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ABSTRACT

Finitely many simulatable designs are given and we aim to identify the safest one, i.e., that with the smallest
probability of catastrophic failure. We consider this problem in a ranking and selection or equivalently the
multi-armed-bandit best-arm-identification framework where we aim to identify with high probability the
safest design/arm with the lowest probability of failure. To illustrate the rarity structure crisply, we study
the problem in an asymptotic regime where the design failure probabilities shrink to zero at varying rates.
In this set-up, we consider the well known information theoretic lower bound on sample complexity, and
identify the simplifications that arise due to the rarity framework. A key insight is that sample complexity
is governed by the rarity of the second safest design. The proposed algorithm is guided by the lower bound,
it is intuitive and asymptotically matches the lower bound.

1 INTRODUCTION

Consider simulation models of complex systems where failure in each system is rare but its consequences
can be disastrous. For instance, models that capture a nuclear power plant, electrical grid for a region,
insurance company cash-flow model, and so on. Our objective may be to identify a system amongst
many with the smallest rare event probability at a minimum computation cost. We model this rare event
problem in a ranking and selection, or equivalently, a best-arm identification problem in a multi-armed
bandit learning setting. Specifically, we consider a fixed confidence, pure exploration best-arm-identification
setting. Simulation model of each system can generate i.i.d. samples with failure occurring with a tiny
system dependent probability. Our aim is to sequentially sample and identify the system with the lowest
failure probability with correct selection probabilistic guarantee of 1−δ , for a pre-decided δ > 0.

These problems of best arm identification with minimum sample complexity have been well studied in the
learning theory literature (see e.g., Garivier and Kaufmann (2016); Even-Dar et al. (2006); Kalyanakrishnan
et al. (2012)). Earlier, substantial literature existed in the simulation community, typically referred to as
ranking and selection problems (see, e.g., Chen et al. (2000); Glynn and Juneja (2004); Kim and Nelson
(2006)). Often in these works, the system samples are assumed to be from Gaussian distributions. See
Chernoff (1959); Paulson (1964) for early literature in statistics. Best arm problems related to rare events
were studied by Bekki et al. (2007) and Batur and Choobineh (2010), where quantile-based selection
methods were examined. CVar-related BAI problems were considered in Agrawal et al. (2021) and Ahn
and Kim (2023).

Garivier and Kaufmann (2016) use information theoretic ideas to develop lower bounds on sample
complexity in the best arm selection problem when the underlying distributions belong to a single parameter
exponential family. This includes Bernoulli distribution (see Agrawal et al. (2020) for extension to general
distributions), and they develop algorithms that match the lower bound asymptotically as δ → 0.

Our aim in this paper is to develop structural insights into this best-arm-identification (BAI) setting
when the underlying probability of failure is tiny. We do this by analyzing the problem in an asymptotic
regime where the failure probabilities are indexed by a rarity parameter γ and analyze the system as γ→ 0.
BAI in the rare event setting was also considered by Bhattacharjee et al. (2023) where the focus is on
online advertising where the click probabilities are small but the rewards at each click could potentially be
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very large, and the aim is to identify the most profitable system. Structurally, their lower bound analysis
as well the designed algorithms are substantially different from our safest system identification problem.

Our key insights are well explained through a somewhat extreme example. Suppose there are three
systems with unknown failure probabilities 10−4, 10−6 and 10−10. Initially the simulator will keep simulating
these systems equally until each system has multiples of 104 samples and one begins to observe failure
events in system 1. Once statistically enough failures have been observed in system 1, so that the simulator
is convinced that this system is not safe, it will focus effort on the other two systems. Once the samples
given to the other two systems are in multiples of 106, and statistically adequate failure events are observed
in system 2, the simulator is ready to conclude that system 3 is the safest without having to generate order
1010 samples. Thus, the computation order is governed by the second safest system. We also observe that
computationally, each system may require a different budget on average to generate each sample. This
heterogeneity results in relatively less sampling of the arm with larger computation requirement per sample,
and is easily incorporated in the lower bound analysis and the algorithm.

Our key contributions are: 1) We analyze the lower bound in our rarity framework and conclude
that the overall computational effort is driven by the rarity of the second safest design. 2) Through
lower bound analysis, we also develop further structural insights into efficient algorithms for this problem,
and propose a modification to existing algorithm tailored to the rare event setting. 3) We show how to
incorporate computational effort per sample into the lower bound analysis and hence on optimal algorithms
in fixed-confidence best-arm identification problems.

In Section 2, we discuss the background associated with fixed confidence best-arm identification
problems and discuss the lower bound in the setting where the average computational cost per sample may
differ across different designs. In Section 3, we introduce our rarity framework and discuss simplifications
arising from this framework. In Section 4 we introduce our algorithm and show its performance on simple
highly reliable systems. All proofs are outlined (due to space paucity) and are in the appendix.

