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ABSTRACT

The proliferation of language models has marked a significant advancement in technology and industry
in recent years. The training of these models largely involves human feedback, a procedure that faces
challenges including intensive resource demands and subjective human preferences. In this work, we
incorporate feedback provided by artificial intelligence (AI) models instead of relying entirely on human
feedback. We propose a simulation optimization framework to train the language model. The objective
function for training is approximated using feedback from both human and AI models. We employ the
method of control variate to reduce the variance of the approximated objective function. Additionally, we
provide a procedure for deciding the sample size to acquire preferences from both human and AI models.
Numerical experiments demonstrate that our proposed procedure enhances the performance of the language
model.

1 INTRODUCTION

In recent years, language models, such as the GPT (Generative Pre-trained Transformer) series from OpenAI
(2023), have been widely used in a variety of applications, ranging from enhancing customer service through
chatbots to supporting complex decision-making processes in business and healthcare. A number of pre-
trained language models are open-source, and many businesses opt to enhance these pre-trained models
specifically for their own use, tailoring them to meet their unique operational needs and industry-specific
challenges (De Andrade and Tumelero 2022; Skiles, Millicent 2023). Regarding the enhancement of these
language models, human feedback is collected for the pre-trained models to learn and adapt. This strategy
enables the trained models to align with human values and preferences (Christiano et al. 2017). On the
other hand, although learning from human feedback has achieved success in practice, it also presents
challenges. First, instructing humans to provide feedback is time-consuming and resource-intensive, which
sometimes is not affordable for small businesses or non-profit organizations. Second, learning from human
feedback generally depends on a small pool of humans and their subjective preferences, raising concerns
about fairness and inclusiveness. Lastly, as the demand for language model services grows, the necessity
to rapidly train models for varied tasks becomes more pressing, while relying on human feedback can limit
the scalability and adaptability of training language models.

To address the challenges brought by learning from human feedback, a feasible framework is to learn
from artificial intelligence (AI) feedback (Bai et al. 2022). In this framework, the language model learns
from feedback generated by other AI models. These AI models, trained to imitate human evaluative patterns
and preferences, have proven to align with human values and preferences to a significant extent. This
AI-driven approach not only mitigates the cost and resource constraints associated with human feedback but
also offers a scalable and more objective method for improving language models. However, learning from
AI feedback is not without its own challenges. Firstly, AI feedback may lack the depth of empathy inherent
to human responses, potentially leading to models that are less nuanced in handling complex emotional
contexts. Also, the effectiveness of learning from AI feedback is largely constrained by the limitations of
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Figure 1: An illustration of the framework of enhancing a language model using both human and AI
preference data.

the AI models themselves. The limitations of relying solely on either human or AI feedback underscore
the importance of integrating both sources to optimally enhance language models.

1.1 Method and Results

In this work, we propose a simulation optimization framework to enhance language models with both
human and AI preference data. Specifically, the objective function is to maximize the mean likelihood
function of the language model generating outputs that align with human preferences. The decision variable
to optimize is the set of parameters in the language model. We regard acquiring preference data from
humans/AI as simulating a sample from a stochastic system. Moreover, we consider human preference
data as “high fidelity", whereas data collected from AI models is treated as “low fidelity". To approximate
the mean likelihood (our objective function), we benefit from variance reduction and employ the method of
control variate (Asmussen and Glynn 2007). Specifically, we use the human preference data to construct
the sample mean of the objective function. We then use the AI preference data to reduce the variance of
the sample mean. An illustration of our framework is summarized in Figure 1 In addition, we consider
multiple AI models in our work and sort them in descending order based on “fidelity”. We approximate
the objective function recursively, using lower-fidelity AI models to reduce the variance of higher-fidelity
AI models. Regarding the sample size of preference data we acquire from humans and each AI model,
we take the cost of acquiring data into consideration. Given a total budget, we facilitate the selection of
sample sizes by solving a nonlinear integer programming problem, aiming to minimize the variance of the
constructed objective function.

Our contribution is summarized as follows:
1. We propose a framework to enhance language models using both human and AI preference data.

