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ABSTRACT

We address the challenge of estimating rare events associated with stochastic differential equations using
importance sampling. The importance sampling zero variance measure in these settings can be inferred
from a solution to the Hamilton-Jacobi-Bellman partial differential equation (HJB-PDE) associated with a
value function for the underlying process. Guided by this equation, we use a neural network to learn the
zero variance change of measure. To improve performance of our estimation, we pursue two new ideas.
First, we adopt a loss function that combines three objectives which collectively contribute to improving
the performance of our estimator. Second, we embed our rare event problem into a sequence of problems
with increasing rarity. We find that a well chosen schedule of rarity increase substantially speeds up
rare event simulation. Our approach is illustrated on Brownian motion, Orstein-Uhlenbeck (OU) process,
Cox–Ingersoll–Ross (CIR) process as well as Langevin double-well diffusion.

1 INTRODUCTION

Rare event estimation is of crucial importance in settings where the consequences of the rare event occurrence
are catastrophic and/or of great significance. Standard Monte Carlo methods face either prohibitively high
computational costs or poor accuracy when analyzing these events, owing to their extremely low probabilities.
Variance reduction using importance sampling has found remarkable success in rare event estimation
(Asmussen and Glynn 2007; Vanden-Eijnden and Weare 2012). Importance sampling is frequently utilized
for estimating rare transition probabilities or functions thereof in diffusion processes (see (Juneja and
Shahabuddin 2006) for an introduction). This involves simulating the process under an alternate measure,
which accentuates paths leading to the rare event. The event is analysed under this new measure and the
resulting output is unbiased using the likelihood ratio, which equals the Radon-Nikodym derivative of the
original measure with respect to the new one. However, its effectiveness is often limited to well-structured
models such as those involving random walks. For more complex processes, the success of importance
sampling has been limited and there has been a strong need to extend the technique to more general settings.
This paper contributes to that endeavour for rare events associated with diffusions.

The optimal measure in importance sampling minimizes the variance of the estimator, ideally to
zero, by carefully assigning higher probabilities to the most likely paths to the rare event. This, when
done properly, ensures unbiased and efficient estimates of the rare event probability. For continuous-time
processes, estimating the optimal zero variance measure amounts to estimating the optimal control linked
with a suitable value function related to the process. Approximately solving the HJB-PDEs linked with
the diffusion processes enables the estimation of the value function (Pavliotis 2014), and consequently, the
optimal control. However, solving HJB-PDEs, even approximately, is challenging and becomes intractable
for high-dimensional processes. (Dupuis and Wang 2007) showed that subsolutions are sufficient for
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designing efficient Monte Carlo methods linked to the HJB-PDEs. However, constructing subsolutions
that give rise to efficient algorithms is a difficult task for most stochastic systems. As a result, there is
growing interest in employing deep learning-based methods to approximately solve these PDEs (Han et al.
2017; Nakamura-Zimmerer et al. 2021). (Nüsken and Richter 2021) addressed rare events for diffusions
by considering a performance measure associated with the zero variance measure satisfying an HJB-PDE.
They demonstrated that efficiently estimating the solution to this PDE using deep learning yields a change
of measure that performs well in rare event estimation. However, their approach fails to give good estimates
for very small probabilities such as of order 10−8. Building upon their methodology, our work employs an
adaptive learning-based approach to efficiently estimate rare probabilities in different diffusion processes.

We embed the rare event problem into a sequence of problems with increasing rarity. At each stage,
we estimate the optimal change of measure for the threshold corresponding to the current level of rarity.
This optimal measure is estimated by approximately solving the associated HJB-PDE and identifying the
minimizer of the variance of the rare event estimator. We use a novel loss function to minimize at each
stage. This loss function comprises of three separate constraints imposed on the solution to the HJB-PDE.
Subsequently, in the next level, we generate the SDE under this newly derived measure. Our approach
demonstrates significant reductions in running times and the number of simulation runs needed to generate
rare event estimates with lower relative error. We showcase the efficacy of our approach on Brownian
motion, Ornstein-Uhlenbeck process, CIR process as well as Langevin double-well diffusion. We also
empirically observe that at least for the double well diffusion, while our estimator is in the ball-park of the
correct estimate (and better than that proposed by (Nüsken and Richter 2021)), it may differ from the true
value by a constant. This suggests that further work is needed to make the proposed ideas more broadly
applicable.