2 BACKGROUND

Consider K simulatable systems. Simulating system i involves generating i.i.d. samples of a random
element Xi. Let Ai denote the rare failure event for system (or, equivalently in our terminology, arm) i.
Our aim is to identify the system with the smallest probability ηi = P(Xi ∈ Ai).

Let d(η ,κ) denote the Kullback-Leibler divergence between two Bernoulli distributions with failure
probabilities η and κ , then d(η ,κ) = η log

(
η

κ

)
+(1−η) log

(
1−η

1−κ

)
.

δ -correct algorithms: We propose sequential algorithms, where the K systems are sequentially sampled.
Sampling rule is adaptive and depends upon observed history. The algorithm stops at a random time τ at
which point it declares the safest system. Algorithm is said to be δ ∈ (0,1) correct if it guarantees that the
probability of correct selection is ≥ 1−δ .

Suppose, without loss of generality, that design 1 is the safest, that is, η1 <mini≥2 ηi. Let κ =(κi : i∈ [K])
belong to the alternate conclusion set A where each κ1 ≥mini≥2 κi, then using data processing inequality,
it is easily seen that for any δ correct algorithm that terminates at stopping time τδ with allocations
(Ni : i ∈ [K]),

∑
i∈[K]

Nid(ηi,κi)≥ log(1/2.4δ ). (1)

See, e.g., Kaufmann (2020). A lower bound on sample complexity Eη(τδ ) then follows as a solution to the
optimization problem mini∈[K] ∑i∈[K] Ni: (1) holds for each κ ∈ A, where the subscript η denotes that the
underlying arm sampling probability measures correspond to η . This through simplifications leads to the
well known lower bound: Eη [τδ ]≥V ∗(η)−1 log

( 1
δ

)
where V ∗(η) := max

w1+...+wK=1
min
i ̸=1

inf
η1i∈[ηi,η1]

w1d(η1,η1i)+

wid(ηi,η1i). Recall that Eη is standard notation for expectation under η .
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In our setting, the computational effort for generating a sample from each arm i can be random and
different. Letting ci be the expected computational effort under η , we consider the optimization problem
mini∈[K] ∑i∈[K] ci Ni: (1) holds for each κ ∈ A. This leads to the following lower bound on the computational
complexity, call it, Eη [τc,δ ]:

Eη [τc,δ ]≥V ∗c (η)−1 log
(

1
2.4δ

)
(2)

where V ∗c (η) := max
w1+...+wK=1

min
i̸=1

inf
η1i∈[ηi,η1]

(
w1

c1
d(η1,η1i)+

wi

ci
d(ηi,η1i)

)
.

Let η
∗
i :=

ciw1η1 + c1wiηi

ciw1 + c1wi
∀i ̸= 1 (we hide the dependence on η1,w1,ηi,wi for notational simplicity).

This can be seen to be the unique solution to the inner infimum in V ∗c (η) for Bernoulli distributions. Thus,

(2) simplifies to V ∗c (η) = max
∑

K
i=1 wi=1

min
i ̸=1

(
w1

c1
d(η1,η

∗
i )+

wi

ci
d(ηi,η

∗
i )

)
(see, e.g., Kaufmann et al. (2016)).

Further, through simple convex analysis, it can be seen that the optimal w∗i , i ∈ [K], uniquely satisfy the
first order conditions (see, e.g., Agrawal et al. (2023) when all ci = 1).

w∗1
c1

d(η1,η
∗
12)+

w∗2
c2

d(η2,η
∗
12) =

w∗1
c1

d(η1,η
∗
1 j)+

w∗j
c j

d(η j,η
∗
1 j) ∀ j ̸= 1,2 (3)

K

∑
i=2

cid(η1,η
∗
i )

c1d(ηi,η∗i )
= 1.

3 THE RARE EVENT REGIME

We assume that each ηi = fi(γ), where each fi is continuous and strictly increasing in γ with fi(0) = 0.
Further, for all γ , γb ≤ f1(γ) < f2(γ) ≤ f3(γ) ≤ ... ≤ fK(γ) for some b > 0. We study the lower bound
value and optimal allocations w∗(γ) = (w∗1(γ), ...,w

∗
K(γ)) as γ → 0. For notational ease, we suppress the

dependence of fi and w∗i on γ when it causes no confusion. Let Li j := lim
γ→0

fi(γ)

f j(γ)
, where we assume that

the limit exists, hence Li j ∈ [0,∞] for all i, j.
We partition our problem instances into three sets: U1 denotes the instances where L12 = L2 j = 0

∀ j ≥ 3, i.e., the safest arm is much safer than all other arms, and the second safest arm is much safer than
the remaining arms. U2 denotes the instances where L1 j = 0 ∀ j ≥ 2 and there exists a 2 < m ≤ K such
that L2 j > 0, 2≤ j ≤ m. Thus, the safest arm continues to be much safer than the rest, while there exist
arms whose safety levels are similar in order of magnitude to the second safest. N denotes the instances
where L12 > 0.