This framework employs the method of control variate and constructs an objective function that
is unbiased and has a lower variance. We also prove the consistency of the learning procedure
associated with our proposed framework.
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2. We conduct numerical experiments to demonstrate the efficacy of our proposed framework. Specif-
ically, we show through experiments that our framework outperforms methods relying solely on
either human or AI feedback. Furthermore, the experimental results suggest that involving more
AI models to provide feedback also enhances the performance of language models.

3. Although our focus in this work is on enhancing language models, our proposed framework is
applicable to other simulation optimization problems where samples of different fidelities can be
acquired. For example, in applications of queuing systems and financial systems, the objective
function may involve solutions of stochastic differential equations, where samples of different
fidelities can be constructed through time discretization at different resolutions (Xu et al. 2014; Xu
and Zheng 2023).

1.2 Literature Review

Training language models through learning from human feedback has become a widely adopted methodology.
This approach ensures that the models are better aligned with human preferences and can generate responses
that are more contextually relevant to users’ requirements. For example, Christiano et al. (2017) introduce
a framework for training language models, named reinforcement learning from human feedback (RLHF).
In this framework, a reward model is first learned using human feedback, and then the language model is
trained with this learned reward model. Rafailov et al. (2024) simplify the RLHF framework and propose
learning the language model directly through the provided human preference data. On the other hand,
learning from human feedback requires extensive time and resources, and has the risk of exposing humans
to harmful content. To overcome these shortcomings, Bai et al. (2022) propose utilizing feedback data from
AI models. Specifically, selected AI models are employed to substitute humans in providing preferences
between contents.

Our proposed learning framework is connected to variance reduction methods in simulation. Variance
reduction, aimed at decreasing the variability of estimators constructed by simulated samples, enhances
the efficiency of approximation for unknown quantities. In the context of variance reduction, prominent
methods include but are not limited to importance sampling (Liu 2015; Tong and Liu 2016; Feng and Song
2019; He et al. 2023; Bai et al. 2023; Deo and Murthy 2023), control variate (Kim and Henderson 2007;
Peherstorfer et al. 2016), and stratification (Rhee and Glynn 2015; Vihola 2018).

Our work also benefits from simulation optimization. The strategies for solving the simulation optimiza-
tion problems depend largely on the features of the objective function and the feasible set. If the feasible
set is discrete, the methodologies utilized can be found in the broad literature of discrete optimization
via simulation; see Luo et al. (2015), Fan et al. (2020), Hong et al. (2022) among others. When the
feasible set is continuous, under different circumstances, various methods are developed, including but are
not limited to gradient-based methodologies (Ahamed et al. 2006; Zhu and Dong 2021; Peng et al. 2022)
and meta-model based methods (Dong et al. 2018; L. Salemi et al. 2019; Xie et al. 2020; Semelhago et al.
2021; Hong and Zhang 2021; Wang et al. 2023).

2 PROBLEM STATEMENT

In this section, we formalize the problem of enhancing a language model using both human and artificial
intelligence (AI) feedback. We also provide the preliminaries of our method and set up the notation. We
aim to enhance the performance of a pre-trained language model using the preference data. The data are
collected from both humans and other AI models. The language model is represented by a policy πθ (y | x).
Here x denotes the user input to the language model (also known as the prompt), y is the output generated
by the language model, and θ ∈ Θ is the parameters of the pre-trained language model. The policy πθ (y | x)
defines a probability of generating the output y conditional on the input x, with a fixed value of parameters
θ . In this work, our goal is not to train a language model from scratch. Instead, we focus on enhancing
(also known as fine-tuning) a pre-trained language model using preference data. This means that we will
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not alter the model’s structure (e.g., the fixed structure of neural networks) that represents πθ (y | x), but
will instead adjust its parameters θ ∈ Θ. We denote the current parameter of the pre-trained language
model as θ (0). Utilizing the feedback data, we then further optimize the parameters θ to better align the
language model with human preferences.