The rest of the paper is organized as follows. Section 2 gives background information on the problem.
Section 3 outlines our adaptive-learning approach. Section 4 gives details about our numerical experiments.
Section 5 presents the results. Section 6 offers concluding remarks.

2 PROBLEM FORMULATION

We consider the problem of computing the expectation pε(a,T ) = E[exp{−ε−1 f (XT ,a)}] for some small
ε ≥ 1, where {Xt} is the unique strong solution to an SDE of the form,

dXt = b(Xt , t)dt +σ(Xt , t)
√

εdBt , X0 = x0, (1)

where b(Xt , t) is the drift coefficient driving the process Xt , σ(Xt , t) is the diffusion coefficient, and Bt denotes
the standard d-dimensional Brownian motion. According to (Oksendal 2013), we work under the following
assumptions on b and σ to ensure strong unique solutions to the above SDE: b(x, t) : Rd × [0,T ]→ Rd and
σ(x, t) : Rd × [0,T ]→ Rd are measurable functions satisfying

|b(x, t)|+ |σ(x, t)| ≤C(1+ |x|),
|b(x, t)−b(y, t)|+ |σ(x, t)−σ(y, t)| ≤ D|x− y|,

for some constants C and D. Here f (Xε
T ,a) is defined such that exp{−ε−1 f (Xε

T ,a)} is concentrated around
x = a. For instance, in case of Langevin double well diffusion, let the drift b(Xt) =−κ∇x(X2

t −1)2, and
we define f (XT ) = (XT − 1)2, so that exp{− f (XT )} is close to 1 in the neighbourhood of XT = a = 1.
In this case, our performance measure is closely related to the probability of transition between the wells
positioned at X0 =−1 and XT = 1, separated by a potential barrier of height κ . Through f (XT ), we model
the terminal cost incurred by the particle in reaching the state XT = a from a starting state Xt = x. More
generally, to model the cost associated with the rare event problem of a particle crossing a large threshold
a, we can define f (XT ) = 0 for XT ≥ a, and f (XT )→ ∞ otherwise. This enables defining exp{− f (XT )}
as an indicator function, that takes the value 1 when the particle crosses the threshold, and 0 otherwise.

2560



Hult, Jain, Juneja, Nyquist, and Vijayan

Consequently, the expectation in this framework aligns directly with the empirical probability estimate.
The Monte-Carlo estimate of the expectation using N samples is given by:

p̂ε(a,T ) =
1
N

N

∑
j=1

exp{−ε
−1 f (X jT ,a)}

where each X jT is an independent sample of XT . The estimator is unbiased, i.e. E[p̂ε(a,T )] = pε(a,T ).
The relative error (defined as the ratio of standard deviation and probability) corresponding to the estimator
is given as:

δ (p̂ε) =

√
E[exp{− 2

ε
f (XT )}]

E[exp{− 1
ε

f (XT )}]2
−1

To generate a reliable estimate of p̂ε , one needs a large number of samples N(∝ 1
pε
) if the event is rare.

Since this is computationally expensive, the variance of the estimator tends to be relatively high for an
extremely low probability value, which leads to the relative error blowing up, i.e. δ (p̂ε)→ ∞ as pε → 0.
There is therefore a prohibitive computational cost associated with naive Monte Carlo estimation.
As mentioned in the introduction, importance sampling is commonly utilized for obtaining low-variance
probability estimates in rare event scenarios. This involves simulating paths under an alternate measure,
where the rare event happens more frequently and the resultant output can be unbiased using the likelihood
ratio. Under the importance sampling measure Qu, the SDE and the associated Brownian motion will
experience adjusted drifts. The system dynamics will now be driven by the control u, and the modified
SDE can be written as:

dXu
t = (b(Xu

t , t)+σ(Xu
t , t)u(X

u
t , t)

√
ε)dt +σ(Xu

t , t)
√

εdBu
t ,

Bu
t = Bt −

∫ t

0
u(Xu

t , t)dt
(2)

Under the new measure Qu, Bu
t is the standard Brownian motion. The importance sampling estimator can

be written as:

