
Proceedings of the 2024 Winter Simulation Conference
H. Lam, E. Azar, D. Batur, S. Gao, W. Xie, S. R. Hunter, and M. D. Rossetti, eds.

DATA-DRIVEN UNCERTAINTY REVENUE MODELING FOR COMPUTATION RESOURCE
ALLOCATION IN RECOMMENDATION SYSTEMS

Feixue Liu1,2, Yuqing Miao1,2, Yun Ye3, Peisong Wang1,2, Xinglu Liu1,2, Kai Zhang2, and Wai Kin
(Victor) Chan1,2

1Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua
University, Shenzhen, P.R. CHINA

2Institute of Data and Information, Tsinghua Shenzhen International Graduate School, Tsinghua
University, Shenzhen, P.R. CHINA

3Ant Group, Shanghai, P.R. CHINA

ABSTRACT

In recent years, as the resource consumption of computation-intensive recommendation systems (RS)
significantly increased, and the supply of large-scale resources encountered bottleneck, computation resource
allocation for improving computing efficiency grabbed the attention of the industry. The simulation of
revenue is a focal point in the allocation problem. However, due to the complex engineering architecture
of RS, no existing research proposes a simulation model that addresses the relationship between resource
allocation strategies and benefits. This paper, based on real data from Alipay’s advertising RS and integrating
queuing theory, models the relationship from resource allocation decisions to revenue considering exposure
randomness of traffic. We further merge allocation tasks with capacity planning (CP) to establish a two-stage
joint optimization model and use the revenue model above as the objective. The proposed model outperforms
the baseline with 1.9% in revenue, and represents flexible adaptation of exposure rate, providing insights
for the simulation of industrial RS.

1 INTRODUCTION

In recent years, with the continuous growth of internet users, the computation resource (CR) consumption of
highly AI-dependent and computationally intensive RS significantly increased. At the same time, due to the
impact of macroeconomic and environmental factors, the supply of large-scale CR encounters bottlenecks,
highlighting the importance of improving computation efficiency in the traffic control domain of RS.
Therefore, more precise advertising revenue modeling and computation resource allocation (CRA) have
become focal issues in the Internet industry. Current approaches to depicting revenue models in RS are
relatively naive and do not consider the system’s random factors. Therefore, there’s an urgent need for
exploration into optimization of revenue modeling and CRA.

In the present paper, we refer to the architecture of Alipay’s advertising recommendation system,
consider the randomness of exposure in the recommendation system, and based on real data, analyze the
impact of decisions on system state indicators such as Response Time (RT) and system exposure rate.
This allows us to construct a path from CRA decisions to total system revenue, thereby optimizing and
making decisions on the system’s CP and CRA tasks. Additionally, we compare our method with industrial
approaches under the same conditions, demonstrating the superiority of our method.

The paper is organized as follows. In the next section, we will discuss related work. The problem
description and modeling of revenue will be introduced in Section 3. Two-stage CP and CRA model will
be established in Section 4. Numerical experiments and results will be shown in Section 5 and conclusions
will be discussed in Section 6.
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2 LITERATURE REVIEW

CRA in recommendation systems is a new research field. The characteristics of RS, such as huge user
traffic flow and strong dynamics, lead to challenges in modeling. This section introduces the relevant
work on traffic models, current strategies for RS computation allocation, and the existing RS computation
allocation simulator of Alipay, which lays the foundation for our proposed model combining traffic flow
arrival and CR capacities.

With the development of the internet industry, data traffic has become a major factor influencing the
internet economy. Traffic modeling and simulation research, to our knowledge, primarily originated from
scholars analyzing network traffic in the telecommunications field. Faced with network service quality,
traffic modeling provides a guaranteed performance to user data flows (Chandrasekaran 2009). Similarly, in
RS, we face analogous issues: traffic modeling is essential to ensure effective recommendations, impacting
exposure rates, which is the ratio of the exposed traffic to all traffic and revenue.

