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ABSTRACT 

Photovoltaic (PV) systems are pivotal in the global energy transition, where accurate solar power 
forecasting is critical. Traditional forecasting has leaned heavily on solar irradiance data, yet such reliance 
carries inherent uncertainties and measurement complexities, presenting significant forecasting challenges. 
This paper introduces a novel hybrid/ensemble model that reduces dependence on solar irradiance data, 
utilizing geographic, meteorological, and temporal data to predict solar power output. Combining the 
strengths of XGBoost and LightGBM algorithms through a linear regression meta-model, our approach 
demonstrates improved prediction accuracy, evidenced by a mean absolute error (MAE) of 0.033, and an 
R-squared value of 0.693. This study advances solar power forecasting, enhancing PV system efficiency, 
and reliability, and promoting sustainable energy investments. 

1 INTRODUCTION 

Photovoltaic (PV) systems have emerged as a dominant technology in renewable energy due to their direct 
conversion of solar energy into electricity, leading to substantial growth in global installations. From 2000 
to 2011, the installed capacity of PV systems worldwide increased dramatically from 1 GW to 67 GW, 
influenced by several pivotal factors (Das et al. 2018).  

As mentioned, photovoltaic (PV) technology has rapidly evolved, offering an environmentally friendly 
alternative to conventional energy sources like thermal power. Unlike these traditional sources, PV systems 
are subject to high variability and uncertainty primarily due to fluctuating atmospheric conditions such as 
solar irradiance, temperature, and wind speed. This variability can occur across different timescales—from 
seconds to hours—posing significant challenges for accurate forecasting and balancing electricity 
generation with demand. Moreover, enhancements in prediction accuracy could substantially reduce 
operational costs (Oneto et al. 2018). 

Forecasting for horizontal PV arrays is primarily driven by spatial constraints and performance 
characteristics under diffuse irradiation conditions. Horizontal installations, such as those on building 
rooftops, are often the only viable option in urban or densely built environments where space for larger, 
angled solar arrays is unavailable (Kaur et al. 2016) These arrays are particularly advantageous as they 
perform more effectively under diffuse light conditions compared to latitude-tilted panels, which are 
optimized for direct sunlight (Liu et al. 2019; Pedro et al. 2012). This makes horizontal arrays suitable for 
regions with frequent overcast conditions, thus broadening the applicability of solar energy. 

2 FORECASTING METHODS OVERVIEW 

Solar power forecasting can be broadly categorized into three primary methods: physical methods, time-
series statistical methods, and hybrid techniques, each serving distinct forecasting needs based on the data 
availability and the required precision of the forecasts.  
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2.1 Physical Methods 

These involve using mathematical models to simulate the physical states and dynamics of the atmosphere 
that affect solar irradiance. These methods are particularly useful for short-term forecasts where immediate 
local environmental changes play a significant role (Kaur et al. 2016; Liu et al. 2019; Ogliari et al. 2013). 
They heavily rely on accurate weather forecasting data and can be less effective when sudden 
meteorological changes occur. 

2.2 Time-Series Statistical Methods 

These are data-driven approaches that use historical data to identify patterns and predict future outcomes. 
They can be subdivided into Regressive Methods and Machine Learning-Based Models.   

Regressive methods, establish relationships between dependent variables (solar power output) and 
independent predictors using statistical techniques. While they generally provide stable forecasts, their 
performance can deteriorate with abrupt weather changes (Antonanzas et al. 2016; Raza et al. 2016). 

Machine Learning-Based Models include neural networks (NNs), support vector machines (SVM), 
random forests (RF), deep learning methods, and k-nearest neighbors (KNN). These models excel in 
capturing complex, nonlinear relationships in data and can adaptively learn from past trends to improve 
accuracy in solar power forecasting (Rana and Rahman 2020; Han et al. 2019; Liu et al. 2019; Vandeventer 
et al. 2019; Agoua et al. 2018). 

