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ABSTRACT

As demand for USV usage increases, the development of simulators for AI training is becoming crucial.
This paper introduces a DEVS-based simulation acceleration technique achieved through dynamic changes
in the model structure, which is enabled by DSDEVS, while considering domain-specific characteristics.
In the case study, the proposed method was applied to and evaluated using USV models. Specifically, the
proposed method adapts the coupling structure of the USV maneuver model based on changes in bank angle
during simulations; the coupling structure of the USV sensor model is modified according to the distance
from enemy units. These changes reduce unnecessary event exchanges during simulation execution, thus
increasing the speed of simulation execution. Furthermore, they can lead to the dynamic control of time
advances in USV models, enables the improvement of simulation speed. The case study shows the proposed
method effectively accelerates simulation execution, but it involves a trade-off with simulation accuracy.

1 INTRODUCTION

In recent years, the strategic deployment of Unmanned Surface Vehicles (USVs) in naval operations
has increased, driven by advances in artificial intelligence (AI) (Zhao et al. 2021). As such unmanned
systems take on increasingly complex tasks, the demand for advanced simulation tools to train and validate
AI algorithms under diverse and challenging conditions is increasing (Adelani 2014). In this context,
simulation plays a crucial role of generating varied and extensive data for learning algorithms, a process
that simultaneously often incurs considerable execution time.

This demand underscores the necessity for an innovative approach of accelerating simulation execution
time while adhering to a general modeling method. We considered that Discrete Event System Specification
(DEVS) formalism (Zeigler et al. 2000), known for its robustness in modeling and simulating complex
systems, offers a promising framework for addressing these challenges. To this end, This paper presents a
simulation accelerating method that incorporates Dynamic Structured DEVS (DSDEVS) (Barros 1995) to
reduce unnecessary message exchanges during simulation execution through dynamic structural changes of
simulation models. It is also emphasized that these dynamic structural changes must adequately consider
domain-specific knowledge.

The proposed method is realized and evaluated with a DEVS-based naval USV simulator. Specifically,
within the context of USV operations, a sensing model in the USV keeps searching the enemy periodically,
while the maneuver model continuously monitors for tactical movement. These operations are crucial in
military tactics; however, they sometimes result in unnecessary event exchanges during simulation execution.
These domain-specific considerations were represented as acceleration parameters, and these parameters
mediated the dynamic structural changes in the USV simulation models by the virtue of DSDEVS semantics
and eventually accelerated simulation execution.
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In the case study, the experimental design incorporated the acceleration parameters to evaluate the
efficiency of the proposed method. The present results demonstrate that the proposed method significantly
speeds up the simulation execution (by up to 4.55 times). Furthermore, the meta-modeling analysis was
conducted to identify more significant and robust parameters for the acceleration, and profiling of several
cases was performed to examine the details of simulation performances. Through these investigations, we
discovered that by setting the parameters values, the simulation results can exceed the boundaries, which
means that there is a trade-off relationship between the acceleration and the accuracy of simulations. We
note that it is crucial for users who employ a simulation model as a data generator for AI learning, and the
proposed method is expected to be used to explore the balance between simulation speed and fidelity and
to provide insights into the acceptable limits of information loss in accelerated simulation scenarios.

2 BACKGROUND

2.1 DEVS Formalism

DEVS (Discrete Event System Specification) is a formalism to develop discrete event models in a hierar-
chical and modular manner (Concepcion and Zeigler 1988) (Chow and Zeigler 1994). DEVS consists of
two abstract models: atomic model and coupled model. The atomic and the coupled models describe the
behaviors and the structure of a target system. DEVS models can be built with the combination of these
model types in a hierarchical and modular manner. The formal specifications of the atomic (AM) and the
coupled (CM) are as follows:

