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ABSTRACT 

Simulating the charging process of electric vehicles (EVs) at public stations is crucial for effective decision-
making in the planning and management of EV infrastructure. Traditional models face challenges in 
reflecting the dynamic and uncertain nature of real-life EV charging. This study introduces a hybrid 
simulation framework that incorporates geospatial demand and utilizes Bayesian Inference with the Markov 
Chain Monte Carlo (MCMC) method to generate dynamic, probabilistic inputs. The proposed approach 
could (1) dynamically respond to changing observation data, (2) reflect the uncertainty and randomness of 
charging progress, and (3) integrate users’ demand and geospatial factors in the charging station selection. 
A case study was conducted involving three charging stations in Fairfax City. The results explained the 
evolving charging patterns and evaluated the impact of unforeseen events on station utilization. This method 
offers a robust tool for planning, developing, and optimizing public EV charging infrastructure, adapting 
to changing behaviors and demands. 

1      INTRODUCTION 

The shift towards electric vehicles (EVs) plays a pivotal role in reducing greenhouse gas emissions and 
diminishing the reliance on fossil fuels. As electric vehicles become more popular, the need for efficient 
and widely accessible public charging infrastructure intensifies significantly (Xiang et al. 2018). Simulating 
the charging behavior, such as when, where, and how the EV users charge their vehicles, is crucial for the 
charging infrastructure planning (Chen et al. 2020). However, the charging behaviors are dynamic and 
unpredictable, which includes uncertain factors such as arrival and departure times at charging stations, the 
duration of charging sessions, and the selection of charging locations, posing significant challenges to 
infrastructure planning (Uimonen & Lehtonen 2020). To mirror the dynamic real-life scenarios, simulation 
models could be used to design, analyze, communicate, and test the complex charging behaviors, which 
helps support critical decision-making in public EV charging infrastructure planning.  
 Accurate input data is critical for successful simulation models (Wu et al. 2019), particularly in the 
context of electric vehicle (EV) charging, where activities are marked by randomness and uncertainty. In 
most cases, the input variables are not fixed values but follow probability distributions. However, finding 
accurate parameters for model input is limited by the difficulty in obtaining sufficient population data and 
updating parameters according to changing conditions (Ji & AbouRizk 2017). Moreover, the accuracy of 
these models is further influenced by the decision-making mechanisms that reflect users' choices. Previous 
research efforts have focused on developing simulation models to mirror the complexities of real-world EV 
charging behaviors (Uimonen & Lehtonen 2020; Lee et al. 2019). These models, while innovative, often 
do not integrate new data dynamically nor ignore the uncertainty in fixed inputs, limiting their applicability 
in fluctuating real-world conditions. Therefore, being able to simulate the EV charging behaviors reliably 
and dynamically is critical for understanding the utilization situation of existing infrastructures and 
forecasting future uncertain scenarios, which could further assist decision-making in effectively planning, 
developing, and optimizing public EV charging infrastructure. 
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This research aims to introduce a hybrid framework to reliably simulate the charging process of electric 
vehicles (EVs) at public stations. Specifically, the objective is achieved by (1) incorporating Bayesian 
Inference with the Markov Chain Monte Carlo (MCMC) method to dynamically update model inputs 
(arrival intervals and charging durations); (2) developing a geospatial simulation model with a charging 
station selection mechanism considering users’ demand and spatial factors; (3) demonstrating the feasibility 
of proposed approach using a case study in Fairfax City. By addressing these areas, the proposed hybrid 
simulation framework provides stakeholders with a sophisticated tool to facilitate the planning, 
development, and optimization of public EV charging stations in a way that adapts to changing charging 
behaviors and demands. 