ρ̂ε(a,T ) =
1
N

N

∑
j=1

exp{−ε
−1 f (Xu

jT ,a)}
dP

dQu (3)

where Xu
t is the unique strong solution to the controlled SDE in Equation (2), and dP

dQu is the Radon-Nikodym
derivative obtained using the Girsanov theorem (Üstünel and Zakai 2013) as:

dP
dQu = exp

(
−
∫ T

0
u(Xt , t)dBt −

1
2

∫ T

0
|u(Xt , t)|2dt

)
Note that EQu [ρ̂ε(a,T )] = EP[p̂ε(a,T )], i.e. ρ̂ε(a,T ) is also an unbiased estimator. The control u needs
to be chosen such that the variance of the estimator under the measure Qu is minimized. See (4), for
t = 0,x = X0, the solution u = u∗ to the equation is unique and under u∗, the variance of ρ̂ is 0 (Nüsken
and Richter 2021). Finding the zero-variance change of measure is as difficult as finding the original
performance measure, so in our algorithm, we resort to finding a control that approximately minimizes
variance on empirically generated sample paths.
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2.1 Optimal Control as Solution to HJB-PDE

Finding the optimal control u can be viewed through the optimization problem of minimizing the second
moment of the probability estimate:

V ε(t,x) = inf
u
EP

[
dP

dQu e−
2
ε

f (XT )|Xt = x
]
. (4)

This can be expressed as the value function for the underlying process Xt (Boué and Dupuis 1998), and
therefore satisfies the associated HJB-PDE,

inf
u

[
∂tV +V

u2

ε
+(b+σu

√
ε)∂xV +

1
2

∂xxV σ
2
ε

]
= 0.

Since V typically takes extremely small values, we use a more stable substitute for it by setting,

W ε(t,x) =−ε logV ε(t,x). (5)

With this notation V ε(t,x) = exp{−ε−1W ε(t,x)}, which implies that

∂tV ε(t,x) =−1
ε

V ε(t,x)∂tW ε(t,x),

∂xV ε(t,x) =−1
ε

V ε(t,x)∂xW ε(t,x),

∂xxV ε(t,x) =−1
ε

V ε(t,x)∂xxW ε(t,x)+
1
ε2V ε(t,x)(∂xW ε(t,x))2.

This leads to the following PDE for W ε :

inf
u

[
u2 −∂tW ε − (b+σu

√
ε)∂xW ε +

(∂xW ε)2σ2

2
− εσ2∂xxW ε

2

]
= 0,

W ε(T,x) = 2 f (x).

By minimizing pointwise over u(t,x) we find that the optimal control is given by u∗ = σ
√

ε∂xW ε

2 and we
arrive at the following PDE for W ε :

−∂tW ε −b∂xW ε +
(∂xW ε)2σ2

2
− εσ2∂xxW ε

2
= 0, (6)

W ε(T,x) = 2 f (x). (7)

As ε → 0, W ε(t,x)→W (t,x), where W solves the limiting Hamilton-Jacobi equation:

∂tW +b∂xW − (∂xW )2σ2

2
= 0,

W (T,x) = 2 f (x).

The above PDE can be solved approximately to estimate the optimal control u∗, that minimizes each V ε(t,x).
This estimate can be used to arrive at a change of measure for efficiently estimating the expectation through
importance sampling.
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2.2 Estimating W Using a Neural Network

In order to obtain an approximation, we encode W ε using a neural network. The change of measure
dQu/dP is then obtained via a Girsanov transformation, by taking the control uε = σ

√
ε∂xW ε

2 , and samples
are generated under Qu. The network parameters (denoted by θ ) are updated iteratively using a stochastic
approximation scheme. This scheme involves optimizing a loss function that combines three objectives:
minimizing the variance of the estimator, enforcing the HJB-PDE, and satisfying the terminal condition.
Note that the second moment of the estimator is minimized by maximizing the initial value, W ε(0,x0), or
equivalently, minimizing −W ε(0,x0). To enforce the HJB-PDE, it is particularly important to enforce it
along the most likely paths leading to the rare event. To this end, we consider a term of the form:∫ T

0

1
2
(
EQu [L εW (t,X(t))2]

)
dt = 0,

where L represents the infinitesimal generator involved in the HJB-PDE:

L εW =−∂tW ε −b∂xW ε +
(∂xW ε)2σ2

2
− εσ2∂xxW ε

2

To satisfy the terminal condition, we aim to minimize EQu
[
(W (T,Xε)−2 f (Xε

T ))
2
]
, and to minimize the

variance of the estimator, we aim to maximize W (0,x0). We represent the loss function as a weighted
combination of these three objectives:

L(θ) =−k1W (0,x0)+ k2

∫ T

0

1
2
(
EQu [L εW (t,X(t))2]

)
dt + k3EQu

[
(W (T,Xε)−2 f (Xε

T ))
2] . (8)

We choose the weights k1,k2,k3 using a discretized grid search over the possible ranges. This is explained
in Section 5.2. In practice the expectations in the gradient of the loss function are approximated by samples
and the time integral by a discrete sum. The parameters of the network are updated via repeated application
of gradient descent with a learning rate η on the loss computed on batches of generated SDE paths, as
follows:

θk+1 = θk −η∇θ L(θk).

3 PROPOSED ALGORITHM

Following the approach outlined in Section 2, we utilize importance sampling for estimating the probability
of interest. The approximation to zero-variance change of measure is derived via a stochastic approximation
scheme, optimizing a mixture of loss functions defined in (8).

Escalating level of rarity: Instead of solving the problem directly for a large threshold a, we adopt
a sequential approach. We transform the original problem into a series of equivalent problems with
progressively increasing levels of rarity, controlled by the value of ε . Starting with a large ε = ε0, we
iteratively decrease it until ε = 1. For each value of ε in the schedule, we determine the optimal change of
measure using the stochastic approximation scheme described in Section 2. In our analysis in Section 5.3
it is more convenient to look at 1

ε
instead of ε and consider an increasing schedule in 1

ε
. Our findings

suggest that an optimal increase in schedule for 1
ε

should be linear, meaning 1
ε

increases from 0 to 1 in
equal increments.

Stochastic Approximation: We use a neural network to approximate W ε (defined in Equation 5). The
initial layer of the network takes pairwise inputs (t,x), representing the position of particle x at time t ≤ T .
The output layer yields W ε(t,x) corresponding to the input. We initialize all network parameters to 0 and
start with ε0 = 10. For the current ε , we generate N trajectories for the given process. These trajectories
serve as pairwise input to the neural network. We define a number of epochs E and a batch size B, dividing
the entire data into batches of size B. The empirical loss in Equation 8 is computed on each batch. We
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use batch training to get stable convergence of the parameters and leverage parallel computations for a
large dataset. Utilizing PyTorch’s automatic differentiation tool, we efficiently compute terms in the loss
function involving the derivative of output W ε with respect to the input (x, t). Subsequently, we update
the network parameters via gradient descent on the computed loss. We repeat this process for each ε over
E epochs. Specifically, at each level i, we utilize the previously estimated optimal control ui−1 along with
the current ε = εi to generate N trajectories. The loss is computed on these trajectories, and the parameters
are updated using gradient descent. W εi is generated as an output from the neural network the optimal
control can then be estimated as uεi =

σ
√

εi∂xW εi

2 . After the final level, we obtain the estimate of optimal
control u∗ corresponding to the original problem. We generate N trajectories under the final ε , and u = u∗,
and compute the importance sampling estimator for the expectation as defined in Equation 3.

This approach benefits from the reduced number of samples we need to generate at each level, as each
smaller embedded problem is no longer a rare event. The steps are summarised in Algorithm (3.1).

Algorithm 3.1 Neural Network Approximation to W
1: Algorithm parameters: Number of levels (k), Number of trajectories (N)
2: Initialize Neural Network: L layers
3: Input: (x, t) ∈ Rd×1 ▷ (d ×1) dimensional input of particle state x at time t
4: Layer 1: Input → H1
5: Layer i: Hi−1 → Hi
6: ...
7: Layer L: HL−1 → Output
8: Output: W ε(t,x) ∈ Rd ▷ W is the output from the NN
9: Initialize parameters θ0 = 0, ε0 = 10,u0 = 0

10: NN training parameters: Number of epochs (E), Batch size (B)
11: while i ≤ k do
12: Generate N trajectories for u = ui−1,ε = εi
13:
14: dXu

t = (b(Xu
t , t)+σ(Xu

t , t)u(X
u
t , t)