2.3 Hybrid/Ensemble Models 

As discussed, these models combine two or more forecasting methods along with optimization algorithms 
to harness the benefits of each, thereby enhancing predictive accuracy. They are particularly useful in 
scenarios where a single model’s approach is insufficient to handle the complexity or variability of the data 
(Kaur et al. 2016; Ogliari et al. 2013). Hybrid models are often designed to complement the strengths and 
mitigate the weaknesses of their constituent models, offering a balanced approach to forecasting that can 
adapt to varying data qualities and environmental conditions.  

Hybrid or ensemble models represent a significant advancement in the domain of solar power 
forecasting due to their ability to amalgamate the strengths of multiple forecasting techniques, thereby 
enhancing overall accuracy. These models leverage diverse methodologies, including statistical, machine 
learning, and physical approaches, to capture a comprehensive range of dynamics and relationships within 
solar power data. For example, integrating Support Vector Regression (SVR) models optimized with 
Genetic Algorithms (GA) has been shown to yield higher accuracy by effectively tuning model parameters 
and adapting to non-linear patterns in solar power generation data (Kaur et al. 2016; Liu et al. 2019). 
Furthermore, hybrid models can mitigate the individual limitations of single-method forecasts by 
combining their predictive capabilities, thus providing a more robust and reliable forecast even under 
variable and complex environmental conditions. The strategic combination of different models helps reduce 
the bias and variance associated with standalone models, leading to improved predictive performance, 
especially in the inherently unpredictable field of solar power due to weather variabilities (Acar and Rais-
Rohani 2009). The advancement of hybrid/ensemble models in PV system forecasting represents a 
significant leap forward, particularly for managing the complexities of horizontal PV arrays in varied 
environmental conditions. These models enhance forecast accuracy by integrating diverse methodologies, 
proving essential in adapting to the dynamic nature of solar power generation. This project contributes a 
novel aspect by quantifying the efficacy of machine learning algorithms to predict horizontal photovoltaic 
power output without direct irradiation data, employing a hybrid/ensemble approach. By utilizing 
geographic, meteorological, and temporal data, our study advances the predictability and operational 
efficiency of solar power systems, setting new benchmarks for the industry.  

3 HYBRID/ENSEMBLE MODELS IN PV SYSTEMS FORECASTING 

Hybrid/Ensemble modeling has emerged as a pivotal approach in forecasting PV system power output, 
employing various sophisticated techniques to manage the complex dynamics involved. Artificial Neural 
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Networks (ANN) represent a foundational meta-modeling approach, utilized extensively for their robust 
predictive capabilities across multiple scenarios (Omar et al. 2016) These models are particularly effective 
in handling nonlinear data and adapting to new input patterns through learning algorithms. For instance 
Omar et al. (2016) enhanced the day-ahead power prediction accuracy of a solar facility using an MLP 
feed-forward ANN, trained on the historical power output data of the plant. 

Further advancements in meta-modeling include the integration of genetic algorithms and particle 
swarm optimization with neural networks to fine-tune prediction accuracies (Li et al. 2016). These 
techniques adjust the network parameters optimally, navigating the complex landscape of possible solutions 
more efficiently than traditional methods  

The Analog Ensemble (AnEn) method, another significant development, offers short-term probabilistic 
forecasts based on historical data sets from Numerical Weather Prediction models. This method, combined 
with ANNs, has demonstrated superior forecasting performance in large-scale computations (Alessandrini 
et al. 2015). 

Other notable methods include the Multivariate Adaptive Regression Spline (MARS) model, which 
builds relationships between variables without prior assumptions, and Support Vector Regression (SVR), 
which has been shown to correlate well with seasonal variations in power output. The integration of discrete 
wavelet transformation with the SVM framework illustrates another innovative approach, where data are 
decomposed to enhance the prediction quality (Deo et al. 2016). 

Models often segment the forecasting process into distinct stages, employing specific techniques 
tailored to each phase. For example, Yang et al. (2014) proposed a three-step model using classification, 
training, and forecasting stages, applying different methodologies like Self-Organizing Map (SOM), 
Learning Vector Quantization (LVQ) networks, SVR, and fuzzy inference methods across these stages.  

The development and refinement of hybrid models represent a significant trend in meta-modeling, 
combining multiple approaches to optimize prediction accuracy. This strategy is rooted in earlier works by 
Perrone and Cooper (1993), which advocated for committees of neural networks. Subsequent studies have 
expanded on this concept, using surrogates and optimized weight coefficients to integrate various models 
into a cohesive forecasting framework (Zerpa et al. 2005; Acar and Rais-Rohani 2009). 