2.1 Data Set Generation

We consider the scenario when the data set of contexts for comparison is generated by a language model.
The language model for data generation can be either 1) the pre-trained language model we would like to
enhance or 2) another different language model. Specifically, we denote

zzz(i) .
=
(

x(i),y(i)1 ,y(i)2

)
i.i.d.∼ D . (1)

Here zzz(i) represents a data point generated by the language model and is independent and identically
distributed (i.i.d.) from the generation distribution D . Furthermore, in each data point, x(i) denotes the
“prompt” that instructs the language model to generate outputs. Also, y(i)1 and y(i)2 represent two generated
contexts under the instruction of x(i). For example, provided a question (x(i)), there are two different answers
(y(i)1 and y(i)2 ) generated by the language model. These two generated contexts are further compared by
human and/or AI models. We let Ω denote the support of the distribution D . We also note that the number
of contexts for comparison is not restricted to two (Rafailov et al. 2024), although we focus on comparing
two contexts in this work.

2.2 Objective

We here describe the training objective of language models using the data collected as (1). Specifically,
the language model is trained to align with human preference. Thus, for each zzz(i), human is involved to
provide the preference between y(i)1 and y(i)2 . Then, the parameter θ is optimized so that the language model
πθ (y | x) generates contexts that are more preferred by humans. Without loss of generality, we assume y(1)1

is always preferred to y(1)2 for humans. That is, y(i)1 ≻ y(i)2 ∀i.

With the human preference data D0 =
{(

x(1),y(1)1 ,y(1)2

)
,
(

x(2),y(2)1 ,y(2)2

)
, . . . ,

(
x(N0),y(N0)

1 ,y(N0)
2

)}
, the

language model is further trained by

θ
∗ = argmin

θ∈Θ

{
L(θ) .

= ED

[
f
(

zzz(i),θ
)]}

. (2)

Here θ ∈ Θ represents the parameters in the language model to be optimized, f
(
zzz(i),θ

)
represents the loss

function of each data point zzz(i) with explicit preference, and the distribution D is approximated by the data
set D0. In this work, we specifically select the loss function

f
(

zzz(i),θ
)
=− logσ

β log
πθ

(
y(i)1 | x

)
π

θ (0)

(
y(i)1 | x

) −β log
πθ

(
y(i)2 | x

)
π

θ (0)

(
y(i)2 | x

)
 . (3)

Here σ (r) = 1
1+e−r is the sigmoid function; β is a pre-selected hyperparameter and is set 0.1; and πθ (y | x)

denotes the language model we aim to enhance. Also, π
θ (0) (y | x) is the pre-trained language model, serving

as the baseline for enhancing the language model. This loss function indicates the negative likelihood
function associated with the Bradley-Terry model (Hunter 2004). This model captures the human preferences
as

P∗
(

y(i)1 ≻ y(i)2 | x
)
=

1+ exp

β log
π∗
(

y(i)2 | x
)

π
θ (0)

(
y(i)2 | x

) −β log
π∗
(

y(i)1 | x
)

π
θ (0)

(
y(i)1 | x

)
−1

.
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Here P∗
(

y(i)1 ≻ y(i)2 | x
)

is the ground-truth probability that humans prefer y(i)1 over y(i)2 , and π∗ (y | x) denotes
the language model that exactly aligns with human preferences. For more details on this loss function and
other loss functions used to enhance a language model, please refer to Rafailov et al. (2024).

Besides the human preference data, our work also considers preference data provided by AI models.
Specifically, instead of focusing on a single AI model, we consider a series of K AI models, denoted
by GGG1,GGG2, . . . ,GGGK . Furthermore, we assume these AI models are sorted in descending order based on
‘fidelity’. That is, GGGk exhibits more similarity with human preferences than GGGk′ when k < k′. We note
that quantifying the similarity between an AI model GGGk and human preferences is generally challenging.
However, there are some ranking lists of different AI models that we can refer to. Additionally, the cost
of applying AI models with higher fidelity is generally higher than those with lower fidelity. Given zzz(i) as
in (1), the AI model GGGk provides the preference y(i)(k);1 ≻ y(i)(k);2, where y(i)(k);1 and y(i)(k);2 denote the outputs of

the model GGGk for the i-th data, with y(i)(k);1 being preferred over y(i)(k);2.
To indicate the difference in preferences between an AI model GGGk and humans, we denote a set