Traditional methods of modeling traffic are mainly based on discrete event simulation. According
to traffic characteristics, Poisson, Pareto, Weibull, and Markov process distributions are general choices
(Neame 2003; Ntlangu and Baghai-Wadji 2017). Markov processes are tractable but hardly adapt to high-
speed networks. Pareto-based traffic models are suitable for high-speed data transmission networks because
of long-term correlation (Adas 1997). In internet traffic, the arrival of requests from users to internet servers
can be modeled by Poisson process, and the service process by exponential process (Alakiri et al. 2014;
Olaniran and Abdullah 2020; Fras et al. 2013). Characterizing internet traffic by Poisson process has
advantages: a)Well-suited for high-speed event analysis (Sapegin et al. 2015), and b) Common in traffic
applications composed of a large number of independent flows due to Palm’s Theorem (Chandrasekaran
2009).

Next, we turn to the current research on the CR allocation problem. DCAF proposed by Alibaba (Jiang
et al. 2020), concentrates on a singular phase of CR allocation and was the pioneering approach to frame
computation allocation problems as a multiple-choice knapsack problem (MCKP) (Kellerer et al. 2004).
However, they merely considered RT as an evaluation metric for model correction. It was not until 2022 that
Alibaba first raised the issue of RT control, which considers the regulation of RT at different stages, adopting
a method based on manual feedback to adjust the RT of each stage. They latterly combined response time
into the CRAS allocation model (Yang et al. 2021), as shown in (1), but merged the decision-making across
the entire chain with the overall response time constraints. This model sets the objective as maximizing
revenue and subjects to the computation capacity C and time limit RT . Subsequent studies, such as those
on cascade RS in multi-phase settings like RL-MPCA (Zhou et al. 2023) and Greenflow (Lu et al. 2023),
continue to operate within the DCAF framework, employing similar resolution methods and assumptions.
Although Greenflow is the most advanced method to build CRA strategies, it does not consider the system
uncertainty factor.
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While proposing optimization models, the industry has also explored the essence and various aspects
of computational capability in traffic control. For example, it has been proposed that the essence of
computational capability is the product of physical computing resources and time that CPU and QPS(Queries
per second) have a proportional relationship. The Denghuo team analyzed and found a positive correlation
between RT and queue length.

In summary, the current literature predominantly focuses on constructing revenue models from the
perspective of advertising mechanisms rather than from the standpoint of system traffic control. They
typically handle RT by setting RT thresholds based on regulatory experience and then treating it as a
resource constraint or by directly using the timeout rate as an evaluation metric for direct system regulation.
These methods of considering RT are often too rigid and lack a deep consideration of the impact of
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response time on revenue. Inspired by multi-objective joint optimization problems in cloud computing
that attempt to control both system resource utilization and RT minimization, a more nuanced approach
to RT minimization in recommendation systems needs to be better considered. Additionally, in resource
allocation problems, current literature mostly focuses on maximizing resource utilization rates without
considering the value of the utilization rate itself, i.e., the size of the system load and its chain reactions on
other aspects. Particularly in the recommendation systems domain, excessive system load can lead to other
issues, ultimately affecting platform revenue. Therefore, in offline resource allocation tasks, there is a need
for a capacity planning and allocation model that considers the overall resources, allocation strategies, and
the RT to the final revenue, providing comprehensive control over system load, reliability, utilization, and
traffic computation capability budget allocation decisions.

3 PROBLEM STATEMENT AND MODELING OF REVENUE

This research approaches computational systems in recommendation system engineering and operational
platforms by simulating and modeling their profitability and planning for capacity and computational
allocation. Initially, for CP, considering the CR in RS is comprised of CPUs, we need to pre-order the
number of CPU cores, where each CPU’s computational capability is C. We pre-order s CPUs at a cost of
Copportunity per CPU, ultimately acquiring a total CR of C∗ s. Then, based on our pre-ordered total CR, we
address the computation allocation issue. Since the recommendation system processes numerous visitation
requests for advertisement recommendations daily, the computation system must allocate computation
budgets for recommending products or ads to users of varying value, assigning more CR to higher-
value users to enhance revenue. We assume there are multiple advertisement scenes k, with Mk requests
i = 1, ...,Mk requesting in scene k within a time frame. For each request, N actions j = 1, ...,N can be
taken, and xk

i j represents whether action j is chosen by request i in scene k, where actions correspond to
the input set of candidate ads for the advertising model or the queue length of recommended products.
Under conventional estimation algorithms, when computational resources are ample, a longer queue implies
greater computational consumption and higher revenue. We define Rk

i j and ck
i j as the gain for request i

assigned to action j in scene k and the cost of the request, respectively. It’s important to highlight that
here, the gain is inferred through an external recommendation algorithm module and does not consider real
revenue after accounting for system engineering factors, thus introducing a deviation in estimation.