4 PROBLEM STATEMENT 

Solar irradiance is a pivotal factor in forecasting solar power output; however, its utilization faces 
significant challenges. Firstly, the measurement of solar irradiance can be intricate and time-consuming, 
especially at specific sites. This results in data that may contain uncertainties ranging from 8% to 25%, 
leading to potential inaccuracies in power output forecasts (Qing and Niu 2018; Yaniktepe and Genc 2015; 
Letendre et al. 2014). These uncertainties stem from variabilities in weather conditions and the inherent 
limitations of the models used to predict irradiance. Moreover, reliance on irradiance data can lead to 
forecast errors that complicate the evaluation of photovoltaic (PV) performance under varied environmental 
conditions (Pasion et al. 2020). 
      This study showcases a hybrid/ensemble model that adeptly predicts solar power output. This 
methodology addresses the challenges associated with the dependency on irradiance data by testing the 
hypothesis that machine learning algorithms like XGBoost and LightGBM can accurately predict power 
output while avoiding the uncertainties of irradiance measurements. This method combines the strengths 
of both physical and statistical forecasting techniques to address the variability in solar power generation. 

5 DATASET DESCRIPTION 

In this research, we utilized a comprehensive dataset used in another article (Pasion et al. 2020), which was 
collected from 12 strategically chosen locations across Department of Defense (DoD) installations within 
25 regions. This selection was informed by a meticulous application of climate classification matrices and 
Pareto analysis to ensure a representative sample of climate regions for our study (UCAR Center for Science 
Education 2020). 
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The dataset comprises several key variables, each chosen for its relevance to solar power generation 
the following is the list of variables:  

 
• Cloud Ceiling: Clouds scatter and block sunlight, directly affecting solar irradiance. The cloud 

ceiling measures this effect by recording the altitude at which significant cloud coverage occurs, 
indicating how much sunlight reaches the PV panels (Lave and Kleissl 2011). 

• Latitude: influences the angle at which sunlight hits the Earth, affecting the intensity and duration 
of solar exposure on the panels, which is essential for determining potential energy output (Faine 
et al. 1991). 

• Month and Hour: Essential for capturing seasonal and daily variations in sunlight, impacting solar 
panel efficiency and power output predictions (Faine et al. 1991). 

• Humidity: Impacts panel efficiency through effects on sunlight refraction, diffraction, and 
reflection, and influences dust accumulation on panels (Mekhilef et al. 2012). 

• Temperature: Directly impacts PV panel efficiency; generally, higher temperatures decrease 
performance (Kayri et al. 2017). 

• Wind Speed: Can improve panel efficiency by cooling, or contribute to dust accumulation, affecting 
irradiance absorption and efficiency (Lu and Zhao, 2018). 

• Visibility: Measures atmospheric clarity, influencing the amount of sunlight reaching the panels. 
• Pressure: Helps forecast weather-related impacts on PV performance by indicating impending 

weather changes (UCAR Center for Science Education 2020). 
• Altitude: At higher altitudes, the thinner atmosphere allows more sunlight to reach the panels, 

potentially increasing solar power output. 
 

6 EQUIPMENT & MATERIALS 

The study involved deploying photovoltaic (PV) systems across various United States Air Force (USAF) 
installations globally to monitor and analyze the performance of these renewable energy sources.  
      The primary equipment included: 

Renogy 50-watt, 12-volt, polycrystalline PV panels: Selected for their cost-effectiveness and durability, 
suitable for different environmental conditions. 

Raspberry Pi 3, model B, version 1.2 computers: Used to record essential data such as panel power 
output and environmental conditions at 15-minute intervals.  

These devices are housed in Waterproof Pelican cases: These cases protect the Raspberry Pi computers 
from environmental elements, ensuring data integrity. 
      Connectivity was maintained through CAT cables and power cables, and data storage was handled using 
SD cards (Pasion et al. 2020). 