Sk =
{

zzz(i) ∈ Ω | y(i)(k);1 = y(i)2 ,y(i)(k);2 = y(i)1

}
. That is, Sk includes the data points for which the AI model and

humans have opposite preferences. The loss function based on the AI’s preference is then formulated by

f̃k

(
zzz(i) =

(
x(i),y(i)1 ,y(i)2

)
,θ
)

.
= f
((

x(i),y(i)(k);1,y
(i)
(k);2

)
,θ
)

=I
{

zzz(i) ∈ Sk

}
f
((

x(i),y(i)2 ,y(i)1

)
,θ
)
+
(

1− I
{

zzz(i) ∈ Sk

})
f
(

zzz(i),θ
)
.

(4)

Here f
((

x(i),y(i)(k);1,y
(i)
(k);2

)
,θ
)

represents how the AI feedback data is input to the loss function for the

language model training in practice. When AI has the same preference with humans (i.e., zzz(i) /∈ Sk), the
loss function (4) remains the same as the loss function (3). When AI has preferences opposite to those
of humans (i.e., zzz(i) ∈ Sk), the loss function (4) is equivalent to the loss function (3), except that y(i)1 and
y(i)2 swap positions. In this manner, if the AI model aligns with human preferences in most scenarios, the
objective function associated with AI preference, f̃k, then serves as an approximation for that of humans,
f . In this work, we assume that

Cov
[

f
(

zzz(i),θ
)
, f̃k

(
zzz(i),θ

)]
> 0 ∀θ ∈ Θ,∀k ∈ {1,2, . . . ,K} .

Also, although the set Sk is generally intractable and unknown, the loss function associated with an AI
model can still be constructed based on the AI’s preference as in (4).

3 METHODOLOGY

In this section, we provide the procedure for enhancing a language model using the preference data from
both human and artificial intelligence (AI) models. Specifically, we construct a sequence of sets

D0 ⊆ D1 ⊆ D2 ⊆ . . .⊆ DK ,

where each Dk contains zzz(i)’s drawn from the distribution D , and we denote by Nk
.
= |Dk| the number of

data points in each set. Moreover, D0 is for humans to provide preferences, and Dk is for the AI model
GGGk with k ∈ {1,2, . . . ,K}. In Section 3.1, we construct the objective function, incorporating the preference
data in hand, to enhance the language model and provide the procedure for optimizing it. In Section 3.2,
we describe the experimental design, which includes deciding 1) the sample size for each Dk and 2) the
hyperparameters in the constructed objective function.
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3.1 Objective Function & Optimization

In this section, we describe the procedure of enhancing the language model with the preference data in
hand. We postpone the acquisition of preference data in Section 3.2. By integrating feedback from both
human and AI models, we construct the objective function to minimize as

L̃(θ) =
1

N0
∑

zzz(i)∈D0

f
(

zzz(i),θ
)
+

K

∑
k=1

αk

 1
Nk

∑
zzz(i)∈Dk

f̃k

(
zzz(i),θ

)
− 1

Nk−1
∑

zzz(i)∈Dk−1

f̃k

(
zzz(i),θ

) , (5)

where f
(
zzz(i),θ

)
is the loss function associated with human preference and f̃k

(
zzz(i),θ

)
is the loss function

for the AI model GGGk’s preference. Furthermore, αk > 0’s are hyperparameters that are pre-selected, and
we postpone the discussion to Section 3.2.

The objective function (5) takes advantage of control variate, which is a technology for variance
reduction using simulated samples to approximate an expectation; see Asmussen and Glynn (2007) and
Peherstorfer et al. (2016). That is, we employ the correlated samples f̃1

(
zzz(i),θ

)
of the variance of the

empirical loss 1
N0

∑zzz(i)∈D0
f
(
zzz(i),θ

)
when approximating E

zzz(i)∼D

[
f
(
zzz(i),θ

)]
. Furthermore, since the mean

value E
zzz(i)∼D

[
f̃k
(
zzz(i),θ

)]
is unknown and requires approximation by 1

Nk
∑zzz(i)∈Dk

f̃k
(
zzz(i),θ

)
, we then use

f̃k+1
(
zzz(i),θ

)
to reduce the associated variance recursively.