Our model’s objective function aims to maximize the actual revenue of the advertising platform, where
the actual revenue is the difference between revenue and opportunity costs. Actual revenue is considered
to be a discounted portion of the predicted revenue, and this discount is attributable to factors related to
the advertisement exposure mechanism of the recommendation system. Advertisement exposure refers to a
mechanism where only the ads that are displayed to users can generate final revenue, which is a stochastic
element influenced by both system factors, such as network speed and system load, and user factors, like a
user’s willingness to view an ad, which is difficult to predict. Consequently, our focus is on the quantifiable
aspects from the platform’s perspective, namely, the system factors. The determination of whether an ad is
exposed thus becomes a binomially distributed random variable influenced by response time, system load,
and our resource allocation scheme. Therefore, in this paper, we primarily analyze the decisions and the
system data metrics influenced by these decisions. Below, we first analyze and model the relationships
within the chain based on industrial data, and then we present the revenue chain from decisions to final
revenue.

3.1 The Relationship Among Actions, Computational Resource Consumption and System Load

One of the most crucial elements in computational resource allocation is cost, which is the resource
consumed after a request is decided upon an action. In the current system, this element is represented
by the number of floating-point operations. By estimating the connection between computational resource
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consumption and the actions, we can predict the future computational resource consumption for selecting
a certain action for a request, thus allowing for better allocation.

We grouped all request data according to different queue lengths and calculated the average computational
resource consumption for each scene. The relationship graph, as shown in Figure 1, indicates that the
average value of computational resource consumption is directly proportional to queue length for different
media scenes.

After that, we will discuss the system load. We consider our CPU as a single-core CPU, where CPU
utilization is viewed as the percentage of the current CR used out of the total CR available to that single-core
CPU. Correspondingly, the overall computation consumption divided by the computational capability of a
single-core CPU, multiplied by the number of cores, will give us the average CPU utilization.

Figure 1: Relationship between queue length and average number of floating-point operations across media
scenes.

3.2 The Relationship Between System Load and RT Ratio

Arrival of requests in a recommendation system occurs at rate λ according to a Poisson process, and service
times have an exponential distribution with parameter µ . From arrival to receiving recommendations, with
m service station, our problem can be abstracted into an M/M/m queueing model (Kendall 1953).

• λ Arrival rate, the average number of requests arriving per unit time.
• µ The average number of requests that can be processed by the CPU per unit time.
• 1

µ
The average processing time per request by the CPU, depends on our decisions.

• m The number of service stations, which corresponds to the number of CPU cores here.
• ρ = λ

mµ
Service intensity, the proportion of time a single core spends processing requests, is

equivalent to CPU utilization.
Based on our modeling using queue theory, the relationship between R (Response Time) and service

intensity, or system load, which we simplify as follows:

R =
1
µ

(
1+

c(m,ρ)

m(1−ρ)

)
≈ 1

µ

1
1−ρm (2)

It can be observed that if we have both µ (the service rate) and ρ (the utilization rate), we can determine
R (the response time). For ease of statistical analysis, we substitute R with the RT ratio for the calculation
to standardize the unit which also represents the multiplier that RT increased. Here, we introduce the
concept of the RT ratio, which refers to the ratio of the RT (Response Time) required by the current system
to process all requests under different CPU utilization levels to the RT consumed under an adequate or
baseline CPU utilization level. For example, if the adequate level is at a 30% CPU utilization rate, and
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Table 1: Parameters of the fitted exposure rate functions.

