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3.3 The Workstation Agent

The Workstation agent tracks the state of the assembly line’s fifteen workstations. When the Model is
initiated, the agent starts at the "initialize" state, using data from the MySQL database to determine its
starting conditions. After the initialization process, the agent enters one of three states: "green_andon_state,"
"yellow_andon_state," or "red_andon_state." These states align with the Andon lights positioned at the
physical workstations. The "green_andon_state" indicates normal operation, where production can proceed
smoothly.

In contrast, the "yellow_andon_state" signifies a cautionary status, prompting attention to a potential
issue that requires resolution to prevent escalation to the "red_andon_state." The latter indicates a critical
stoppage or malfunction that necessitates immediate action to resolve. The state that corresponds to a green
Andon light is a composite state containing the "Idle" and "Busy" states. A Workstation agent is in the
"Busy" state whenever a Car agent is assembled at that station and in the "Idle" state whenever no Car
agent is assembled.

The agent transitions from the "Idle" to the "Busy" state, and vice versa, by receiving messages from
the Car agents. The transitions between the states that correspond to the workstation’s Andon lights
are performed using messages sent by the Communication agent. Finally, whenever a production run is
finished, a message is sent from the Communication agent to each Workstation agent to transition to the final
"production_finished" state. In this final state, important statistics regarding key performance indicators are
gathered using collected data. These key performance indicators include data about workstation utilization,
service times, and downtime due to faults. The state chart of the Workstation agent is illustrated in Figure
8, as it was created using the AnyLogic 8.8.6 software.

Figure 8: The Agent-Based Modeling state chart of the Workstation agent.

4 CONCLUSIONS AND FUTURE WORK

This work described our efforts to digitalize an educational and training facility that emulates an automotive
assembly line using ABM and real-time data. The developed Agent-Based Digital Twin model can achieve
bi-directional communication with the facility’s automation systems and utilizes Industry 4.0 technologies
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to create a digital replica of important aspects of the production line. We used real-time data from Internet
of Things (IoT) devices and automation systems to track the state of the facility’s workstations and the
assembled products’ locations. By following an ABM approach, the model can be integrated into different
simulation models of the facility, enhancing the DT’s capabilities. Through this integration, simulation
models can gain the capability to run simulation experiments using real-time data as the starting point, as
well as an interface that allows the model to directly access and alter the behavior of the physical system
based on the experimentation results.

This work is part of a multi-phase digitalization plan aimed at helping Small and Medium Manufacturers
(SMMs) embrace Industry 4.0 technology by turning the Tiger Motors Assembly Line into a demonstration
facility for Digital Manufacturing methods. The next steps of this work consider verifying and validating the
model, creating visualization elements that assist the operators in understanding the system’s state during
production, and finally, using this system during production runs to assess its effectiveness in improving
the practitioners’ decision-making.

In the future, we plan to integrate additional assembly process elements into the DT model. These
include a SCARA robot that inspects and sorts the cars at the end of the assembly line and an Automatic
Storage and Retrieval System. Next, we want to integrate the showcased ABM DT model into the facility’s
previously created hybrid simulation model. As additional elements are introduced into the DT model, we
want to apply data-driven simulation techniques to ensure that the models utilize all available real-time
data sources to stay updated, addressing scalability concerns. This can be achieved by creating a high-level
semantics-based description of the facility and automatically updating the models based on updated semantic
data.

Finally, through the integration of the DT model with the hybrid simulation model, we want to unveil
the points of information exchange between the Digital Twin model and the hybrid Simulation model.
By understanding these points of information exchange, we anticipate enabling future researchers and
simulation practitioners with enhanced capabilities to integrate real-time and bidirectional data sources into
their simulation models.
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