2      LITERATURE REVIEW 

Previously, multiple studies have been conducted to simulate the EV charging behaviors to investigate the 
vehicle-transportation-grid trajectory (Chen et al. 2023), analyze the demand for the power grid (Ni & Lo 
2020), and evaluate service capacity (Zhang et al. 2018). However, most of the research employed fixed 
variables as model input, which ignored the uncertainties and stochastic factors. These uncertainties arise 
from several sources, including variability of arrival and departure times due to mobility behavior, 
differences in charging duration due to state-of-charge on arrival, battery capacity, market price, etc. (Sun 
et al. 2020). To account for these variabilities, inputs are modeled as probability distributions because of 
their ability to incorporate randomness and uncertainties (Wu et al. 2019). Bayesian Inference with the 
Markov Chain Monte Carlo (MCMC) method has been demonstrated efficient in generating a reliable 
simulation model input in construction models (Ji & AbouRizk 2017; Wu et al. 2019). The main benefit of 
MCMC is that it doesn’t need the entire likelihood function; instead, it just needs the posterior density's 
shape (Choi 2023). Rather than solving the complete simultaneous balance equation, the MCMC algorithm 
resolves local or detailed balance equations. This guarantees that the time average converges to a Bayes 
estimator by enabling it to manage the stability of the problems that come with Markov chains (Zhao 2021). 
One popular MCMC technique that creates a Markov chain is the Metropolis-Hastings algorithm. It works 
by recommending new samples from a proposed distribution and deciding whether to accept or reject them 
based on the ratio of next densities (Rocca 2019). This procedure provides a series of samples that converge 
to the actual posterior distribution after numerous iterations. Given the circumstances, Bayesian inference 
can be carried out using MCMC techniques even in cases where the posterior distribution is complex and 
multidimensional (Hofmeister 2021). The key steps are: (1) Set up a stationary distribution for the posterior 
in a Markov chain; (2) Take a sample from the chain; and (3) Use the sample data to conclude the unknown 
parameters. 

3      METHODOLOGIES 

This research develops a hybrid simulation model to accurately reflect real-world electric vehicle (EV) 
charging dynamics by incorporating two fundamental elements: (1) Bayesian Inference coupled with the 
Markov Chain Monte Carlo (MCMC) method, which is utilized to generate dynamic, probabilistic inputs 
for the model; (2) a detailed simulation model that integrates users' demand and spatial distances into the 
decision-making process for selecting charging stations.   

3.1      Bayesian Inference with Markov Chain Monte Carlo (MCMC) 

In the simulation model of EV charging progress, Bayesian Inference, coupled with the Markov Chain 
Monte Carlo (MCMC) method is used to generate dynamic, probabilistic inputs, including the arrival 
intervals of electric vehicles and charging durations of single vehicles. This approach could not only capture 
the distribution patterns inherent in historical data but also update the parameters at the time of observing 
new data, which reflects the uncertainty and variability inherent in real-life charging scenarios. 
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3.1.1    Bayesian Inference   

Bayesian inference is a method based on Bayes’ theorem to update the probability for a hypothesis as more 
observations are available. The main components included in the Bayesian inference include the prior 
distribution likelihood function and posterior distribution. Based on Bayes’ Theorem, the posterior 
distribution could be denoted as follows: 

 
(ܺ|ߠ)ܲ  = (|ఏ)×(ఏ)

()
∝ (ߠ|ܺ)ܮ ×  (1)     (ߠ)ܲ

 where: 
 ܲ(ߠ) is the prior distribution parameters ߠ = ,ଵߠ} ,ଶߠ ,ଷߠ … ,  .{ߠ
 (ߠ|ܺ)ܮ is the likelihood function of data ܺ = ,ଵݔ} ,ଶݔ ଷݔ … ,  .ߠ } given the parametersݔ
 ܲ(ܺ) is the marginal probability of the data ܺ. 
 ܲ(ߠ|ܺ) is the posterior probability of the parameters ߠ given the data ܺ. 