Proposition 1 Regarding the objective function (5), we have

E
[
L̃(θ)

]
= E

zzz(i)∼D

[
f
(

zzz(i),θ
)]

∀θ ∈ Θ

and

Var
[
L̃(θ)

]
< Var

[
1

N0
∑

zzz(i)∈D0

f
(

zzz(i),θ
)]

∀θ ∈ Θ.

That is, the objective function (5) is an unbiased estimator of the mean loss function, and reduces the
variance of the empirical loss associated with the human preference data; see also Asmussen and Glynn
(2007) for detailed discussions.

As documented by existing literature, reducing variance during the learning process of machine learning
models offers advantages. Specifically, Johnson and Zhang (2013) propose the algorithm stochastic variance
reduced gradient to accelerate the convergence rate of the learned model. Also, a trend of research focuses
on regularization technologies to address the bias-variance trade-off of the learned model (Hastie et al.
2009). This trade-off reduces the risk of overfitting, ensuring better generalization to unseen data. In
this work, we treat AI preferences as correlated samples of human preferences. To this end, we employ
the control variate method to reduce the variance of the empirical loss function—our objective function
for training the language model. We construct this objective function to minimize variance. The detailed
procedure is postponed to Section 3.2.

The objective function (5) involves the language model πθ (y | x), which is represented by neural
networks with complex structures. Thus, minimizing such an objective function is generally challenging
and does not yield an explicit solution. In our work, we specifically choose the stochastic gradient descent
method to facilitate the optimization process. In terms of approximating the gradient of the objective
function, we utilize the backpropagation algorithm; see Goodfellow et al. (2016) for a detailed overview.

We establish the consistency of our learning procedure. For ease of notation, we consider the scenario
where K = 1, meaning there is one AI model used to provide preference data. Our theoretical results can
be generalized to multiple AI models without essential difficulty. We assume the following conditions:
Assumption 1

1. The feasibility set Θ is compact.
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2. There exist function L : Ω 7→ R+ such that for almost every zzz(i) and all θ1,θ2 ∈ Θ,∣∣∣ f (zzz(i),θ1)− f (zzz(i),θ2)
∣∣∣⩽ L (zzz(i))∥θ1 −θ2∥

and ∣∣∣ f̃1(zzz(i),θ1)− f̃1(zzz(i),θ2)
∣∣∣⩽ L (zzz(i))∥θ1 −θ2∥ .

The function L satisfies E
zzz(i)∼D

[
L
(
zzz(i)
)]

< ∞.

Theorem 1 (consistency) Denote L̃∗
N0,N1

= minθ∈Θ L̃(θ), and L∗ = minθ∈ΘED

[
f
(
zzz(i),θ

)]
. θ̂N0,N1 =

argminθ∈Θ L̃(θ) represents the point at which L̃(θ) is minimized. Under Assumption 1, we have

lim
N0→+∞

L̃∗
N0,N1

= L∗ and lim
N0→+∞

θ̂N0,N1 = θ
∗ w.p.1.,

where “w.p.1.” stands for “with probability one”.

Proof. Denote B(θ ,δ ) as the open ball with center θ and radius δ . Given any ε > 0, since Θ is compact,

we can choose a finite collection of points {θ1,θ2, . . . ,θr} such that Θ ⊂ ∪r
j=1B

(
θ j,

ε

2(1+2α1)E[L (zzz(i))]

)
.

For convenience denote B j = B
(

θ j,
ε

2(1+2α1)E[L (zzz(i))]

)
. By Lipschitz continuity assumption, for every

j = 1,2, . . . ,r,

sup
θ∈Θ∩B j

∣∣L̃(θ)− L̃(θ j)
∣∣⩽(1+α1

N0
∑

zzz(i)∈D0

L
(

zzz(i)
)
+

α1

N1
∑

zzz(i)∈D1

L
(

zzz(i)
))

ε

2(1+2α1)E
[
L
(
zzz(i)
)] .