Theorem 1 below offers insights on the optimal weights {w∗i : i ∈ [K]} that solve the maxmin problem
given by V ∗c (η) in the rare event framework.
Theorem 1 Let w∗i , i ∈ [K] solve V ∗c (η). Then,

(a) For all j such that L2 j = 0, w∗j = Θ

(
f2

f j log
( f j

f2

)
)

.

(b) For all j such that L2 j > 0 or L1 j > 0, w∗j(γ)→ ŵ j as γ → 0, where these ŵ j uniquely solve

(i) (c2ŵ1 + c1ŵ2) log
(

1+ c2ŵ1
c1ŵ2

)
= c1c2 and ŵ1 + ŵ2 = 1 for U1,

(ii) ŵ2 f2 log
(

c2ŵ1+c1ŵ2
c1ŵ2

)
= ŵi fi log

(
ciŵ1+c1ŵi

c1ŵi

)
∀ i = 3, ...,m and

m

∑
i=2

c1ciŵi
c2ŵ1+c1ŵi

c1 log
( ciŵ1+c1ŵ j

c1ŵi

)
− c1ciŵ1

ciŵ1+c1ŵi

= 1 for U2, and
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(iii)
c2ŵ1 f1 log

(
c2ŵ1 f1+c1ŵ2 f1
c2ŵ1 f1+c1ŵ2 f2

)
+ c1ŵ2 f2 log

(
c2ŵ1 f2+c1ŵ2 f2
c2ŵ1 f1+c1ŵ2 f2

)
ciŵ1 f1 log

(
ciŵ1 f1+c1ŵi f1
ciŵ1 f1+c1ŵi fi

)
+ c1ŵi fi log

(
ciŵ1 fi+c1ŵi fi
ciŵ1 f1+c1ŵi fi

) = 1 ∀ i = 3, ...,m and

m

∑
i=1

f1 log
(

ciŵ1 f1+c1ŵi f1
ciŵ1 f1+c1ŵi fi

)
− c1ŵi( fi− f1)

ciŵ1+c1ŵi

fi log
(

ciŵ1 fi+c1ŵi fi
ciŵ1 f1+c1ŵi fi

)
+ ciŵ1( fi− f1)

ciŵ1+c1ŵi

= 1 for N.

The proof of the above theorem makes use of Lemmas 1 through 5. Before we state the lemmas, we
need some notation.

Let

d̃1i(w1,wi) :=


c1wi

ciw1 + c1wi
fi, L1i = 0

f1 log
(

ciw1 f1 + c1wi f1

ciw1 f1 + c1wi fi

)
+

c1wi

ciw1 + c1wi
( fi− f1), L1i > 0

d̃i(w1,wi) :=


fi log

(
ciw1 + c1wi

ciw1
f1
fi
+ c1wi

)
− ciw1

ciw1 + c1wi
fi, L1i = 0

fi log
(

ciw1 fi + c1wi fi

ciw1 f1 + c1wi fi

)
− ciw1

ciw1 + c1wi
( fi− f1), L1i > 0.

Let Ṽ ∗c (η) = max
∑

K
i=1 wi=1

min
i ̸=1

(
w1

c1
d̃1i(w1,wi)+

wi

ci
d̃i(w1,wi)

)
.

The w̃∗i s solving this optimization problem can be seen to satisfy

w̃∗1
c1

d̃12(w̃∗1, w̃
∗
2)+

w̃∗2
c2

d̃2(w̃∗1, w̃
∗
2) =

w̃∗1
c1

d̃1 j(w̃∗1, w̃
∗
j)+

w̃∗j
c j

d̃ j(w̃∗1, w̃
∗
j) ∀ j ̸= 1,2 (4)

and
K

∑
i=2

ci

c1

d̃1i(w̃∗1, w̃
∗
j)

d̃i(w̃∗1, w̃
∗
j)

= 1. (5)

Below, we suppress the dependence on γ in our notation for each fi(γ).
Lemma 1 There exist constants AU1 ,AU2 ,AN1 ,AN2 independent of wi, ∀i ∈ [K], such that

(a) for all i such that L1i = 0,
(i) |d( f1, f ∗i )− d̃1i(w1,wi)| ≤ AU1 f1,

(ii) |d( fi, f ∗i )− d̃i(w1,wi)| ≤ AU2 f1; and
(b) for all i such that L1i ̸= 0,

(i) |d( f1, f ∗i )− d̃1i(w1,wi)| ≤ AN1 f 2
1

(ii) |d( fi, f ∗i )− d̃i(w1,wi)| ≤ AN2 f 2
1 .

Lemma 2 There exist constants CU and CN such that

|V ∗c (η)−Ṽ ∗c (η)| ≤

{
CU f1 in U1∪U2

CN f 2
1 in N.