AM =< X ,Y,S,δext ,δint ,λ , ta >
X = a set of input events,
Y = a set of output events,
S = a set of states,
δext : Q×X → S,where Q = {(s,e)|s ≤ S,0 ≤ e ≤ ta(s)}, an external transition function,
δint : S → S, an internal transition function,
λ : S → Y , a output function,
ta : S → R+

0 ∪{∞}, a time advance function

CM =< X ,Y,M,EIC,EOC, IC,Select >
X = a set of external input events,
Y = a set of output events,
M = a set of component models,
EIC ⊆ X ×∪m∈Mm.X , where the m.X is an input event of m ∈ M, external input coupling relations,
EOC ⊆ ∪m∈Mm.Y ×Y , where m.Y is an output event of m ∈ M, external output coupling relations,
IC ⊆ ∪m∈Mm.Y ×∪n∈Mn.X , where m.Y and n.X are an input and an output event of different component
models (m ̸= n), internal coupling relations,
SELECT : 2M − /0 → M, a tie-breaking function among components M,

2.2 Dynamic Structure DEVS Formalism

As an extension of DEVS, Dynamic Structure DEVS (DSDEVS) was proposed for allowing structural
changes during simulation execution (Barros 1995). In other words, The DSDEVS formalism enables to
describe dynamic structural changes, such as the addition and removal of coupling relations and components
of DEVS coupled model, which is formally specified by introducing a new abstract model called DSDEVS
network model(DSDEVN).

DSDEV N =< χ,Mχ >
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χ = DSDEVS network executive,
Mχ =< Xχ ,Yχ ,Sχ ,δextχ ,δintχ ,λχ , taχ >, model of χ ,
where Sχ =< X∆,Y∆,M∆,EIC∆,EOC∆, IC∆,Select∆ >, the state of DSDEVS dynamic structure network ∆

It should be noted that the specifications of Mχ are quite similar as those of the atomic and the coupled
model in DEVS formalism. However, compared to them, Mχ holds the model structures (∆) in its state(Sχ ),
so varying one element of the state leads to the realization of the dynamic structural changes. The proposed
method is theoretically based on this dynamic structural changes for accelerating simulation execution
(Shang and Wainer 2006).

2.3 Literature Review on Accelerated Simulator for AI Training

Recently, there has been growing research interest in simulators for AI training. A research explored that
web based GPU acceleration in embodied agent training workflow (Sisyukov et al. 2021). They used the
simulation to supports RL training of agents. Training agents in real time environment is slow, hard to
control, and expensive. Parallelized training with simulator bring the faster, safer, easier process.

In the region of computational resource scaling within simulation acceleration, recent research has
primarily focused on reducing computation load at the simulator execution level, not a modeling structural
level. An approach exists that Machine learning can be used to approximate the functions of DEVS models
to reduce computational load (Saadawi et al. 2016). They approximated behaviors of DEVS coupled models
and atomic models with a predictive model. The approximate equivalent predictive model developed by
machine learning techniques predict the output of the DEVS model, and it can reduce computational load
because a predictive model can replace a computation-intensive DEVS model. And the predictive model
can store the metadata describing the DEVS model, it perform the significant performance in the repetitive
computational situations. This acceleration method utilize the characteristic of DEVS,available to separates
modeling and simulation execution, to deal with the simulation execution parts. So that, this method does
not touch the modeling parts.

From another perspective, research on HW-based simulation acceleration is also active. Parallelization
and Hardware optimization can accelerate massive models such as Approximate Bayesian Computa-
tion(ABC) (Kulkarni et al. 2020). They accelerate the simulation with parallel use of GPUs. Another
research, stochastic simulation was accelerated by using massively parallel GPU (Köster et al. 2023).
Another study on hardware-based simulation acceleration involves accelerating Monte Carlo integration
of stochastic differential equations using GPUs in a CUDA programming environment (Spiechowicz et al.
2015). Additionally, research has focused on speeding up molecular modeling simulations for massively
parallelized GPUs (Stone et al. 2010). And another research suggest that simulation of complex system
using a hybrid system based on DEVS can be accelerated by multi core and GPU coupled architecture
(Kim et al. 2018). These kind of methods actually does not reduce computational load, but Hardware
structure based acceleration is worked. Based on the Parallel DEVS methodology,a technique named
Multicore Acceleration of DEVS Systems suggested (Liu and Wainer 2012). The technique accelerate both
memory-bound and compute-bound kernels using parallel DEVS simulation (Chow et al. 1994). There
is another research of HW-based simulation acceleration method (Trabes et al. 2023). In this research,
parallel DEVS simulations executed all task in parallel, and compute different cores on shared memory
architectures.