3.1.2    Analytical Derivation 

In the EV charging simulation model, both the arrival intervals of electric vehicles and the charging 
durations for individual vehicles are not predetermined with fixed values. Instead, these variables are 
characterized by specific distributions to incorporate uncertainty and randomness. Based on Bayes’ 
Theorem, the analytical solution for EV arrival intervals will be proved mathematically as an example. In 
the simulation, exponential distribution ݁(ߣ) ݔ is typically used to model times between arrivals (arrival 
intervals) ݔ. The probability density function is given by: 
 
;ݔ)݂  (ߣ = ൜ି݁ߣఒ௫, ݔ < 0

0, ݔ ≥ 0
   (2) 

  
 When the variable follows the exponential distribution, the usual conjugate prior is the Gamma 
distribution with parameter (ߙ,  :(ߚ
(ߣ)ܲ  = ఒഀషభషഁഊ

() ∝  ఈିଵ݁ିఉఒ,   (3)ߣ

where Γ(ߙ) = ߙ) − 1)! 
  
 According to the Equation (2), the likelihood function has the form: 
 
 

(ߣ|ܺ)ܮ ∝ ෑ ఒ௫ି݁ߣ



ୀଵ

∝  ݁ିఒ (4)ߣ

where ܺ = ∑ ݔ

ୀଵ  

  
 Therefore, the posterior distribution has the form: 
 
(ܺ|ߣ)ܲ  ∝ (ߣ|ܺ)ܮ × (ߣ)ܲ ∝  ିିଵ݁ି(ఉା)ఒ (5)ߣ

  
 From Equation (5), the posterior distribution is also a gamma distribution with parameters (ܽ − ݊, ߚ +
ܺ), which is denoted as: 
 
(ܺ|ߣ)ܲ  = ܽ)ܽ݉݉ܽܩ − ݊, ߚ + ܺ) (6) 
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For the distribution of arrival intervals, the mean of the posterior Gamma distribution is used to 
represent the analytical parameter ߣ, which is denoted as: 

 
ߣ  =

ܽ − ݊
ߚ + ܺ

 (7) 

 Similarly, this research uses ܾ݁ߙ)ܽݐ,  to model charging durations. The derivation process will not (ߚ
be discussed in detail here.  

3.1.3    Markov Chain Monte Carlo   

In real-life practice, the analytical solution may not exist or will be difficult to derive (Ji & AbouRizk 2017). 
In such cases, the Markov Chain Monte Carlo (MCMC) is used to find the target posterior distributions 
 As a widely used method in MCMC, the Metropolis-Hastings algorithm constructs a Markov chain .(ܺ|ߣ)ܲ
,ଵߣ) ,ଶߣ ,ଷߣ … ,  ) that moves through the parameter space, with the transition from one state (or sample) toߣ
the next based on a probabilistic decision rule. The steps are as follows: 

1. Starting from the current state ߣ, a new proposed candidate is generated: ߣାଵ = ߣ + Δߣ, where 
Δߣ ∼ ,ߤ)݈ܽ݉ݎ݊        .(ߪ

2. Decide whether to accept ߣାଵ based on the posterior probability ratio to its previous step. The ratio 
is given by the Equation (8). This ratio determines whether the new candidate state is more likely 
(or less likely but still potentially acceptable) compared to the current state. The new move is 
accepted if the new sample is more probable than the existing sample. Otherwise, the move is 
accepted with the acceptance probability ߩ or the move is rejected.  
 

 
ߩ = min ቆ1,

ܲ൫ߣାଵหܺ൯ 
ܲ൫ߣหܺ൯ 

ቇ (8) 

 
3. To achieve the logic in step 2, compare the ratio ߩ to a random value ݑ sampled from a uniform 

distribution ܷ(0,1). Accept the proposed candidate ߣାଵ if ߩ is larger than ݑ. Otherwise, reject the 
proposed candidate and redo step 2.  

4. After iterating step 1 to step 3 for certain times, a list of samples will be saved, and a histogram 
could be generated to show the distribution of parameter ߣ.  

 By following this procedure, the Metropolis-Hastings algorithm ensures that the generated Markov 
chain will converge to the desired stationary distribution. 

3.2      EV Charging Simulation Framework 

The simulation framework is intricately designed to simulate several key aspects: the generation of demand 
points, the selection of public charging stations, and the subsequent charging process. A generic simulation 
model is developed in the Simphony.NET environment.  