√
ε)dt +σ(Xu

t , t)
√

εdBu
t

15:
16: while j ≤ E do
17: for m in N/B do ▷ Loss calculation and weight update using a batch B
18: Obtain W b

θ
(t,xb) as the network output for each sample xb in the batch B

L̂(θ) =−k1W b
θ (0,x0)+

k2

B

B

∑
b=1

(L εiW b
θ (t,xb)

2)dt +
k3

B
(

B

∑
b=1

[
(W b

θ (T,xb)−2 f (xb))
2
]
)

19: θm+1 = θm −ηm∇θ L̂(θm) ▷ Gradient Descent Update.
20: Consider another randomly selected batch B among N trajectories
21: end for
22: Epoch number e → e+1 for another pass over the N trajectories
23: end while
24:
25: ui =

σ
√

εi∂xW εi

2 ▷ Control derived from NN output
26: Compute p(XT > a) = ∑

N
i=1 I(Xui

T > a) dP
dQui , ▷ Exceedance probability for ε = εi

27: end while

4 NUMERICAL EXPERIMENTS

We conduct experiments on the following diffusion processes: Brownian motion, Ornstein-Uhlenbeck,
Cox-Ingersoll-Ross, and Langevin double well diffusion process. The process dynamics for each of these
under an external control u is specified below:
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1. Brownian motion: dXε
t =

√
ε(udt +dBu

t )
2. Ornstein Uhlenbeck: dXε

t =−γXε
t dt +

√
εudt +σ

√
εdBt

3. Cox-Ingersoll-Ross process: dXε
t = α(β −Xε

t )dt +
√

εudt +σ
√

εXε
t dBt

4. Double well potential: dXε
t =−κ∇x((Xε

t )
2 −1)2dt +

√
εudt +

√
2εdBt

Specifically, for OU process we set γ = 0.01,σ = 0.1. For CIR, we set α = 0.1,β = 0.1,σ = 0.15. These
parameters were chosen arbitrarily to get probabilities of the desired order.

4.1 Data Generation

To discretize the SDE over a time interval T , we employ the Euler-Maruyama scheme (Milstein 2013),
which is expressed as:

Xt+1 = Xt +(b+σu
√

ε)∆t +ζ σ
√

ε∆t,

where ζ follows a normal distribution with mean 0 and standard deviation 1. We initialize X0 = 0 for
all processes except the Langevin diffusion, where we initialize X0 =−1. Additionally, we discretize the
equation in steps of ∆t = 0.01, upto T = 10.

4.2 Neural Network Training

We implemented neural networks with 2-hidden layers, each having a dimension of n = 5 and employing a
tanh activation function. These networks are capable of processing pairwise input representing the spatial
position of a particle, denoted as x ∈ Rd , at time t ∈ [0,T ]. The output of the neural network is denoted
as W (t,x), as defined in Equation (5). To train these networks effectively, we utilize a loss function that
combines three objectives, as specified in Equation (8). In our experiments, we generate N = 104 trajectories
for each value of ε , and we operate with a batch size of 64 for stochastic gradient descent. We conduct 100
epochs with an early stopping parameter set to 20, and a learning rate of η = 0.01. We opt for the Adam
optimizer for gradient descent. Following each epoch, we calculate the terms involving the derivative of
the output with respect to the input in the loss function using the automatic differentiation functionality
provided by PyTorch. We follow a linear schedule for ε and vary it uniformly from ε = 10 to 1 in steps
decided by number of levels (k).

5 RESULTS

5.1 Verification of Estimates of Probability and Value Function

We compare the true probabilities and estimates obtained through our approach for the four processes
across various levels of rarity. With the exception of Langevin double well diffusion, we determine the true
probability analytically by examining the density function at time t ≤ T . For Langevin double well diffusion,
we estimate the true probability within a 95% confidence interval using Monte Carlo simulations executed
on a High-Performance Computing machine. These comparative results are presented in Table (1). The
estimates in the table represent the average of 20 independent runs, along with the 95% confidence interval
assuming normal distribution of probabilities. Additionally, we report the empirical variance estimated
from the neural network as V ε = exp{−W ε

ε
}. Across all processes except Langevin double well diffusion,

we observe that the true probability lies within the 95% confidence interval of the estimated probabilities.
In Figure 1, we illustrate the values of W obtained empirically as output from the neural network, alongside
the theoretical value whenever feasible. The latter is computed as the second moment of the exceedance
probability. Notably, we observe a close match between the neural network approximation to W ε and the
analytically computed value.