In summary, although accelerating simulator on modeling structural level has not been widely used
previously, this paper proposes a method for accelerating DEVS simulation on the modeling structural
level.
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3 DEVS-BASED SIMULATION ACCELERATION METHOD

The proposed method is based on two approaches. Firstly, it is to identify messages that are repeatedly
transmitted according to the model specifications but are sometimes irrelevant in simulation progress. The
acceleration can then be achieved by decoupling those unnecessary connections. Secondly, when the change
in state transitions remains below a certain threshold, the acceleration can also be realized by reducing the
number of calculating state transitions. This section elaborates on the two ideas using a naval USV model.

3.1 Coupling Structure of USV Model

This section presents USV models using DEVS formalism. Figure 1 depicts the coupling between models
in a DEVS diagram, illustrating the overall model interactions. In this diagram, ’Blue’ represents friendly
Unmanned Surface Vehicles (USVs), while ’Red’ represents enemy USVs. Through the DEVS coupling
mechanism, these two models exchange information regarding their locations and the damage from gunfire.
Utilizing an object-oriented simulator, each model is crafted as an independent and cohesive structure,
allowing for a vast array of DEVS couplings to be efficiently implemented.

Figure 1: DEVS structure diagram of Unmanned Surface Vehicle(USV) coupled model.

Within this framework, the blue USV model is constructed as a DEVS coupled model comprising several
components: two sensor models, a gun model for executing attack, a maneuver model to manage dynamics,
such as position and velocity, and a C2 model responsible for control and strategic decision-making. The
blue USV employs its sensor model to pinpoint the location of enemy red USVs and utilizes the maneuver
model to update its own position and speed. Each model generates propagated events to inform C2 model
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to decide movement and attacks by a tailored rule-based algorithm. The C2 decision becomes the output
events delivered to the maneuver and gun models through DEVS coupling.

Figure 1 depicts a diagram of the DEVS Coupled model of the Blue USV (Praehofer and Pree 1993).
The ’ManeuverState_IN’ External Input Coupling (EIC) receives the location of the Red USV, which is
then passed on to sensor models, activating the enemy detection functionality. The detected enemy location
information is forwarded to the C2 model. Utilizing its own location received from the Maneuver model and
the enemy’s location from the sensor model, the C2 model determines the position of the enemy to pursue
and passes this information to the Maneuver model to initiate the chase. Additionally, a firing command
is sent to the GUN model’s ’Gunfire’ port, and the Gun model conveys damage assessment information to
the Red that has been hit, through the ’Damagestate_OUT’ External Output Coupling (EOC) of the Blue
Coupled model.

3.2 Coupling Structure Changes for Acceleration
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Figure 2: Flow chart of Sparse sensing.

Coupling between the ’SparseSampling’ port and the sensor model is illustrated as a green colored
coupling in Figure 1. This green coupling illustrates the coupling that are being dynamically created and
removed by DSDEVS. When the conditions for Dynamic Structure are met within the threshold of sensor
models, the sparse sampling is deactivated, and the Blue USV model induces changes in the structure of
DEVS Coupling. On the other hand, when the condition claims that there are enough distance from the
sensor model, the sparse sampling becomes activated, and the Blue USV model removes the blue colored
coupling. We illustrate this coupling manipulation in Figure 2. The left side of the flow chart comes from
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the sensor model to utilize the sparse sampling mechanism. The right side of the flow chart originated
from the Blue USV coupled model.