Demand Points Generation: Demand points are randomly generated across the geographical 
landscape, representing EVs that need charging. The arrival intervals between these EVs follow a 
distribution derived from the MCMC method.  

Public Charging Station Selection Mechanism: A selection index is formulated to prioritize public 
charging stations based on user demand and spatial proximity. The index is defined by the formula: 

 
ܫ  =

ݐ

௧௧ݐ
+ ln ൬

݀

݀௧௧
൰ (8) 

Where ݐ is the yearly historical charging time for public EV charging station ݅,  ݐ௧௧ denotes the total 
charging time of all public charging stations within the geographic scope. ݀ is the travel distance from the 
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demand point to the public EV charging station ݅, ݀௧௧ is the cumulative distance from the demand point 
to all stations within the geographic scope. After each demand point is generated, an index is calculated for 
each public charging station assuming that the charging price of all public charging stations is constant. 
The selection order for the charging stations is then determined in descending order based on the index 
values. For example, if ܫଵ > ଶܫ >  ଷ, the selection order would be station 1, followed by station 2, thenܫ
station 3. In cases where a preferred station is at full capacity, the user will proceed to the next available 
option. All selection logic will be implemented by writing code in the Execute element in Simphony. Net. 

Charging Process Simulation: The charging duration for each session is modeled using a probability 
distribution derived via the MCMC method, which captures the inherent variability and uncertainty in actual 
charging times.  

4      CASE STUDY 

In this research, three public EV charging stations in Fairfax City were selected to demonstrate the 
feasibility and applicability of the proposed approach. Firstly, the probabilistic model inputs (arrival 
intervals and charging duration) were modeled using the MCMC method to incorporate uncertainty. Then, 
a simulation model was designed using the generated inputs to simulate real charging behaviors and 
possible special scenarios. 
 Data Source. The dataset used in this research contains detailed information on EV users’ charging 
behaviors in 2023. It stores EV charging records for three public charging stations in Fairfax city. The 
information includes location, connection time, disconnection time, total charging time, number of chargers, 
etc. The arrival interval is obtained by subtracting two adjacent connection times and charging time. The 
charging time has already been calculated by subtracting the disconnection time from the connection time. 
 Bayesian Updating of Input Models. In real-world scenarios, the challenge of obtaining sufficient 
data and the need to adaptively update model parameters in response to changing conditions present 
significant limitations for establishing and refreshing dependable simulation inputs. Therefore, in this 
research, the MCMC method is used to generate distribution for arrival intervals and charging duration. 
Based on historical data and expert insights, the arrival interval is assumed to follow an exponential 
distribution, with prior distribution (2,1) ܽ݉݉ܽܩ for ߣ; charging duration is assumed to follow a Beta 
distribution with prior distribution ܰ(5,2)݈ܽ݉ݎ for ߙ, and ߚ.  
 Given that the prior distribution for arrival intervals is conjugate to the likelihood function, the 
analytical solution is calculated to validate the effectiveness of the Bayesian updating process. Figure 1 
shows the 5000 iteration samples of ߣ generated by the MCMC method. The initial value is set to 2 and it 
reaches stable after around 50 iterations (as shown in Figure 2). The analytical value is 0.0082 and the 
estimated value generated by the proposed method is 0.0079. The difference is 3.7% of the analytical value. 

 
Figure 1: Trace plot for parameter ߣ. 
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Figure 2: Trace plot for parameter ߣ (200 Iteration). 

 Unlike the conjugate prior for the arrival intervals, it is hard to find an analytical solution for the 
distribution of charging duration for three stations with a non-conjugate prior. Therefore, it requires 
numerical methods, Markov Chain Monte Carlo (MCMC), for estimation. The initial values for ߚ ,ߙ are 
set at 0.5, 5. The results will be compared with parameters fitted from cumulative observations. The results 
and differences are shown in Table 1. Figure 3 shows trace plots of the parameter ߚ ,ߙ got from MCMC 
for three public charging stations. 

Table 1: Shape parameters. 