By strong law of large numbers (SLLN), 1
N0

∑zzz(i)∈D0
L
(
zzz(i)
)

converges to E
[
L
(
zzz(i)
)]

a.s. as N0 →+∞.
Since N0 ⩽ N1, 1

N1
∑zzz(i)∈D1

L
(
zzz(i)
)

also converges to E
[
L
(
zzz(i)
)]

a.s. as N0 → +∞. Therefore, for
sufficiently large N0, we have

sup
θ∈Θ∩B j

∣∣L̃(θ)− L̃(θ j)
∣∣⩽(2(1+α1)E

[
L
(

zzz(i)
)]

+2α1E
[
L
(

zzz(i)
)])

ε

2(1+2α1)E
[
L
(
zzz(i)
)] = ε, j = 1,2, . . . ,r

w.p.1. According to strong law of large number, for every θ ∈ Θ,

lim
N0→+∞

L̃(θ) = E
[

f
(

zzz(i),θ
)]

+α1

(
E
[

f̃1

(
zzz(i),θ

)]
−E

[
f̃1

(
zzz(i),θ

)])
= E

[
f
(

zzz(i),θ
)]

,w.p.1.

Because r is finite, for given ε > 0, there exists sufficiently large N0 such that

sup
j=1,2,...,r

∣∣∣L̃(θ j)−E
[

f
(

zzz(i),θ j

)]∣∣∣⩽ ε,w.p.1.

Consider now an arbitrary point θ ∈ Θ. By the construction of B j, there exists some θ j ∈ Θ and is the
center of B j, such that θ ∈ B j. Therefore for sufficiently large N0 independent of θ , we have∣∣∣L̃(θ)−E

[
f
(

zzz(i),θ
)]∣∣∣⩽ ∣∣L̃(θ)− L̃(θ j)

∣∣+ ∣∣∣L̃(θ j)−E
[

f
(

zzz(i),θ j

)]∣∣∣+ ∣∣∣E[ f
(

zzz(i),θ
)]

−E
[

f
(

zzz(i),θ j

)]∣∣∣
⩽ ε + ε +E

[∣∣∣ f (zzz(i),θ)− f (zzz(i),θ j)
∣∣∣]⩽ 3ε.

So the uniform convergence is proved, i.e. supθ∈Θ

∣∣L̃(θ)−E
[

f
(
zzz(i),θ

)]∣∣→ 0 a.s. when N0 →+∞. The
consistency of L̃∗

N0,N1
and θ̂N0,N1 can be then proved based on Theorem 5.3 in Shapiro et al. (2021).
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3.2 Experimental Design

In this section, we describe the experimental design, including 1) deciding the sample size of each preference
dataset, {Nk}K

k=0 and selecting the hyperparameters in the objective function (5), ααα = (α1,α2, . . . ,αK). Here
we aim to minimize the mean squared error (MSE) of the loss function L̃(θ) at the optimal parameters θ ∗.
Since L̃(θ) is an unbiased estimation of L(θ), MSE is exactly the variance of L(θ). Specifically, we have

MSE
(
L̃(θ)

) .
= E

[
L̃(θ ∗)−L(θ ∗)

]2
=

σ2
0

N0
+

K

∑
k=1

(
1

Nk−1
− 1

Nk

)(
σ

2
k α

2
k −2Ckαk

)
, (6)

where σ2
0

.
= Var

[
f
(
zzz(i),θ ∗)] ,σ2

k
.
= Var

[
f̃k
(
zzz(i),θ ∗)] k ⩾ 1, and Ck

.
= Cov

[
f
(
zzz(i),θ ∗) , f̃k

(
zzz(i),θ ∗)]. In

practice, these statistical quantities are unknown and require to be estimated from the data. Therefore,
regarding the experimental design, we first conduct a warm-up procedure:

1. Randomly select D(0) .
=
{

zzz(1),zzz(2), . . . ,zzz(m0)
}

and acquire preference from human and each AI model
regarding ∀zzz(i) ∈ D(0), where m0 denotes the size of the dataset in the warm-up procedure;

2. Update the language model using the human preference data by θ (1) = argminθ∈Θ
1

m0
∑

m0
i=1 f

(
zzz(i),θ

)
;

3. Construct the loss functions
{

f
(
zzz(i),θ (1)