Sensor model determines whether the Red position is close enough to be frequently sampled or not. We
utilize a threshold to determine the deceleration or acceleration of this time advance. Once its determined,
the sensor model time advance is changed to gain the computational efficiency, and the sensor model
outputs the sensor coupling management request to the coupled model, Blue USV in this context. DSDEVS
enables the coupled model to receive the input and to change its state and coupling structure.

Blue USV model receives the sparse sampling activation. However, it is necessary to restore the
coupling mechanism to process the sparsely sampled detection event. Therefore, there are two conditional
statements. The first condition exists to handle the sensor model request, and the second condition exists to
reactive the sensor model by reconnecting the coupling structure dictated by the sparse sampling frequency.

Coupling between the C2 model and the maneuver model is illustrated as a red colored coupling
in Fig 1. When the maneuver model received a message from the C2 model through the red coupling,
it generates the target command to reach at the target maneuver received. Depending on the condition
for target bank angle derived from target command, it is acceptable that the maneuver model can update
maneuver sparsely. We illustrate this flows in Figure 3. Time advance will be accelerated when the target
bank angle is less than a threshold, and decelerated when it is larger than that threshold.

Request Maneuver from C2

target command
Target bank angle >

 Bank Acceleration Threshold

True

Decelerate
Time advance

False

Accelerate
Time advance

Update Maneuver

Figure 3: Flow chart of Maneuver update acceleration.

Given the above domain-specific knowledge, we can identify five parameters to accelerate the simulation
model (see Table 1): Bank acceleration threshold (BAT) and acceleration time advance (ATA) are parameters
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related to the maneuver model, Sparse sampling initial time (SSIT), sparse sampling distance (SSD) and
scan acceleration time advance (SATA) related to the sensor model.

Table 1: Acceleration parameters.

Acceleration parameters Implement
Bank Acceleration Threshold (BAT) Threshold of Bank Turn Command
Acceleration Time Advance (ATA) (sec) Accelerated time advance case of maneuver

update acceleration
Sparse Sampling Initial Time (SSIT) (sec) Time of first detecting the enemy USV
Sparse Sampling Distance (SSD) (m) Distance threshold of operating Sparse sensing
Scan Acceleration Time Advance (SATA) (sec) Accelerated time advance activated when

sparse sensing is activated

4 CASE STUDY

4.1 Experimental Design

To evaluate the proposed method, a case study was conducted by establishing an experimental design with
the identified acceleration parameters (see Table 2).

Table 2: Experimental design of USV Experiments with Acceleration Parameters.

Acceleration parameters Default Variation Cases
BAT 0.01 0.01, 0.05, 0.1 (3 cases)
ATA 1 1, 5, 10 (3 cases)
SSIT 100 100, 200, 300 (3 cases)
SSD 5000 5000, 3000, 1000 (3 cases)
SATA 1 1, 50, 100 (3 cases)
Total Cases 3×3×3×3×3= 243
Total Experiment cases 29 Experiments 29×243 = 7047

This simulation experiment introduces the following performance measures (see Table 3) to quantify
the extent of acceleration of the simulation and the deviation of the results from the default case.

Table 3: Performance measure of USV operation Experiments.

Performance measures Implications

Acceleration performance Runtime_Wall (sec) Simulation execution time measured based on wall clock

Simulation accuracy Ddi f f (c) Dead rate difference between c and the default scenario.

It refers to Equation (1) and (2)

MTDD Mean Trajectory Discrepancy Distance.