L k x0 R2

Scene 957 0.618 1.058 31.015 0.9964

Scene 237 0.602 1.224 36.117 0.9987

the RT ratio reaches 1.2 when the CPU utilization is at 50%, this means that the RT required to process
requests at a 50% utilization level is 1.2 times the RT required at the 30% level.

According to experience and system stress tests, in different system loads, the total RT in the system
generally increases proportionally when fixing the current scene to change the decisions for other scenes.
Considering factors such as the system’s multi-modular nature, RT volatility, and non-immediate feedback,
a more robust modeling approach is required. At this point, we can extend a theoretically complete
parameter-free exponential function to a more general exponential relationship. We integrated the system
load sensitivity for different scenes into the exponential function relationship based on the sensitivity
threshold, which is the ρthreshold , shown in equation (3). The specific parameters within the formula can
be obtained from short-term stress test data of requests within the system during official online decisions.

RT ratio =
1

1− (ρ −ρthreshold)
m (3)

3.3 The Relationship Between RT and Exposure Rate

The relationship between RT and exposure rate builds solely on business and data. We found that the
response time of requests in different scenes follows a Gaussian distribution, and the trend in exposure rate
along with RT can be closely approximated using an S-shaped function (4) parameterized by L,k,xo and
through experiments, we fit the data with two real ad scenes and find that the fit was very good, as shown
in Table 1. The fit parameter R2 is very close to 1, indicating an excellent fit.

Exposure rate =
L

1+ e(k·(x−x0))
(4)

3.4 Overall Modeling of Chain from Allocation Decision to Revenue

Following the introduction of the relationships mentioned above, we summarize the chain from allocation
decision to revenue. The comprehensive decision-making process of our system is depicted in the ensuing
flowchart Figure 2, which elucidates how our decisions affect the ultimate expected revenue.

1. We initiate with CP to derive a capacity value, denoted as s, then compute the total computational
capability available under this capacity to make decisions on CRA, obtaining xk

i j. xk
i j = 1 represents

the CR to be consumed.
2. Subsequently, using the CR to be consumed, we calculate the system load. Here, we assume

synchronous CPU usage, where CPUs with different cores operate in sync. At this juncture,
it’s essential to evaluate whether the consumed computational capability exceeds its upper limit,
obtaining a judgment value represented by z; if exceeded, z = 1, otherwise, z = 0. If exceeded, we
need to adjust the system load to a modified value ρad justed to facilitate subsequent calculations of
the response time increase ratio.

3. Next, the factor by which the current overall response time rk is increased is measured, compared
to the baseline response time rtk

baseline when computational resources were plentiful, indicating the
degree of slowdown due to the present CPU utilization rate.
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Figure 2: Flowchart of decision-making process.

4. By applying this multiplier rk to the baseline response time rtk
baseline, we can compute the anticipated

response time rtk
j for each ad slot under the current decision.

5. The relationship between this response time rtk
j and the exposure rate expk allows us to understand

the exposure situation under the current decision.
6. Because exposure occurs randomly, we can calculate the expected revenue E

[
R
(

xk
i j

)]
for each ad

slot, thereby obtaining a final revenue figure.

Through this logic, we can establish a two-stage joint optimization model for CP and CRA considering
exposure rate.

4 FORMULATION

Explanations for all notations in the model are listed in Table 2.

Table 2: Notations.

Set
K Set of all scenes, k ∈ K , k = 1,2...,K.
I ∥ Set of all requests on scene k i ∈ I ∥, k ∈ K , i = 1,2, ...,Mk

A Set of all actions or type of queue length that a request can choose j ∈A , j = 1,2, ...,N

Parameters

Rk
i j The predicted revenue that can be obtained by choosing the j-th action for the i-th

request in the k-th scene.
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ck
i j The predicted cost that can be obtained by choosing the j-th action for the i-th request

in the k-th scene, measured by the number of floating-point operations in computer
calculations.

C The total computing capability that a single-core CPU can support, measured by the
number of floating-point operations in computer calculations.