Remark 1 In Theorem 1, we see that the maxmin optimization problem is solved when w∗j =Θ

(
f2

f j(log(γ−1))−1

)
for all non-rarest arms j. Given the lower bound sample complexity of Θ(1/ f2) (see Lemma 4), the expected
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number of failures seen in non-rarest arms turns out to be Θ(log(1/δ )−1), which is less than 1 for small δ .
This suggests that the lower bound on sample complexity obtained by solving the maxmin problem need
not be an accurate guide to the algorithm. In particular, more samples need to be given to sub optimal
arms so that a reasonable number of failure events are observed.

The next lemma uses the approximations from Lemma 1 to arrive at an important conclusion which
will be used to prove Theorem 1.
Lemma 3 w∗j , w̃

∗
j → 0 as γ → 0 ∀ j such that L2 j = 0.

The above lemma can be used to obtain the following lower bound guarantee.
Lemma 4 Let τc,δ be the random stopping time of a δ -correct algorithm in the rare event regime. Then,
for γ sufficiently small, V ∗c (η),Ṽ ∗c (η) = Θ( f2). Therefore, Eη [τc,δ ]≥Θ(1/ f2).

In the following result, we prove that our approximate solutions are close to the exact solutions.
Lemma 5 There exist constants S0 and S1 independent of wi, i ∈ [K], such that whenever γ lies in a
sufficiently small neighborhood of 0,

(a) |w∗i − w̃∗i | ≤ S0
f1
fi

, whenever L1i = 0.
(b) |w∗i − w̃∗i | ≤ S1 f1, whenever L1i > 0.

4 PROPOSED ALGORITHM

We first discuss the Track and Stop (TS) paradigm, popularly used in solving best arm bandit problems.
We then suggest modifications to suit our rare event setting.

TS algorithm: The lower bound suggests that each arm should be sampled in proportion to the optimal
weights w∗ in (2). This idea guides TS algorithms that match the lower bound asymptotically as δ → 0.
Broadly, such algorithms have the following structure (see Garivier and Kaufmann (2016), Agrawal, Juneja,
and Glynn (2020) for further details):

1. Arms are sampled sequentially in batches. When a total of t samples are allocated, each arm is
sampled at least order

√
t times (to avoid starvation).

2. Empirical estimates of Bernoulli means at stage t, η̂t ∈ RK are plugged into the lower bound
maxmin problem, which is then solved to estimate the prescriptive proportions ŵt . The algorithm
then samples to closely track these proportions.

3. The algorithm stops when the generalized log-likelihood ratio (GLLR) at stage t (see, e.g, Chernoff
(1959)),

min
b̸=i∗

Zi∗b := Ni∗(t)d(η̂i∗ ,η
∗
i∗b)+Nb(t)d(η̂b,η

∗
i∗b)

where i∗ is the arm with empirically minimum mean, each Na(t) denotes the samples of arm a
generated by stage t, and η∗i∗b =

cbwi∗ηi∗+ci∗wbηb
cbwi∗+ci∗wb

∀b ̸= i∗, exceeds a well chosen threshold β (t,δ )

(asymptotically similar to log(1/δ ) for δ small). Typically β (t,δ ) := log
(

2t(K−1)
δ

)
.

TS algorithms in the above form are not easy to implement in the regime of rare events for two main
reasons. First, the rarity structure implies that we need large number of trials to see failure events and
form reliable estimates of empirical distributions. Second, even though the high computational costs of
repeatedly solving the lower bound problem are usually mitigated by sampling in batches, we need to be
careful so that batch sizes are neither so small that no failures are seen in the rarer systems, nor so large
that the less rare systems see more failures than we require.

Taking the above two factors into consideration, we modify the TS algorithm so that it fits into the
rare events framework. First, our batch sizes increase at a geometric rate until we start seeing failures
in some arms. Second, once we start seeing failure instances in some arms, we eliminate them once the
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corresponding index Zi∗b crosses the threshold β (t,δ ). See Algorithm 1 for details. The key insight that we
exploit here is that the derivative of the index Zi∗b to Ni∗(t), (assuming that the empirical distributions are
fixed) can be seen to equal d̃(η̂i∗ ,η

∗
i∗b). This quantity times Ni∗(t), becomes close to zero as Ni∗(t) becomes

much larger than Nb(t) (as should be in optimal allocations as per the lower bound). So by increasing
Nb(t) a little more than maybe optimally needed, the index exceeds the threshold β (t,δ ), and the arm can
be eliminated. Finally, amongst the remaining arms, if in all but one, enough failure events are seen, we
can use the standard track and stop optimization to decide further allocations. The rarest arm may have an
empirical estimate zero but that does not impact the algorithm. Also, once we see more than 20 failures
in an arm, we don’t sample from it again it until we reach the final stage. The number 20 is reasonable,
although more analysis may help fine tune it.

Algorithm 1: Track and Stop with Elimination
Input: Confidence level δ , Set of K systems that fail with varying rarities.
Output: System k∗ that fails with the least probability, correctly identified with probability at

least 1−δ .