7 METHODOLOGY  

7.1 Data Preprocessing 

In advancing our solar power forecasting model, a rigorous data preprocessing strategy was essential to 
prepare the dataset for effective machine learning analysis. This section delves into the nuanced 
preprocessing techniques we employed. 

Our preprocessing began with converting date strings into Date-Time objects, which facilitated the 
extraction of useful temporal features such as the day of the week and month of the year. This initial step 
was crucial for the subsequent creation of interaction terms, enabling our model to capture interactions 
between different temporal units that could significantly affect solar power generation. 

Environmental factors like temperature and wind speed are critical for predicting solar power output. 
To address this, we employed rolling averages and exponentially weighted moving averages for these 
variables to smooth out fluctuations and highlight longer-term trends. This treatment mitigates the impact 
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of transient anomalies on the prediction model, focusing the learning process on underlying trends that are 
more predictive of solar output. 

To capture non-linear relationships and interactions between features, we applied polynomial 
transformations to our data, generating new features that represent interaction terms up to the second degree. 

This approach allows our models to consider complex interdependencies between variables, which is 
often crucial for accurate energy forecasting.  

7.1.1  Cyclic Feature Transformation 

Solar power generation is profoundly influenced by seasonal and diurnal patterns due to the Earth's orbit 
around the sun and its axial tilt. To adequately model these temporal dynamics, we transformed time-related 
attributes into cyclic features. This transformation was accomplished by applying trigonometric functions—
sine and cosine—to time variables such as month, day, and hour (1), (2):   

 
    𝑥𝑥sin = sin �2π×x

T
�  (1) 

                                                              𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐 = cos �2𝜋𝜋×x
𝑇𝑇
�   (2) 

 
Where: 𝑥𝑥 represents the time unit(month, day, or hour) and 𝑇𝑇 is the total number of units in one cycle 

(12 for months, 30 for days, and 24 for hours). 
 These cyclic transformations help preserve the continuity of time, where the end of one cycle 
seamlessly connects back to the beginning (e.g., 23:00 hours is close to 00:00 hours), thereby facilitating 
the model's ability to learn and predict seasonal trends and daily patterns effectively. 

7.1.2 Solar Position Calculations 

The availability and intensity of sunlight, which directly impact solar power output, vary primarily with the 
geographical position and the time of the year. To quantitatively assess this variation, we computed solar 
position metrics, including solar elevation and azimuth angles, using established solar geometry algorithms. 
These metrics are essential for determining how sunlight interacts with solar panels at different times and 
locations. 

The solar elevation angle (𝛼𝛼) is calculated using the formula (3) and The solar azimuth angle (𝛾𝛾) from 
the north, turning positive towards the east is calculated as (4). 

  
     𝛼𝛼 = arcsin(sin(𝛿𝛿) × sin(𝜙𝜙) + cos(𝛿𝛿) × cos(𝜙𝜙) × cos(𝐻𝐻))  (3)

  sin( )arctan( )
cos( ) sin( ) tan( ) cos( )

H
H

γ
φ δ φ

=
× − ×

 (4)

                                                                                                                                                            
Where:  𝛿𝛿 is the solar declination, 𝜙𝜙 is the latitude of the location. 
 𝐻𝐻 is the hour angle, which is 15∘ per hour away from solar noon (positive in the afternoon and 

negative in the morning). 
These calculations provide a precise measure of the sun's position relative to the specific location of 

the photovoltaic (PV) installations. By incorporating these geographical dynamics into the model, we 
enhance its capability to predict solar power output by aligning the predicted values more closely with the 
actual solar path and its interaction with the Earth’s surface. This approach not only leverages the cyclic 
nature of solar movement but also accounts for geographical variations that can significantly influence solar 
power generation. 

7.1.3   Feature Selection 

In our study, we applied Recursive Feature Elimination (RFE) to fine-tune the feature set for our solar 
power forecasting models, specifically LightGBM and XGBoost. This technique progressively eliminates 
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the least significant features based on their impact on model performance, thereby optimizing the feature 
space. 