EV Charging Station Estimated (ߚ ,ߙ) 
using MCMC Fitted (ߚ ,ߙ) Difference          

(% of fitted value) 
S1 (0.69, 11.26) (0.70, 11.61) (1.4, 3.0) 
S2 (0.74, 3.46) (0.73, 3.38) (1.3, 2.3) 
S3 (0.31, 4.07) (0.30, 3.90) (3.0, 4.0) 

 
 Simulation Model. The model is designed to simulate EV charging progress in three public charging 
stations within one day. The stations, designated as "S1," "S2," and "S3," are each modeled as a resource 
within the simulation framework, reflecting the available charging infrastructure. The number of charging 
units at each station is represented by the quantity of resources in the model, indicating the station's capacity. 
The geographic scope of the study is defined as a 2-mile radius from the centroid of these three charging 
stations (shown in Figure 4). 
 In this simulation model, 100 electric vehicles (EVs) are generated as input entities, each assigned 
geographic coordinates within the defined scope. These entities arrive at intervals following an exponential 
distribution with a rate parameter of 0.078. The number of entities exceeds the actual demand to prevent 
the simulation from halting due to input limitation. The simulation's temporal boundary is set at 540 minutes, 
equivalent to a 9-hour window, aligning with typical office hours as the three public charging stations are 
close to workplaces, anticipating higher charging demand during these periods. The selection index ܫ is 
calculated based on Euclidean straight-line distance and yearly charging time (in minutes) accumulated 
from historical data. The travel time to reach a station is deduced from the distance and an assumed urban 
travel speed of 25 miles per hour. Charging durations at the three stations—labeled "S1," "S2," and "S3"—
are modeled to follow beta distributions with parameters ܾ݁0.69)ܽݐ, 11.20), ,0.74)ܽݐܾ݁  3.42),  and 
,0.31)ܽݐܾ݁ 4.07). The simulation model is shown in Figure 5. 
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Figure 3: Trace plots for the parameter of 3 stations. 

 

 

 

 Figure 4: Geographic scope.  
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Figure 5: Simulation model. 

Simulation Model Results. Data is segmented into four quarters for analysis, with each quarter's data 
used to update the parameters of the distribution. The distribution parameter (λ) for charging intervals is 
recorded as 0.0083, 0.007, 0.008, and 0.0095 for each consecutive quarter, respectively. A slightly growing 
rate indicating an increased likelihood of shorter charging intervals was observed from Q2 to Q4, suggesting 
a rising demand for charging services.  

Distributions of utilization rates for three public charging stations are shown in Figure 6. Average 
utilization rates for three charging stations, derived from a simulation model, are presented in Table 2. All 
three stations have a high frequency of low utilization, indicating underutilization overall. There is a very 
gradual trend of increasing utilization over the four quarters. This is reflected by a small but steady decrease 
in the lowest utilization bracket and a corresponding increase in the middle brackets, which can be attributed 
to the rising demand. Charging Station 2 (S2), despite being geographically close to the highly frequented 
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Charging Station 1 (S1), exhibited lower total utilization compared to the other stations. This discrepancy 
is primarily due to S1, which possesses a greater number of charging units, capturing most of the demand 
from the surrounding area. In such a situation, implementing flexible pricing models that incentivize 
charging in some under-occupied charging stations can help balance the load across the system. Charging 
Station 3 (S3), located further from S1 and S2, had significantly fewer charging occurrences, constituting 
only 3% of the total. Nevertheless, its utilization was higher than that of S2. This higher rate of utilization 
underscores S3's essential role within its local neighborhood, highlighting its uniqueness and irreplaceable 
nature despite its lower overall usage. This phenomenon emphasized the importance of incorporating 
geospatial factors in decision-making progress. Additionally, the low but increasing utilization suggests 
there might be potential for growth in demand or a need to review the placement and promotion of the 
charging stations to increase their use.  

 

Table 2: Average utilization of four EV charging stations. 