Comparison with (Nüsken and Richter 2021): Our approach achieves smaller relative errors in single-
dimensional processes and shows an average reduction of approximately 34% in running time compared to
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(a) Brownian (b) Ornstein-Uhlenbeck (c) CIR process

Figure 1: Comparison of numerically computed and neural network approximation to W (t,x) at t = 2.
Numerically, W is computed as the second moment of the exceedance probability.

the findings in (Nüsken and Richter 2021) for the same process parameters. Importantly, our method allows
us to estimate extremely small probabilities, down to the order of 10−8 and below, which their methodology
struggles to handle. The sequential escalation of rarity levels in our algorithm proves effective, enabling us
to observe successes at each level and update parameters accordingly, even when dealing with problems
characterized by high thresholds.

Process True Probability (p) Estimated Probability ( p̂)
√

V ε(0,x0)

Brownian (a=1) 0.784×10−3 (0.784±0.003)×10−3 0.710×10−3

Brownian (a=1.5) 1.038×10−6 (1.038±0.003)×10−6 1.025×10−6

Brownian (a=2) 1.244×10−10 (1.241±0.011)×10−10 1.301×10−10

OU (a = 1.5) 3.229×10−6 (3.258±0.026)×10−6 3.029×10−6

OU (a = 2) 9.027×10−10 (8.982±0.126)×10−10 8.662×10−10

CIR (a = 1) 1.796×10−5 (1.802±0.037)×10−5 1.649×10−5

CIR (a = 1.5) 4.556×10−8 (4.793±0.163)×10−8 4.223×10−8

CIR (a = 2) 1.003×10−10 (1.376±0.225)×10−10 1.611×10−10

Double well (κ = 5,d = 1) (1.868±0.268)×10−4 (3.534±0.118)×10−4 3.829×10−4

Double well (κ = 8,d = 1) (3.552±0.368)×10−8 (9.682±3.738)×10−8 7.137×10−8

Double well (κ = 5,d = 10) (4.735±0.134)×10−3 (3.118±0.732)×10−3 4.053×10−3

Table 1: Comparison of true and estimated probabilities for different processes. With the exception of
Langevin double well diffusion, true probabilities for all other processes are calculated numerically. For
Langevin diffusion, the true probability is estimated using naive Monte Carlo samples, within the 95%
confidence interval. Empirical values of

√
V ε(0,x0) are also reported as obtained from the output of the

neural network. V ε is the second moment of probability and therefore a good approximation for the square
of probability.

5.2 Grid Search for Optimal Weights in the Loss Function

The weights assigned to the three different objectives in the loss function, see (8), are likely to be critical
to solution’s accuracy. To illustrate this in a simple setting, we conduct an empirical grid search to find
close to optimal distribution of weights assigned to these terms in case of Brownian motion. Specifically,
we explore the parameter space where k3 = 1− k2 − k1 and each ki ranges from 0 to 1. We traverse this
grid with increments of 0.05 and evaluate the relative errors for all such triplets k1,k2,k3. In Figure 2, we
plot the relative errors for different weight distributions, keeping k1 fixed, and varying k2 from 0 to 1 in
increments of 0.05. We find that we achieve low relative errors when a non-zero weight is given to all the 3
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terms in the loss function, and especially when the term involving HJB-PDE is given the maximum weight.
In particular, lowest errors are achieved in case of Brownian motion for k1 = 0.35,k2 = 0.45,k3 = 0.2. We
also observe that the solution does not converge when k1 = 0, and one of k2 or k3 is also 0.

Figure 2: Relative errors for different weight distributions in the loss in (8) for Brownian motion (a = 2).
We achieve low relative errors when a non-zero weight is given to all the three terms in the loss function,
especially when k2 is given the maximum value. In particular, the lowest errors are achieved in the case of
Brownian motion for k1 = 0.35, k2 = 0.45, k3 = 0.2. We also observe that the solution does not converge
when k1 = 0, and one of k2 or k3 is also 0.