Our initial RFE evaluation covered the entire set of available features. This comprehensive assessment 
indicated a noticeable improvement in model performance within the feature count range of 95 to 125. The 
performance not only improved dramatically in this range but also stabilized, suggesting a concentration of 
critical predictive features. Motivated by this observation, we conducted a focused analysis within this 
range to pinpoint the most effective number of features. This detailed exploration identified optimal counts 
of 109 features for LightGBM and 103 features for XGBoost, where each model reached its lowest negative 
mean squared error (Neg MSE). The results for LightGBM are shown in Figure 1, as an example of the 
analysis process. 

 
              Figure 1: Analysis of MSE across varying numbers of RFE features. 

7.2 Model Training 

In the development of the hybrid/ensemble model presented in this study, XGBoost (Extreme Gradient 
Boosting) and LightGBM (Light Gradient Boosting Machine) were selected for their exceptional ability to 
handle complex, non-linear relationships inherent in environmental data. 

7.2.1    Selection Rationale of Base Models 

XGBoost (Extreme Gradient Boosting) is a decision-tree-based ensemble machine learning algorithm that 
operates within a gradient boosting framework. The core of XGBoost's functionality is its objective function 
(5), which it seeks to minimize:    
   
                                𝐿𝐿(𝜃𝜃) = ∑ �𝐿𝐿 �𝑦𝑦𝑖𝑖 ,𝑦𝑦�𝑖𝑖

(𝑡𝑡)� + ∑ Ω(𝑓𝑓𝑘𝑘)𝑡𝑡
𝑘𝑘=1 �𝑛𝑛

𝑖𝑖=1        (5) 
 

In this function:  𝐿𝐿(𝑦𝑦𝑖𝑖 ,𝑦𝑦�𝑖𝑖
(𝑡𝑡)) represents the loss function, quantifying the prediction error between the 

forecasted 𝑦𝑦�𝑖𝑖
(𝑡𝑡) and the actual 𝑦𝑦𝑖𝑖  values. 

Ω(𝑓𝑓𝑘𝑘) denotes the regularization term for each tree 𝑓𝑓𝑘𝑘, which helps prevent overfitting by penalizing 
the complexity of the model.  
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The regularization component is further broken down as Ω(𝑓𝑓) = 𝛾𝛾𝑇𝑇 + 1 2⁄ 𝜆𝜆‖𝑤𝑤‖2, where T is the 
number of leaves, w is the leaf weights, 𝛾𝛾 controls the contribution of the number of leaves, and 𝜆𝜆 moderates 
the leaf weights.  

XGBoost incorporates both L1 (lasso regression) and L2 (ridge regression) regularization techniques 
through its regularization terms. These methods help enhance the performance and generalizability of the 
model by constraining the complexity of the learned structures. Moreover, XGBoost is uniquely equipped 
to handle missing data, automatically attributing default directions on nodes of trees when encountering 
missing values. This capability is particularly beneficial in fields like meteorology where data can be 
incomplete but critical for accurate forecasting. 

The integration of these features makes XGBoost exceptionally effective for datasets where complete 
data collection poses a challenge, such as in solar forecasting applications. By robustly addressing both 
missing data and the risk of model overfitting, XGBoost provides a reliable, high-performance tool for 
predictive tasks involving complex environmental data. 

LightGBM (Light Gradient Boosting Machine) advances the gradient boosting framework by 
employing a histogram-based technique that buckets continuous feature values into discrete bins. This 
method effectively reduces memory usage and accelerates computations, which are vital when dealing with 
extensive datasets. The discretization process can be described mathematically by the formula (6):   

 
 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑘𝑘 = �𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣−min (𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)

𝑤𝑤𝑖𝑖𝑤𝑤𝑡𝑡ℎ 𝑐𝑐𝑜𝑜 𝑏𝑏𝑖𝑖𝑛𝑛
� (6) 

 
In this formula: 𝑣𝑣𝐹𝐹𝑣𝑣𝐹𝐹𝐹𝐹 represents the continuous feature value, min (𝑣𝑣𝐹𝐹𝑣𝑣𝐹𝐹𝐹𝐹) is the minimum value of 

the feature across the dataset, and 𝑤𝑤𝑤𝑤𝑤𝑤𝐹𝐹ℎ 𝑜𝑜𝑓𝑓 𝑏𝑏𝑤𝑤𝑏𝑏 defines the interval size into which the values are grouped. 
This quantization simplifies the model's calculations during tree building by reducing the complexity 

of decisions at each node split. The ability to efficiently process these discretized values enhances 
LightGBM’s performance, particularly in large-scale applications. 