1: m← 1, g = 10−1, Ni = 0 ∀i ∈ [K].
2: A = [K] to store arms that will be sampled in stage 1.
3: S = [K] to store arms that are not eliminated in stage 1.
4: Generate ⌊ 1

gm ⌋ samples for each system in A .
5: Update Ni, the number of times the ith system has been sampled so far, set t← ∑

K
i=1 Ni.

6: Update Si, the number of failures observed in the ith system so far.
7: Compute the empirical means η̂ = (η̂i)i∈A .
8: if η̂i = 0 ∀i ∈A then
9: m← m+1.

10: Go to 2.
11: end if
12: I∗← argmin

i∈A
η̂i. Note that the set I∗ may have more than one value.

13: while |S |> 1 do
Stage 1

14: Arbitrarily pick i∗ ∈ I∗.
15: For each b ̸∈ I∗, compute Zi∗b := N∗i d̃(η̂i∗ ,η

∗
i∗b)+Nbd̃(η̂b,η

∗
i∗b).

16: For each b such that Zi∗b > β (t,δ ), set S ←S \{b}.
17: For each b such that Zi∗b > β (t,δ ) or Sb > 20, set A ←A \{b}.
18: if minb∈A \I∗ Sb = 0 then
19: Generate⌊ 1

gm+1 ⌋ samples for each i ∈A such that Si = 0.

20: Generate ⌊ 1
gm ⌋ samples for each i ∈A such that Si > 0.

Continues on next page
21: Update Ni, Si, t, η̂ , i∗.
22: Continue.
23: end if
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Stage 2
24: Let ŵ∗ be the optimal weights satisfying V ∗c (η̂S )where η̂S is the vector of empirical means

of the arms that did not get eliminated in Stage 1.
25: For each i ∈S , evaluate Yi = tŵ∗i −Ni.
26: Generate⌊ 1

gm+1 ⌋ samples for each i ∈ argmaxYi

27: Update Ni, Si, t, η̂ , i∗.
28: Continue.
29: end while
30: Return the remaining element of S .

δ -correctness: The proof of δ -correctness of our algorithm employs standard machinery where it is more
or less independent of arms allocation strategy. We omit the proof. It can be found in Kaufmann (2020).
Sample complexity: The proof that the sample complexity of our proposed algorithm matches the lower
bound up to a constant is again a set of standard steps, which are similar to those in e.g., Kaufmann and
Koolen (2021).

5 NUMERICAL EXPERIMENTS

We let γ = 10−2. For the sake of simplicity, we allow all systems to have equal computation cost and let
fi be of the form piγ

αi for each i. Each system has four independent components, and is considered to
fail only if all its components fail. Let α = (α1, ...,αK) be a vector representing the rarities of systems 1
through K, and p = (p1, ..., pK) be a vector representing the coefficients of γαi . We consider α = (3,2,1),
α = (4,3,3,2) and α = (3,3,2) - one example of each of the scenarios U1, U2 and N. For each scenario,
we list the values of δ in Table 1 and run our algorithm 1/δ times. Observed average sample complexities
are represented by τ̂δ , theoretical optimal weights by w∗ and observed average weights by w̃∗. The findings
are reported in the table below. In all three examples, the best arm was correctly returned in all simulations.

Table 1: Results of simulation experiments on highly reliable systems. Their respective average runtimes
were 0.2s, 1.3s and 53.2s respectively.

α p δ Lower Bound τ̂δ w∗ w̃∗

(3,2,1) (1,2,4) 10−5 1.32e+05 2.63e+05 (0.62,0.37,1.64e−04) (0.62,0.37,4.55e−03)
(3,2,2,1) (1,3,4,2) 10−5 1.32e+05 5.74e+05 (0.59,0.34,0.06,3.15e−04) (0.58,0.35,0.06,3.14e−04)
(2,2,1) (1,3,5) 10−3 2.41e+06 6.33e+06 (0.513,0.486,7.69e−06) (0.513,0.486,1.75e−04)

Above, when w∗b is small for some arm, the corresponding w̃∗b is a little larger. As we discussed, this
is since the lower bound allocation w∗b can be misleading, and require that we give insufficient samples to
an arm so that even a single failure is not observed.
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A PROOF OUTLINE OF LEMMA 1

For part (a),

d( f1, f ∗i ) = d
(

f1,
ciw1 f1 + c1wi fi

ciw1 + c1wi

)
= f1 log

(
ciw1 f1 + c1wi f1

ciw1 f1 + c1wi fi

)
− (1− f1) log

(
1− ( fi− f1)c1wi

(ciw1 + c1wi)(1− f1)

)
The following statements can easily be shown using log(1+ x)≤ x along with simple algebra.

• log f1−b logγ ≤ log
(

ciw1 f1 + c1wi f1

ciw1 f1 + c1wi fi

)
≤− log f1 +b logγ .

• L1i≤−(1− f1) log
(

1− ( fi− f1)c1wi
(ciw1+c1wi)(1− f1)

)
≤U1i, where L1i := c1wi

ciw1+c1wi
fi− f1 andU1i := c1wi

ciw1+c1wi
fi+

f1.