5.3 Choosing the ε Increase Schedule to Control Rarity

We provide an illustrative heuristic argument to justify a linearly increasing schedule for increasing rarity in
the simple Brownian motion setting. Consider the problem of estimating P(BT ≥ Ta) where BT denotes the
standard Brownian motion observed at time T and a is a positive value. The above probability is identical
to P(N(0,1) ≥ a

√
T ). We consider a sequence of problems P(N(0,1) ≥ βma

√
T ) for m = 1, . . . ,n and

0 < β1 < β2 < .. .βn = 1 for estimating this probability, where β = 1
ε
. We consider the semi-ideal setting

where at each stage, the algorithm learns the correct exponential twist accurately. Thus after stage m, it
learns that the optimal change of measure corresponds to generating a sample of N(0,1) using N(βm,1) (see
(Asmussen and Glynn 2007) for discussion on exponentially twisting distributions, and their asymptotic
optimality for random walks when the mean of the random walk is set to the exceedance probability
threshold). Since N(0,1) can be expressed as a sum of n independent N(0, 1

n) random variables, the
asymptotic optimality ideas remain relevant in our context. Now, further suppose that in the next stage,
computational effort is proportional to the number of paths that cross the threshold βm+1a

√
T . Each path

roughly achieves this with probability 1
2π(βm+1−βm)a

√
T

exp(−1
2(βm+1 −βm)

2a2T ). Further, assume that at
each stage, a large and a fixed number of successful samples are needed to estimate the change of measure
for the next stage. We see that the computational effort needed at each stage is roughly proportional to
exp(1

2(βm+1 −βm)
2a2T ). Thus, in this toy setting, finding the optimal escalation schedule roughly boils

down to minimising (set ε0 = 0),

n−1

∑
m=0

exp
(

1
2
(βm+1 −βm)

2a2T
)
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Observe that exp(cx2) is a convex function of x for c > 0. Thus, by Jensen’s inequality (for a random
variable that takes each value βm+1 −βm with probability 1/n)

n−1

∑
m=0

exp
(

1
2
(βm+1 −βm)

2a2T
)
≥ nexp

(
1
2

(
βn −β0

n
a
)2

T

)
.

The RHS is achievable by a linear schedule achieved by setting each βm = m
n . Thus the minimum value

for a given n equals

nexp
(

1
2

(a
n

)2
T
)
.

Using calculus, the optimal n can be seen to equal a
√

T . In practice the correct change of measure is only
approximately learnt. To control the fluctuation in it, one may need to have a finer grid corresponding to a
larger n. Our experiments on Brownian motion for a = 2,T = 10 support the above arguments. In Figure
3, we show the comparison of relative errors for schedules that have ε decreasing linearly vis-à-vis an
exponentially decreasing schedule. We observe that while the errors are always ≥ 1, the linear schedule
always results in lower relative errors for all values of the number of levels. Empirically, the optimal
number of levels seems to be larger than the theoretical optimum, i.e. a

√
T . The latter however has been

calculated under the assumption that we estimate the optimal measure at each level. We find that with
better estimates of the measure in each level, the number of optimal levels start decreasing toward the
theoretical optimum. This is shown in Figure 4, where it is indicated that more epochs result in better
estimates and lower number of optimal levels.

Figure 3: Comparison of relative errors for a
linearly decreasing and exponentially decreasing
schedule of ε for different number of levels. The
linear schedule always results in lower relative
errors.

Figure 4: Comparison of relative errors under the
linear schedule for different number of epochs
across varying levels. More training results in
lower relative errors upto a certain number of
levels.

6 CONCLUSION

We considered the problem of devising an importance sampling methodology for a rare event problem
associated with a diffusion process taking a rare excursion. We embedded the problem in a sequence of
problems with increasing rarity. Each problem has an ideal zero variance solution that corresponds to
solving an HJB-PDE. We approximately solve this PDE using deep learning methods with a mixture of
carefully selected loss functions. Solution from each less rare problem is used to help solve the more
rare problem at the next stage. We implemented the proposed methods on rare events associated with the
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Brownian motion, O-U process, CIR process as well as for double well problem with a Langevin diffusion.
We find that our results are quite efficient and accurate for Brownian motion as well as the O-U and the
CIR process. For the double-well problem our results begin to lose accuracy although they still perform
better than other proposed methods in the literature. This suggests that while the proposed approach is
promising, much further research is needed both conceptually and empirically, to be able to solve rare
event problems associated with diffusion processes in generality.
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