Moreover, LightGBM seamlessly integrates support for categorical features, further enhancing its 
utility in diverse applications. This direct support avoids the overhead typically associated with non-
numeric data processing in machine learning tasks. 

LightGBM’s design is optimized for high computational and memory efficiency without compromising 
the accuracy of the model. This makes it exceptionally suitable for real-time applications such as solar 
power forecasting, where quick data processing is crucial. The speed with which LightGBM handles large 
volumes of data makes it an invaluable tool for dynamic environments that require rapid and accurate 
predictive capabilities.    

7.2.2    Rationale for Employing Linear Regression as Meta-Model 

The deployment of linear regression as the meta-model within our ensemble framework is a strategic 
decision aimed at enhancing the model's interpretability and operational efficacy. This choice is critical for 
ensuring the accuracy, simplicity, and interpretability of solar power forecasting, which are pivotal for real-
world applications. 

Linear regression excels in aggregating outputs from multiple models, such as LightGBM and 
XGBoost, which capture different aspects of the dataset's complexity. This integration uses a statistically 
robust weighted average approach, optimizing prediction accuracy by combining diverse model insights. 
This method not only mitigates the error variance across predictions but also provides a transparent rationale 
for each prediction's contribution to the final output. 

Operational advantages of linear regression include its computational efficiency, involving fewer 
parameters and less computational overhead than more complex algorithms. This simplicity enables quicker 
recalculations and updates, essential in real-time forecasting scenarios where prompt decision-making is 
crucial. Additionally, the reduced computational demand facilitates scalability and efficient deployment 
across various technological platforms. 
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Lastly, the transparency of linear regression greatly enhances the interpretability of the model. 
Stakeholders can easily understand the derivation of predictions, fostering trust and providing actionable 
insights. This clarity also simplifies the process of model validation and auditing, crucial in settings where 
understanding the basis of algorithmic decisions is necessary.   

8 RESULTS  

8.1 Model Evaluation Metrics 

The meta-model achieved promising results with a Mean Absolute Error (MAE) of 0.033 and a Root Mean 
Squared Error (RMSE) of 0.116, indicating a tight grouping of predicted values around the actual data 
points. The model's R-squared value stood at 0.693, reflecting that approximately 69.3% of the variance in 
the dependent variable is predictable from the independent variables.  

8.1.1     Cross-Validation Consistency 

To ascertain the stability and reliability of the model across different subsets of data, we employed a 10-
fold cross-validation approach. The average R-squared value across all folds was 0.692, with individual 
folds ranging from a minimum of 0.665 to a maximum of 0.717, as depicted in Figure 2. This analysis 
demonstrates the model's consistent performance, even with variations in the data subsets, underscoring its 
robustness.         

 
Figure 2: 10-Fold cross-validation 𝑅𝑅2 scores. 

8.2 Predictive Performance Visualization 

Further insight into the model’s predictive accuracy is garnered through a plot comparing actual and 
predicted values of solar power output Figure 3. The visualization illustrates a close alignment between the 
predicted and actual values across 4,000 samples, with the model effectively capturing the trends and 
fluctuations in solar power output throughout the dataset. 
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Figure 3: Comparison of actual and predicted values by meta model. 

9 DISCUSSION 

Comparative analysis in solar power forecasting is challenging for our study due to the common reliance 
on solar irradiance data in previous research. This reliance complicates direct comparisons, as our 
methodology does not utilize solar irradiance data. Fortunately, the study by Pasion et al. (2020), which 
also forecasts solar power without relying on solar irradiance data, provides a suitable basis for comparison. 
This section will discuss the relative effectiveness of our methodology in relation to their approach. 

In the evaluation of predictive models for solar power forecasting, understanding the trade-offs between 
different performance metrics and their implications on real-world applications is essential. This analysis 
compares two models based on multiple criteria: R-squared, Root Mean Squared Error (RMSE), Mean 
Absolute Error (MAE) and cross-validation R-squared, See Table 1, providing a comprehensive overview 
of each model's strengths and weaknesses. 