These inequalities together show that

− f1(− log f1 +b logγ)− f1 ≤ d( f1, f ∗i )−
c1wi

ciw1 + c1wi
fi ≤ f1 + f1(− log f1 +b logγ)

pi

p1
p1γ

α1

⇒
∣∣∣∣d( f1, f ∗i )− d̃1i(w1,wi)

∣∣∣∣≤ f1(1− log f1 +b logγ)≤ f1

which in turn proves part (a)(i).
Next, d( fi, f ∗i ) = fi log

(
ciw1 fi+c1wi fi
ciw1 f1+c1wi fi

)
− (1− fi) log

(
1+ ( fi− f1)c1wi

(ciw1+c1wi)(1− f1)

)
. Similarly as part (a)(i),

Li ≤ −(1− fi) log
(

1+ ( fi− f1)c1wi
(ciw1+c1wi)(1− f1)

)
≤Ui, where Li := − c1wi

ciw1+c1wi
fi− f1 and Ui := − c1wi

ciw1+c1wi
fi + f1.

Therefore,

− f1 ≤ d( fi, f ∗i )− fi log
(

ciw1 fi + c1wi fi

ciw1 f1 + c1wi fi

)
+

c1wi

ciw1 + c1wi
fi ≤ f1

⇒
∣∣∣∣d( fi, f ∗i )− d̃1i(w1,wi)

∣∣∣∣≤ f1

This proves part (a)(ii).
For part (b),similar to part (a), we get∣∣∣∣d( f1, f ∗i )− d̃1i(w1,wi)

∣∣∣∣≤max
{

f 2
i +( fi− f1) f1,

( fi− f1)
2

2(1− f1)

}
,

making use of

• d( f1, f ∗i ) = f1 log
(

ciw1 f1+c1wi f1
ciw1 f1+c1wi fi

)
− (1− f1) log

(
1− c1wi( fi− f1)

(ciw1+c1wi)(1− f1)

)
.

• −(− log f1 +b logγ)≤ log
(

ciw1 f1+c1wi f1
ciw1 f1+c1wi fi

)
≤− log f1 +b logγ

• L1i ≤ −(1− f1) log
(

1− c1wi( fi− f1)
(ciw1+c1wi)(1− f1)

)
≤U1i, where L1i := c1wi( fi− f1)

(ciw1+c1wi)
− ( fi− f1) f1 and U1i :=

c1wi( fi− f1)
(ciw1+c1wi)

+ ( fi− f1)
2

2(1− f1)
.

This proves part (b)(i). Proof of part (b)(ii) is on similar lines.

3410



Bhattacharjee and Juneja

B PROOF OUTLINE OF LEMMA 2

Let w∗i , f ∗i , i∈ [K] solve the maxmin problem V ∗c (η) and let w̃∗i , f̃ ∗i , i∈ [K] solve the maxmin problem Ṽ ∗c (η).
The statement then follows by observing that w∗1, ...,w

∗
K are non-negative numbers adding up to 1, and using

Lemma 1 on the inequality |V ∗c (η)−Ṽ ∗c (η)| ≤ w∗1
c1

∣∣d( f1, f ∗i )− d̃1i(w∗1,w
∗
i )
∣∣+ w∗i

ci

∣∣d( fi, f ∗i )− d̃i(w∗1,w
∗
i )
∣∣.

C PROOF OUTLINE OF LEMMA 3

We want to show that
f ∗i =

ciw∗1 f1 + c1w∗i fi

ciw∗1 + c1w∗i
≤ c2 f2

c j
+Θ( f1) ∀i ̸= 1 (6)

For the above inequality to hold, we must have w∗j → 0 as γ → 0 for all j such that L2 j = 0, because the
inequality is otherwise violated.

Substituting the approximations of Lemma 1 in (3) gives us

c1w∗2 f2 log

(
c2w∗1 + c1w∗2

c2w∗1
f1
f2
+ c1w∗2

)
+Θ( f1) = c1w∗j f j log

(
c jw∗1 + c1w∗j

c jw∗1
f1
f j
+ c1w∗j

)
+Θ( f1)

∀ j ̸= 1,2

(7)

We will use the above inequality to obtain (6), by making a couple of transformations. Let us define
x1i := c1w∗i ( fi− f1)

ciw∗1 f1+c1w∗i fi
and xi := ciw∗1( fi− f1)

ciw∗1 f1+c1w∗i fi
. Simple algebraic manipulations will show that f1

1−x1i
= f ∗i =

fi
1+xi

and x1i
xi
=

c1w∗i
ciw∗1

.
Now, we divide both sides of (7) by w∗1 and use the transformation variables x1i and xi to rewrite (7) as

x12

x2
c2 f2 log(1+ x2)+Θ( f1) =

x1 j

x j
c j f j log(1+ x j)+Θ( f1)

⇒x12c2 f2 +Θ( f1)≥ x1 j
c j f j

1+ x j
+Θ( f1) = x1 jc j f ∗j +Θ( f1)

where the last step uses log(1+ y) ≤ y and
log(1+ y)

y
≥ 1

1+ y
for y > 0. Next, we observe that c2x12

c jx1 j
=

c2

(
1− f1

f∗2

)
c j

(
1− f1

f∗j

) = c2
c j

(
1−

f1
f∗2
− f1

f∗j

1− f1
f∗j

)
≤ c2

c j
. This helps us conclude f ∗j ≤

c2
c j

f2, and (6) follows immediately. The

exact same proof technique will work for w̃∗js.