It refers to Equation (4)

Runtime_Wall is chosen to see how much the simulator faster than default case according to change
acceleration parameters. It represents acceleration performance. However, the simulation acceleration may
potentially impact simulation accuracy. The performance measures are analyzed based on the variations in
acceleration parameters to evaluate the impact of each acceleration parameter on simulation acceleration and
the effects on simulation outcomes. The ultimate goal is to maximize the acceleration of the simulation’s
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runtime while maintaining an acceptable level of result variation. On the other side, we also propose
parameters to measure how much simulation acceleration affects the accuracy of the simulator. we introduce
the ’Dead Rate Difference’ and ’MTDD’ (Mean Trajectory Discrepancy Distance)’ as the simulation accuracy
measure, indicators to compare how much the simulation results have changed compared to the Default
simulator. The dead rate is a percentage that represents how much the Blue USV has eliminated Red USV
before it completes its mission, i.e., reaches the goal. The dead rate D(c) and the dead rate difference
DDiff(c) of experiment case c from default data is represented as follows:

D(c) =
Number of Red USVs eliminated by Blue USV in case c

Total Number of Red USVs in case c
×100(%) (1)

DDiff(c) = D(c)−D(Default) (2)

The Mean Trajectory Discrepancy Distance of case c (MT DDc) is defined as follows:

Posc(i, t) = (zn(i, t), ze(i, t)) (3)

zn(i, t) = Northern position of Blue i at time t

ze(i, t) = Eastern position of Blue i at time t

Posc(i, t) = position of Blue i at time t under the experiment case c. (4)

MT DDc =
Endtime

∑
t=0

∑
i∈Blue ID

||PosDefault(i,st)−Posc(i,st)|| (5)

The scale factor s is the interval of time calculating positional differences. We use s = 100 at the
experiment.

4.2 Results Analysis

Based on the experimental design and the performance measure, we conducted results analysis with the
generated simulation results. In particular, we intend to investigate the relationship 1) between acceleration
parameters and performance measures and 2) between the acceleration and the accuracy of simulations.

4.2.1 Relationship Analysis between Acceleration Parameters and Performance measures

We investigated the impact of changes in acceleration parameters on performance measure. Figure 4 displays
graphs of the relationship between each Acceleration parameter and Performance measure, represented
through linear regression. As seen in the figures, ATA and SATA appear to have a significant impact
on reducing runtime. However, an increase in SATA could negatively affect MTDD (Mean Trajectory
Discrepancy Distance) and the Dead Rate Difference, while ATA has a positive impact on MTDD but a
negative effect on the Dead Rate Difference. BAT and SSD do not significantly influence runtime but do
affect simulation accuracy measure, and SSIT does not have a meaningful impact on any parameters.

Table 4 presents a linear regression analysis to identify the detailed correlations between acceleration
parameters and performance parameters. Since the scales of each acceleration parameter is not the same
scale, the analysis included standardization and was conducted with a significance level of 5%. The analysis
results indicate that ATA and SATA have the most substantial impact on runtime, with SATA being the
dominant factor. However, an increase in SATA also leads to an increase in Ddi f f and MTDD. In the case
of SSD, it influences the decrease in Ddi f f and MTDD. It indicates that a larger value of SSD is beneficial
for increasing simulation accuracy.
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Figure 4: Linear regression analysis of the effect acceleration parameter on performance parameter.

Table 4: Regression analysis for the impact of acceleration parameters on performance parameters.
Note : The table reports the estimation results of regression analysis. The numbers under coefficient denote
the coefficient values of the estimation on each values of performance parameters. Estimates with * denote
statistical significance at the 5% level.

Runtime Ddi f f (%) MTDD
Acceleration Parameter std.Coef t P-value std.Coef t P-value std.Coef t P-value
BAT 0.025* 2.962 0.003 0.117* 13.967 0.000 0.104* 10.553 0.000
ATA -0.300* -35.509 0.000 0.255* 30.487 0.000 -0.221* -22.477 0.000
SSIT 0.052* 6.159 0.000 0.003 0.361 0.718 -0.001 -0.1 0.921
SSD -0.066* -7.849 0.000 -0.518* -61.850 0.000 -0.447* -45.380 0.000
SATA -0.633* -74.917 0.000 0.399* 47.590 0.000 0.243* 24.676 0.000
R-Squared 0.498 0.506 0.318
Adj.R-Squared 0.497 0.506 0.318

4.2.2 Detailed Analysis of Experimental Cases

We choose five scenarios for a more detailed analysis on acceleration performance measure. Table 5 shows
the acceleration parameter setting of each scenario.