Table 1: Comparison metrics. 

Metrics Present Work (Pasion et al. 2020) 
Model Meta-Model DRF 
𝑹𝑹𝟐𝟐 0.693 0.939 

MAE 0.033 1.176 
RMSE 0.116 1.754 

Cross-Validation  𝑹𝑹𝟐𝟐 0.692 0.673 
 

9.1 Pasion et al. (2020) Results 

Pasion et al. report a high R-squared value of 0.93, indicating an excellent capacity to capture the variance 
in the dependent variable from the predictors within their training dataset. This high R-squared is preferable 
in scenarios where the primary goal is to explain the influence of independent variables on the dependent 
variable, relevant in studies aimed at understanding the driving factors behind observed phenomena.  
However, this model also exhibits high MAE and RMSE values of 1.176 and 1.754, respectively, indicating 
substantial average prediction errors. Critically, the cross-validation R-squared for this model drops to 
0.673, a significant decrease from its initial R-squared. This discrepancy suggests that while the model 
performs well on the training data, it fails to generalize effectively to unseen data, a likely indication of 
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overfitting. Overfitting occurs when a model fits the training data too closely, capturing noise as if it were 
true underlying patterns. This typically happens with overly complex models, but it can also occur due to 
insufficient training data or high variability within the data. Overfitting diminishes the model's predictive 
reliability in practical scenarios, highlighting the importance of balancing model complexity with data 
quality and quantity. 

9.2 Present Work Results 

Contrastingly, our meta-model demonstrates a slightly lower but highly consistent R-squared of 0.693, 
closely mirrored by the cross-validation R-squared of 0.692. This consistency indicates a robust model 
performance across different data subsets, avoiding the pitfalls of overfitting observed in the DRF model. 
Additionally, the significantly lower MAE (0.033) and RMSE (0.116) reinforce the model's accuracy in 
predicting values that are close to the actual data points. The lower MSE and RMSE values make this model 
more suitable for predictive tasks where accuracy is paramount, particularly advantageous in operational 
settings or predictive analytics where the cost of prediction errors is high. The use of an ensemble of 
LightGBM and XGBoost, meta-modeled with simple linear regression, contributes to this performance by 
effectively balancing the bias-variance trade-off. The linear regression component of the meta-model, by 
averaging the outputs of the base models, not only reduces variance but also curtails the overfitting 
tendency, thus enhancing the model’s generalizability. The alignment of the R-squared values and the low 
error metrics suggest a balanced model that avoids overfitting and maintains its predictive accuracy across 
both the training dataset and unseen data. 

10 CONCLUSION 

The comparative analysis provided in this study demonstrates the superiority of our meta-model in terms 
of generalization and predictive accuracy, specifically within the context of solar power forecasting. While 
the model by Pasion et al. showcases high explanatory power within the training dataset, it suffers from 
poor generalizability and higher prediction errors due to potential overfitting. In contrast, our methodology, 
which combines LightGBM and XGBoost with a meta-model based on simple linear regression, exhibits 
stable performance metrics across both training and unseen data, thereby establishing itself as a more 
reliable and accurate tool for forecasting. 

In developing our methodology, we intentionally diverged from the more complex approaches typically 
found in the literature. By integrating LightGBM and XGBoost, we optimize processing speed and reduce 
computational overhead, which are crucial for operational efficiency in real-time applications. Unlike other 
studies that rely on more intricate and computationally intensive methods, our straightforward use of linear 
regression for the meta-model not only enhances update speeds but also maintains high interpretability. 
This aspect is particularly vital for gaining stakeholder trust and ensuring regulatory compliance. 

Our strategic emphasis on simplicity and efficiency, without compromising accuracy, positions the 
presented methodology as particularly effective and adaptable to the dynamic, data-intensive demands of 
modern renewable energy management. This approach not only challenges traditional complex modeling 
strategies but also underscores the importance of developing robust, efficient, and transparent models in 
predictive analytics, enhancing both the integration and management of solar power systems in the energy 
sector. 
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