D PROOF OUTLINE OF LEMMA 4

Substituting the approximations of Lemma 1 and using Lemma 3 in (4) and (5), observe that as γ → 0,
w∗i , w̃

∗
i converge to positive numbers for all i such that L2i > 0 for U2, and L1i > 0 for N. We also note

that if wi converges to a positive number as γ → 0 for some i ∈ [K], then it can be shown that wi’s are
continuous in γ , hence there is a εi > 0 such that wi ≥ εi whenever γ lies in some ζi neighborhood of 0.
Let ε = mini εi, ζ = mini ζi.

We now observe that if L12 = 0, Ṽ ∗c (η) equals w̃∗2
c2

f2 log
(

c2w̃∗1+c1w̃∗2
c2w̃∗1

f1
f2
+c1w̃∗2

)
and if L12 > 0, Ṽ ∗c (η) equals(

c2w̃∗1 f1 log
(

c2w̃∗1 f1+c1w̃∗2 f1
c2w̃∗1 f1+c1w̃∗2 f2

)
+ c1w̃∗2 f2 log

(
c2w̃∗1 f2+c1w̃∗2 f2
c2w̃∗1 f1+c1w̃∗2 f2

))
. We have already seen in our discussion in the

previous paragraph that 0 < εi ≤ w̃∗i ≤ 1 whenever γ < min{ζ1,ζ2}. It therefore follows from L12 = 0 or
L12 > 0, as the case may be, that for γ small enough, Ṽ ∗c (η) can be bounded above and below by positive
multiples of f2, letting us conclude that Ṽ ∗c (η) = Θ( f2). It can be inferred from Lemma 2 that the same
conclusion holds for V ∗c (η). The conclusion on Eη [τc,δ ] follows from (2).
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E PROOF OUTLINE OF LEMMA 5

We first observe that for x,y ∈ [0,1] such that x+ y < 1, log
(

x+y
x f1

fi
+y

)
≥ εx

(
1− f1

fi

)
, assuming that x≥ εx

for some εx > 0. Similarly, assuming the existence of an εy, we can show that log
(

f1x+ f1y
f1x+ fiy

)
≥ fi− f1

f1
εy.

The intermediate steps in obtaining these inequalities use log(1+x)≤ x, ∀x. Let g(x,y) = y fi log
(

x+y
x f1

fi
+y

)
and h(x,y) = f1x log

(
f1x+ f1y
f1x+ fiy

)
+ fiy log

(
fix+ fiy
f1x+ fiy

)
. We will use subscripts of x and y with these functions

to represent partial derivatives with respect to x and y.
It can easily be checked using the inequalities from our observations, that |gy(x,y)| ≥ εx

(
1− f1

fi

)
fi,

|hx(x,y)| ≥ fi− f1
f1

εy, |hy(x,y)| ≥ fi− f1
f1

εx, gx(x,y)≥ 0 and hx(x,y)≥ 0. We can now show by using the mean

value theorem, that
∣∣∣c1ε

(
1− f1

fi

)
fi|w∗i − w̃∗i |− c1 f1

∣∣∣ ≤ |V ∗c (η)− Ṽ ∗c (η)| ≤CU f1, letting us conclude that

|w∗i − w̃∗i | ≤ S0
f1
fi

, whenever α1 > αi. This proves part (a).
To prove part (b), we use lower bounds on the partial derivatives of h, along with the mean value

theorem. The steps are similar to the proof of part(a).

F PROOF OUTLINE OF THEOREM 1

(a) The proofs in scenarios U1,U2 and N are similar, so we only show the details for scenario U1. Let
fi j := fi

f j
. Substituting the approximations of Lemma 1 in (4) gives us that for all j such that L2 j = 0,

w̃∗2 f2 log
(

w̃∗1 + w̃∗2
w̃∗1 f12 + w̃∗2

)
= w̃∗j f j log

(
w̃∗1 + w̃∗j

w̃∗1 f1 j + w̃∗j

)