αk The response time per unit action in the k-th scene.
β k The parameter used to describe the relationship between different response time ratios

and CPU utilization rates in the k-th scene.
γk The parameter used to describe the relationship between exposure rates and response

time in the k-th scene in the denominator.
ηk The parameter used to describe the relationship between exposure rates and response

time in the k-th scene in the numerator.
rtk

threshold The parameter used to describe the threshold of response time threshold in the k-th
scene.

Copportunity The opportunity cost of using a single-core CPU.
S The threshold of total available CPU.
ε An infinitesimally small positive number.
M Big-M.

ρad justed The adjusted CPU utilization when the total computation cost of the selected action
set exceeds the current predetermined computing resource capacity.

Objective
π The total revenue after allocating different resources to requests in various scenes.

Variables

expk The exposure rate in the k-th scene
rtk

j,baseline The baseline response time choosing the j-th action in the k-th scene with abundant
computing resources.

rk The proportion by which response time is extended in the k-th scene, under conditions
of limited computational system resource and varying loads.

rtk
j The response time choosing the j-th action in the k-th scene.

ρ The CPU utilization rate with the chosen action set.
z An auxiliary variable used for selecting different logical branches based on whether

the total computation cost of the selected action set exceeds the current predetermined
computing resource capacity.

vk Auxiliary variable for the k-th scene used for the linearization of the original constraint.

Decision Variables

xk
i j Whether the action j is chosen by request i in the scene k. If xk

i j = 1, then the action
j is chosen by request i in the scene k. xk

i j is binary variable.
yk

j Whether the action j is chosen by all requests in the scene k. If yk
j = 1, then the action

j is chosen by all requests in the scene k. yk
j is binary variable.

s The number of ordered CPU cores. s is a nonnegative integer variable

Based on the previous analysis, we construct the chain from Decision to Revenue into a two-stage CP
and CRA joint optimization model named TS-CPRA.

Stage 1: π = maxE
[
R
(

xk
i j

)]
−Copportunity · s (5)

s.t. s ≤ S (6)
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s ∈ Z+ (7)

Stage 2: E
[
R
(

xk
i j

)]
= ∑

i jk
E
[
Z̃k

i j

]
·Rk

i j · xk
i j (8)

s.t. ∑
j

yk
j = 1 ∀k ∈ K (9)

xk
i j = yk

j ∀i ∈ I ∥,k ∈ K (10)

pk = 1− expk ∀k ∈ K (11)

ρ =
∑i jk ck

i j · xk
i j

C · s
(12)

ρ − (1+ ε)≤ M1 · z (13)

ρ − (1− ε)≥−M1 · (1− z) (14)

rk − 1
1−

(
ρad justed −β k

)s ≤ M2 · (1− z) ∀k ∈ K (15)

rk − 1
1−

(
ρad justed −β k

)s ≥−M2 · (1− z) ∀k ∈ K (16)

rk − 1
1− (ρ −β k)

s ≤ M3 · z ∀k ∈ K (17)

rk − 1
1− (ρ −β k)

s ≥−M3 · z ∀k ∈ K (18)

rtk
j,baseline = α

k · j ∀ j ∈ A ,k ∈ K (19)

rtk
j = rtk

j,baseline · rk ∀ j ∈ A ,k ∈ K (20)

expk =
ηk

1+ eγk(∑i j rtk
j xk

i j−rtk
threshold)

∀k ∈ K (21)

xk
i j ∈ {0,1},yk

j ∈ {0,1} ∀i ∈ I ∥, j ∈ A ,k ∈ K (22)

In stage 1, the objective function (5), aims at maximizing the total advertisement revenue, incorporating
the expected value calculation, which can be expressed as follows:

π = max∑
i jk

(
1− pk

)
·Rk

i j · xk
i j −Copportunity · s (23)

The term Z̃k
i j represents a binomially distributed random variable that takes the value 0 with probability

pk, used to determine whether a request is exposed. If the request is not exposed, then Z̃k
i j = 0; if it is

exposed, then Z̃k
i j = 1.