EV 
Charging 
Station 

Q1 
Utilization 

(%) 

Q1 
StdDev 

Q2 
Utilization 

(%) 

Q2 
StdDev 

Q3 
Utilization 

(%) 

Q3 
StdDev 

Q4 
Utilization 

(%) 

Q4 
StdDev 

S1 21 0.14 18.5 0.135 20.8 0.145 23.3 0.147 

S2 3.2 0.081 2.9 0.076 3.5 0.082 3.8 0.089 

S3 17 0.209 14.7 0.196 15.9 0.200 19 0.223 
 
 By analyzing the standard deviation and distribution pattern, it becomes clear that despite a generally 
low utilization rate, there still exists uncertainty in EV charging behaviors, especially for S3. In Q4, the 
likelihood of the utilization rate exceeding 66.7% stands at 4.3%, coupled with a standard deviation of 
0.223, suggesting a wider spread in the data and hence higher variability or uncertainty in utilization. This 
variation implies that the station experiences periods of both high and low use, with usage patterns that are 
less consistent than S1 and S2. To further explore the maximum capacity of this study area, the arrival 
duration was hypothetically reduced to zero, simulating a scenario where there is a continuous demand for 
charging stations. For addressing the unpredictable elements of charging, such as the occasional 
forgetfulness to disconnect, beta distributions were employed to model the variability in charging times. It 
was estimated that the maximum vehicle throughput for the area is approximately 24 to 26 vehicles (as 
shown in Figure 7). 
 Special Scenario. In 2023, charging stations S1 and S2 experienced a notable dip in usage over two 
months due to unforeseen events. Given the proximity of S1 and S2 to one another, it's plausible to conclude 
that both were simultaneously non-operational, likely because of roadwork or upgrades to the electric grid 
network. Consequently, station S3 would have absorbed the entire charging demand. To accurately simulate 
this real-world scenario, S1 and S2 were excluded from the model. The average arrival duration for S3 (1/λ 
in the exponential distribution) was adjusted to 120, 90, and 60. These adjustments represent the 
compensatory increase in demand due to the outage of S1 and S2. As demonstrated in Figure 8, there is a 
marked escalation in utilization correlating with the increased demand. Notably, when the average arrival 
interval was reduced to 60, the probability of utilization rates exceeding 66.7% spiked to 62.5%. This 
highlights periods of near or full capacity at Station S3, signaling a potential necessity for expanded 
resources or additional stations to manage the surge in demand during such special situations. 
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Figure 6: Utilization of S1, S2, and S3 across four quarters. 

 

 
Figure 7: Distribution of maximum capacity. 
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Figure 8: Utilization of S3 with different λ. 

5     CONCLUSIONS  

This study introduces a hybrid framework for simulating the EV charging process at public charging 
stations, using a Markov Chain Monte Carlo (MCMC) approach to create dynamic probabilistic model 
inputs. This approach can effectively capture the variability and uncertainty in EV charging scenarios. A 
case study of the City of Fairfax demonstrates the model's ability to generate reliable input parameters and 
explore unforeseen scenarios, thus more accurately reflecting real-world scenarios. In theory, the model 
can perform sophisticated simulations of complex charging behaviors and dynamically update inputs as 
new data is available. In practice, it provides detailed insights into user behavior and traffic patterns, aiding 
in operational management and strategic planning of public EV charging infrastructure. This makes the 
framework a valuable decision-support tool for addressing a variety of scenarios, such as peak loads, 
behavioral shifts, or policy changes. 
 However, this research study still has limitations. Firstly, while the model does consider user demand 
and spatial distances, other factors such as charging costs and station availability could also be integrated 
into future models. Secondly, considering the model’s efficiency, this study used data from three charging 
stations in Fairfax City, which provides valuable insights but may not fully capture the variability in 
charging behaviors across different locations and user demographics. Thirdly, given the computational 
resources, this research divided observation data into four sections and updated the results a limited number 
of times. Although dynamically responding to changing observation data would more accurately reflect 
real-life situations and support decision-making, it would also increase the computational cost of the model. 
To address these limitations, more sophisticated and efficient methods need to be developed in future 
research that could incorporate a more diverse set of data sources, covering a broader geographic area and 
including various types of charging stations and user profiles. 
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