⇒w̃∗j = w̃∗2 f2 j

log
(

w̃∗1+w̃∗2
w̃∗1 f12+w̃∗2

)
log
(

w̃∗1+w̃∗j
w̃∗1 f1 j+w̃∗j

) .
Now, it is easy to observe that

log
(

w̃∗1 + w̃∗i
w̃∗1 f1i + w̃∗i

)
≤min

{
log
(

1
w̃∗i

)
, log

(
1

w̃∗1 f1i

)}
,

log
(

w̃∗1 + w̃∗2
w̃∗1 f12 + w̃∗2

)
≥ ε1 (1− f12) ,

the latter inequality following from log(1+x)≤ x. We have also seen in the proof of Lemma 3 that
w̃∗1 f1 + w̃∗i fi

w̃∗1 + w̃∗i
+Θ( f1)≤ f2 +Θ( f1) ∀i ̸= 1, from which w̃∗i ≤

w̃∗1 f2i

1− f2i
+O( f1i) follows. This gives

us that

log
(

w̃∗1 + w̃∗i
w̃∗1 f1i + w̃∗i

)
≥ log

 w̃∗1
w̃∗1 f1i +

w̃∗1 f2i
1− f2i

+O( f1i)


= log

(
w̃∗1(1− f2i)

w̃∗1 f2i +Θ( f1i)

)
.

Combining our conclusions from the above equation, w̃∗j = Θ

 f2

f j log
(

1
f2 j

)
 ∀ j ̸= 1,2 follows

directly. Lemma 5 gives us the statement of part (a) as conclusion.
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(b) We provide the outline of proof for U1, and the proofs for U2 and N are similar. Substituting the
approximations of Lemma 1 and using Lemma 3 in (5) gives us

c2
c1w̃∗2

c2w̃∗1+c1w̃∗2

c1 log
( c2w̃∗1+c1w̃∗2

c2w̃∗1 f12+c1w̃∗2

)
− c1c2w̃∗1

c2w̃∗1+c1w̃∗2

+
K

∑
j=3

c j
c1w̃∗j

c jw̃∗1+c1w̃∗j

c1 log
( c jw̃∗1+c1w̃∗j

c jw̃∗1 f1 j+c1w̃∗j

)
− c1c jw̃∗1

c jw̃∗1+c1w̃∗j

= 1

From our conclusion in part (a), we can observe that

c2
c1w̃∗2

c2w̃∗1+c1w̃∗2

c1 log
( c2w̃∗1+c1w̃∗2

c2w̃∗1 f12+c1w̃∗2

)
− c1c2w̃∗1

c2w̃∗1+c1w̃∗2

+Θ

(
max

j:L2 j=0

f2

f j log( 1
f2 j
)

)
= 1.

Algebraic manipulations in the equations from (b)(i) will yield

c2
c1ŵ2

c2ŵ1+c1ŵ2

c1 log
( c2ŵ1+c1ŵ2

c2ŵ1 f12+c1ŵ2

)
− c1c2ŵ1

c2ŵ1+c1ŵ2

≥
c2

c1ŵ2
c2ŵ1+c1ŵ2

c1 log
( c2ŵ1+c1ŵ2

c1ŵ2

)
− c1c2ŵ1

c2ŵ1+c1ŵ2

= 1.

Let g(x,y) =
c2

c1y
c2x+c1y

c1 log
(

c2x+c1y

c2x
p1
p2

γ
α1−α2+c1y

)
− c1c2x

c2x+c1y

. Combining the two above equations, we conclude that

|g(ŵ1, ŵ2)−g(w̃∗1, w̃
∗
2)|= Θ

(
max

j:L2 j=0

f2

f j log( 1
f2 j
)

)
.

We can now bound the patial derivatives of f , and use the mean value theorem to conclude that

|ŵ1− w̃∗1|, |ŵ2− w̃∗2| = Θ

(
max

j:L2 j=0

f2

f j log( 1
f2 j
)

)
. We combine this with Lemma 5 to conclude that

|w∗j − ŵ j| → 0 as γ → 0, that is w∗j → ŵ j as γ → 0, for all j such that L2 j > 0 or L1 j > 0.

For scenario U2, we bound the partial derivatives of gi(x,y) = y f2 log
(

c2x+c1y
c2x f1ic1y

)
and hi(x,y) =

c1ciy
c2x+c1y

c1 log
( cix+c1ŵ j

cix f1i+c1y

)
− c1cix

cix+c1y

, i = 2, ...,K, and again use the mean value theorem to conclude that

w∗j → ŵ j as γ → 0, for all j such that L2 j > 0 or L1 j > 0.

For N, we bound partial derivatives of gi(x,y)= cix f1 log
(

cix f1 + c1y f1

cix f1 + c1y fi

)
+c1y fi log

(
cix fi + c1y fi

cix f1 + c1y fi

)
and hi(x,y) =

f1 log
(

cix f1+c1y f1
cix f1+c1y fi

)
− c1y( fi− f1)

cix+c1y

fi log
(

cix fi+c1y fi
cix f1+c1y fi

)
+ cix( fi− f1)

cix+c1y

, i = 2, ...,K and once again use the mean value theorem

to conclude that w∗j → ŵ j as γ → 0, for all j such that L2 j > 0 or L1 j > 0.
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