Constraints (9), (10) indicate that every request occurring in a scene must select the same action, a
requirement determined by the restrictions of the business system. Constraint (11) states that the probability
pk of a single request’s revenue dropping to zero equals one minus the exposure rate. Constraint (12)
calculates the CPU utilization rate, which equals the computational capability required by the given decision
divided by the total pre-allocated computational capability. Constraints (13), (14) assess whether the CPU
utilization rate exceeds one. If it does, the computational capability required by the decision exceeds the
pre-allocated total, indicating system overload. Due to the function’s relationship, when ρ exceeds one,
the ratio of response time growth becomes negative, affecting calculations. Therefore, it is necessary to
adjust the value of ρ to approach 1 infinitely. If ρ ≥ 1, then z = 1; otherwise, z = 0. Constraints (15),
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(16) adjust the value of ρ to ρad justed when ρ ≥ 1, establishing a specific functional relationship between
ρad justed and the proportion by which response time is extended in the k-th scene. Constraints (17), (18)
directly constrain the CPU utilization rate ρ and the direct functional relationship with the proportion by
which response time is extended in the k-th scene when ρ ≤ 1. Constraint (19) calculates the baseline
response time for choosing the j-th action in the k-th scene with abundant computing resources, proportional
to j but varying across different scenes. That is, the response time for the same action under abundant
computing resources differs across scenes. Constraint (20) calculates the actual response time based on the
current system load, the proportion by which response time is extended in the k-th scene rk, and rtk

baseline.
Constraint (21) specifies the exposure rate for scene k based on the response time corresponding to the
selected decision. Constraint (6) imposes an upper limit on the capacity that can be reserved, ensuring that
it cannot be indefinitely allocated. Constraint (22) enforces integer constraints on the decision variable s
and binary constraints on xk

i j and yk
j.

5 NUMERICAL EXPERIMENTS

This section presents a recommendation system CRA example from Alipay. Given that real data cannot
be disclosed, the parameters and examples within the model are adapted based on actual data. The results
are obtained by the commercial solver SCIP with Pyomo.

5.1 Results of Capacity Planning and Computation Resource Allocation Task

In this section, we present a specific example and analysis of the results. The case study we employ consists
of four scenes, each containing four requests. For each request, we discretize the queue length into an
action decision variable where four actions are available for selection.

5.1.1 Optimal Solution Illustration and Sensitivity Analysis of Oppotunity Cost

Upon solving the model using the current parameters, and ensuring that requests in the same scene adhere to
the same actions as described in equations (3) and (4), we derive the optimal specific decisions. We assume
that the larger the number corresponding to the action j, the higher the benefit for the corresponding scene.
There are 4 choices for j, ranging from 0 to 3. The optimal objective function value for j is (3,2,2,3)
instead of the highest choices (3,3,3,3). This indicates that increased consumption affects system load,
which in turn impacts total revenue. Furthermore, it is observed that the best s equals 7 which does not
reach its maximum limit S, proving that more machines do not necessarily equate to better outcomes. This
highlights the importance of considering opportunity cost. Under these decisions, the exposure rates for
each scene are 43.79%, 48.81%, 37.36%, and 37.02% respectively, with a system load of 60%. This shows
that the best strategy is not to use all the machines as much as possible, but to allocate while keeping a
certain amount of idle computing power. The revenue at this setting is 8636.

We conduct a sensitivity analysis on two important parameters within the model. Table 3 shows that
with the increase in the opportunity cost of machines, the number of CPUs used decreases. However,
due to the substantial increase in machine costs, the overall revenue still decreases. At the same time,
we uncovered an interesting finding: when computing power is relatively scarce, there is a tendency to
reduce the action to achieve a higher exposure rate, thus increasing expected revenue. The opportunity
cost changing from 50 to 200 results in a general increase in exposure rate across different scenes. This
demonstrates that our model, by fully modeling the factors affecting revenue across the entire chain, enables
the computing power allocation model to achieve adaptive regulation in order to reach higher revenue.
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Table 3: Optimal solution and corresponding value in model under different opportunity cost of CPU.

j expk (%) s ρ (%) π

Copp 50 100 200 50 100 200 50 100 200 50 100 200 50 100 200

Scene 1 3 3 2 49.2 49.22 56.21

7 6 5 63.55 60 69 8420 7600 6466
Scene 2 3 2 2 28.69 48.59 51.19
Scene 3 1 1 0 21.73 29.15 62.64
Scene 4 2 2 3 36.84 36.70 62.89

5.1.2 Model Considering Exposure versus Model with Threshold Constrained Directly on RT

In this section, we validate the effectiveness of our model by comparing it with industrial revenue simulation
and allocation model CRA-RT, which automatically interprets decisions to match corresponding scenes
with exposure rates, implicitly restricting response time and facilitating revenue calculation.