)
, f̃1
(
zzz(i),θ (1)

)
, . . . , f̃K

(
zzz(i),θ (1)

)}m0

i=1;

4. Estimate the quantities as σ̂2
0 = 1

m0−1 ∑
m0
i=1

(
f
(
zzz(i),θ (1)

)
− 1

m0
∑

m0
j=1 f

(
zzz( j),θ (1)

))2
,

σ̂2
k =

1
m0 −1

m0

∑
i=1

(
f̃k

(
zzz(i),θ (1)

)
− 1

m0

m0

∑
j=1

f̃k

(
zzz( j),θ (1)

))2

,

and

Ĉk =
∑

m0
i=1

((
f
(
zzz(i),θ (1)

)
− 1

m0
∑

m0
j=1 f

(
zzz( j),θ (1)

))(
f̃k
(
zzz(i),θ (1)

)
− 1

m0
∑

m0
j=1 f̃k

(
zzz( j),θ (1)

)))
(m0 −1)

for any k ∈ {1,2, . . . ,K}.

Furthermore, either instructing humans or invoking AI models to provide a preference brings cost.
We consider the cost when minimizing MSE

(
L̃(θ)

)
with a given budget of W . Regarding the acquisition

of a preference data point, we denote the cost associated with the AI model GGGk by wk and the cost
associated with humans by w0. To begin with, we first consider a scenario when some open-source AI
models can provide preference data without any cost. Specifically, we assume that GGGk f is such an AI
model with k f = min{k | wk = 0}. In this scenario, we let Nk f sufficiently large if the computational cost
is not a concern. We then have an accurate approximation for E

[
f̃k f

(
zzz(i)
)]

. Recall that, in the objective
function (5), the preference data from AI model GGGk f +1 are used to reduce the variance of the empirical

loss 1
Nk f

∑
Nk f
i=1 f̃k f

(
zzz(i)
)
. Since now the variance approaches 0, there is no need to acquire preference data

from GGGk f +1, as well as any other AI model GGGk′ with k′ > k f . Therefore, when deciding the sample sizes of
preference data,

{
N0,N1, . . . ,Nk f −1

}
are taken into consideration. Without loss of generality, we assume

that wk > 0 in the following discussion.
Given the cost of acquiring preference data from humans and each AI model {wk}K

k=0, as well as
the total budget W , the sample size {Nk}K

k=0 and the hyperparameters ααα are determined by solving the

following optimization problem. This problem incorporates the estimated quantities
{

σ̂2
k

}K

k=0
and

{
Ĉk

}K

k=1
,

306



Zhang, He, Xu, Wang, and Zheng

as substituted into (6):

minimize
ααα∈RK

+;N0,N1,...,NK∈N

σ̂2
0

N0
+

K

∑
k=1

(
1

Nk−1
− 1

Nk

)(
σ̂2

k α
2
k −2Ĉkαk

)
subject to Nk ⩾ m0, k = 0,1, . . . ,K,

Nk−1 ⩽ Nk, k = 1,2, . . . ,K,

K

∑
k=0

wkNk ⩽W.

(7)

The optimization problem (7) is a nonlinear mixed integer programming. In general, there are no closed-
form solutions. On the other hand, the optimal solution regarding ααα does not depend on the selection
of N0,N1, . . . ,NK . Thus, we first attain ααα∗ = (α∗

1 ,α
∗
2 , . . . ,α

∗
K) with α∗

k = Ĉk/σ̂2
k . We then plug ααα∗ in

the optimization problem (7) so that it reduces to a nonlinear integer programming. Nonlinear integer
programming problems can be generally solved by the branch and bound approach or heuristic methods
(e.g., simulated annealing). For detailed procedures of solving nonlinear integer programming problems,
we refer to Li and Sun (2006). With a slight abuse of notation, we denote the optimal solution of (7) by
{Nk}K

k=0 in the remainder of the text. After deciding {Nk}K
k=0, we acquire the preference data from humans

and GGGk’s, and then construct the objective function (5) with ααα∗ plug-in. After optimizing the objective
function (5) as in Section 3.1, we facilitate enhancing the language model using the preference data from
both humans and AI models.