Left side of Figure 5 shows all 243 cases in the experiment design are plotted with the five acceleration
scenarios highlighted in different colors. Right side of Figure 5 depicts the scatter plot between runtime and
simulation accuracy measure, i.e., MTDD, according to the acceleration scenarios. We demonstrate that the
accelerated cases 3 and 4 efficiently achieve both high acceleration performance and acceptable simulation
accuracy with respect to MTDD. Accelerated case 5 appears to have best acceleration performance in the
left side of Figure 5, Figure 6 shows the distributions of each Performance measures for five cases as
defined in Table 5, from 29 experiments. Left side of Figure 6 shows how the runtime for accelerated cases
be reduced. According to this, accelerated case 5 is the best acceleration scenario among five of them.
However, middle of Figure 6 shows its MTDD values are significantly higher and more varied compared
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Table 5: Acceleration scenario setting.

BAT ATA SSIT SSD SATA
Default 0.01 1 100 5000 1
Accelerated case 1 0.01 5 100 5000 1
Accelerated case 2 0.01 1 100 5000 50
Accelerated case 3 0.01 5 100 5000 50
Accelerated case 4 0.01 10 100 5000 100
Accelerated case 5 0.10 10 100 3000 50

Figure 5: Left - wall clock runtime and simulation time advance / Right - scatter plot of acceleration
performance measure (Runtime_Wall) and Simulation Accuracy measure (MTDD).

to other cases. Additionally, right side of Figure 6 also shows accelerated case 5 has a wide range of
variance. Thus, we can say the accelerated scenario 5 has a significant decrease in simulation accuracy.

5 DISCUSSION

In this case study, we discovered the relationship between acceleration parameters and performance measures
with linear regression analysis. To explore further details, we selected specific scenario cases for performance
measure analysis. As the results, the increase in ATA and SATA have a significant relationship with runtime.
We can see that the acceleration performance reaches up to 4.55 times compared to the default case. This
method of simulation acceleration by reducing the computational load itself can play a significant role in
generating data for AI training. Because, if the computing resources available for generating AI training
data are limited, this software-oriented acceleration method would be very effective. It can also apply
parallel with previously studied hardware-based acceleration methods, so it can be a large step on generation
of AI training data.

The parameters BAT, SSIT, and SSD do not significantly affect simulation runtime but have the potential
to influence the acceleration performance of ATA and SATA through scenario cases (please refer to the
accelerated case 5). Future research could involve increasing the number of experimental cases, and using
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Figure 6: Performance measurements analysis of 5 Acceleration scenarios.

response surface analysis to analyze the interactions between each acceleration parameter to find the optimal
point.

In addition to the USV model proposed in this paper, the acceleration method can be utilized if (1)
model have coupling that transmits the repeated same message on specific condition and (2) state transition
that repeatedly occurs with state changes remain below a certain threshold. When the system model meets
one of the two conditions, it is worth considering acceleration method.

6 CONCLUSION

In this paper, we propose a DEVS-based simulation acceleration method that incorporates domain-specific
knowledge and dynamic structural changes through DSDEVS formalism. The presented case study demon-
strates how the proposed method was processed and implemented, and the experiment results show the
efficiency of the proposed method. Furthermore, through the detailed analyses, a trade-off between the
acceleration and the accuracy of simulations are empirically presented, which should be investigated more
in the further research. It is expected that the proposed method be used to explore the balance between
simulation speedup and fidelity and to provide insights into the acceptable limits of information loss in
accelerated simulation scenarios.
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