We divide the experiments into two groups based on the size of the decision space. One group represents
a small decision space, consisting of 4 scenes, each with different amounts of traffic and 3− 5 possible
decisions and 9−10 possible decisions respectively.

Firstly, for the experiment with 4 action spaces, we conduct multiple randomized experiments on
traffic to simulate the fluctuations of traffic over a month. We find that our TS-CPRA model outperforms
the model constrained by RT thresholds most of the time. The experimental results, as illustrated in
Figure 3, show the TS-CPRA model’s performance with a light sky blue line, while the salmon-colored
line represents the CRA-RT model. It’s evident that, in most cases, the decisions generated by our model
yield benefits surpassing the baseline, with an average revenue increase of 1.9%, and the number of days
that TS-CPRA model outperforms CRA-RT is 18 days. For experiments with a larger decision space, as
shown in Table 4, our method still outperforms the CRA-RT approach under the same conditions, with an
average improvement of 1.95%.

Figure 3: Revenue of requests with TS-CPRA and CRA-RT models in 30 days.

The analysis reveals that in CRA-RT model, the constraints are applied to individual slots, making a
static model that doesn’t adjust RT calculations based on overall decision-making suboptimal. However
TS-CPRA model attempts to constrain RT in decision-making, the variability of RT is not specific to
individual scenes but is influenced by all scenes simultaneously. This makes the allocation of computing
resources among all scenes more flexible, thereby achieving greater benefits in certain scenes, which in
turn increases the overall benefits. This further proves the correctness of our approach in revenue modeling,
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Table 4: Optimal solution comparison under different decision spaces of models.

Maximum revenue of group i Ave. opt. actual revenue π

K N Scene 1 Scene 2 Scene 3 Scene 4 TS-
CPRA

CRA-RT P.I.

4 10 4600 4900 2800 1200 5486 4830 11.9%
4 10 3600 1700 2500 4500 4369 4465 −2.2%
4 10 1800 3400 1800 2600 3763 3800 −0.9%
4 10 3600 4500 5000 4400 6335 6070 4.2%
4 10 4200 5500 2200 5300 6511 6275 3.6%
4 9 900 3400 3100 4300 4391 4450 −1.3%
4 9 3000 1000 3100 1700 2700 3110 −15.2%
4 9 4500 2000 4400 3200 5494 5135 6.5%
4 9 4100 4900 3700 3900 6805 6375 6.3%
4 9 2300 4400 2000 1800 4510 4210 6.6%

which considers the impact of all decisions on the system state. Additionally, directly constraining RT
overlooks the functional relationship between decisions and exposure, which is an incomplete approach.
In contrast, our model effectively quantifies the relationship between decisions and RT to exposure rate,
thereby offering more optimal decisions and higher revenue.

6 CONCLUSION

Based on real-world internet data, this paper tackles modeling and simulation challenges for computation
resource allocation in recommendation systems. We propose a simulation modeling approach that addresses
the relationship between resource allocation strategies and benefits, consequently building a two-stage joint
optimization model, which achieves a revenue increase of 1.9% compared with the current model of Alipay,
and represents flexible adaptation of response time and exposure rate, providing references for the simulation
of industrial recommendation computation systems. For future research, this work will be extended to online
computation allocation blocks. While our current model addresses offline allocation issues, online tasks
often rely on offline decisions and require more immediate allocation decisions to respond to fluctuations
in traffic and changes in user behavior. This will improve the overall recommendation system from a
more comprehensive and systematic perspective, significantly enhancing both user experience and platform
revenue.
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