4 EXPERIMENTS

In this section, we conduct numerical experiments to perform the proposed procedure for enhancing language
models. The experimental settings are summarized as follows:

1. Regarding the initial pre-trained language model, we select TinyLlama (Peiyuan Zhang and Guangtao
Zeng and Tianduo Wang and Wei Lu 2024). In terms of the artificial intelligence (AI) models, we
select ChatGPT 4, ChatGPT 3.5 Turbo (OpenAI 2023), and Llama2 (Touvron et al. 2023).

2. We utilize an open-source preference dataset for training the language model, where the preference
has been decided by humans (Bai et al. 2022). For AI preferences, we input the pair of contexts
to the AI models for comparison. The sample size for the human preference data D0 is fixed to be
1000. In addition, we have D1 = 1500,D2 = 2000,D3 = 2500. We admit that a larger dataset might
further enhance the performance of the language model, but the required computational resources
would be excessive.

3. The compared procedures of training language models include 1) our procedure with K = 1 AI model,
2) our procedure with K = 3 AI models, 3) the procedure that entirely relies on human preference
data, 4) the procedure that entirely relies on the preference data provided by the highest-fidelity AI
model, and 5) the procedure with the initial language model without further training.

4. To evaluate the performance of the language model, we consider a metric named discrete agreement
introduced in Nie et al. (2024), which is the accuracy of the language model’s judgment towards
the human-labeled dataset (Nie et al. 2024). Specifically, the dataset contains 80 pairs of questions
and answers, with each answer being either “yes” or “no”. Each question is input into the AI
model, which then answers “yes” or “no”. The value of discrete agreement is the ratio of answers
provided by the AI that are consistent with those in the dataset. A higher value of discrete agreement
indicates a better performance of the language model.

5. Our experiments were conducted with Pytorch and Python 3.8 on a computer equipped with two
AMD Ryzen Threadripper 3970X 32-Core Processors, 256 GB memory, and two Nvidia GeForce
RTX 3090 GPUs with 24GB of RAM each.
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Framework
Discrete Agreement

Mean Value
Discrete Agreement
Standard Deviation

Our Procedure
(K = 1)

30.72 2.39

Our Procedure
(K = 3)

31.94 2.87

Procedure with
Human Preference

29.36 2.57

Procedure with
AI Preference (Highest Fidelity)

27.91 1.98

Initial Language Model
without Further Training

27.15 1.32

Table 1: Experimental results of the language models’ performance with different training procedures.

The numerical results are contained in Table 1. The recorded mean values and standard deviation are
based on running the experiment 5 times. The experimental results provide the following insights: First,
compared to the initial language model without further training, incorporating preference data from either
humans or AI models enhances the performance of the language model. Second, incorporating both human
and AI feedback outperforms methods that rely entirely on feedback from either source alone. Especially,
utilizing AI feedback enhances the performance of the language model without the cost of collecting
additional human feedback data. Lastly, incorporating feedback from additional AI models also enhances
the performance of the language model.

5 CONCLUSION

In this work, we consider enhancing language models using both human and artificial intelligence (AI)
preference data. We propose a simulation optimization framework where samples (preference data) are
acquired with different fidelities to reduce the variance of the approximated objective function. We conclude
our work by outlining potential future work. First, our procedure determines the sample size for each
dataset by minimizing the variance of the objective function, a process that involves quantities requiring
approximation with samples acquired during the warm-up stage. It remains a question how to allocate the
total number of samples in the warm-up stage to accurately approximate these quantities while reserving a
sufficient budget for subsequent sample size allocation. Furthermore, our framework reduces the variance of
the objective function when incorporating AI preference data alongside human preference data. Alternative
methods for constructing objective functions to train language models might also prove effective.

Fine-tuning the language model with human feedback data requires extensive computational resources,
and incorporating AI feedback data will further increase the computational demand. Thus, more efficient
optimization procedures are required to train the language model. In addition, utilizing AI feedback might
bring safety issues, such as bias amplification and unintended harmful behavior (Bai et al. 2022). To address
the issue, future work might consider enhancing language models with both human and AI feedback data
within a set of ethical guidelines and principles.
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