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ABSTRACT 

As manufacturing rapidly evolves, optimizing processes is essential. Digital Twins, which act as near real-
time virtual replicas of the corresponding real-world systems, can support this optimization by providing 
insights and supporting decision-making. Digital Twins can only be fully effective if their underlying 
models continuously and accurately reflect the corresponding physical systems. However, not all model 
components change at the same pace, and relevant data updates also vary in frequency. Thus, Digital Twins 
require robust validation mechanisms that can identify what parts of models need to be re-extracted, what 
parts need to be recalibrated, and what parts need to remain same. This is a complex task that necessitates 
precise partitioning of models with respect to the above noted considerations. Here, we propose a novel 
approach to modular validation, aimed at supporting Digital Twins. To illustrate our approach, we provide 
a case study in reliability analysis of manufacturing systems. 

1 INTRODUCTION 

Simulation has long been used in manufacturing industry as a powerful tool in all stages of product life 
cycle from design to sales (Lin and Zhou 2018). The continuous evolution of technologies and the ever-
changing customer demands has made today’s manufacturing processes more complex, and traditional 
simulation models are limited in their ability to cope with these intricacies. To address the limitations, 
Digital Twins (DTs), as complex simulation models evolving with their physical counterpart and reflecting 
the system in near real-time, have been introduced (Grieves 2014). However, to utilize DTs in decision-
making, it is essential that they are continuously reflecting the real-life system accurately, and the 
information derived from them are reliable. For this reason, DT’s need to be continuously updated and 
validated. 
 Contrary to traditional simulation models, an all-at-once validation approach is not feasible for DT 
models. As DTs need to reflect the changes to the real system in near real-time, validation becomes an 
integral part and an enabler of DT development (Zare and Lazarova-Molnar 2024). Therefore, unlike 
traditional validation techniques, ongoing validation approaches are necessary in ensuring the correct 
reflection of the system overtime. While studies have been recently published on the subject, a 
comprehensive approach to validation of DTs is still missing in literature.  
 We use a case study from reliability modeling of manufacturing systems to motivate and illustrate our 
approach to validation. A complex manufacturing system consists of different machines and production 
processes, and validating the corresponding reliability model as a single unit may not be optimal. In case 
of discrepancies, re-extracting the model completely not only would be complex and resource exhaustive, 
but depending on the validation policies and consequent recalibration, it may also lead to losing parts of the 
original model. Moreover, if only the final output as opposed to the collection of individual processes 
leading to the output is considered, internal changes to the processes may not be detected. Figure 1 
illustrates these challenges. Let us assume a sequential production line consisting of two main 
interchangeable operations, both susceptible to faults leading to failures. If at a certain point in time the 
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production line is reconfigured and the order of the operations is changed without affecting the final output, 
a validation process should still be able to detect the change in the underlying processes in the model. 
Furthermore, since only the order of the operations has changed, each operations’ process and its fail/repair 
time are intact and should be kept. Therefore, the validation process must also detect the parts of the model 
that need to be preserved, recalibrated, or re-extracted, instead of re-extracting the whole model.  

 

 
Figure 1: A sequential production line (T1) and its reconfigured set up (T2). 

 Reliability of a system is defined as the probability of a system performing its intended function without 
failure over a period of time (Bazovsky 2004). Analyzing reliability of a manufacturing system is crucial 
as it helps identify the critical components, processes, failures, and the overall system performance. In 
reliability modeling and simulation, it is crucial to consider the significantly varying frequencies of events 
in the validation process of a reliability model. E.g., as the gap between rate of occurrence of failures and 
the rate of occurrence of production processes is large, fault models need a longer timeframe to be extracted 
compared to production process models. Moreover, in the dynamic world of today’s manufacturing, 
production processes go through changes more often, and their models need to be validated and updated 
more regularly in comparison with fault models where the models are more static. Depending on these 
diverse frequencies, certain parts may require preservation while others may need regular recalibration or 
re-extraction. 
 To address the challenges of detecting changes in the underlying models as well as when parts of a 
model need preservation, recalibration, or re-extraction, complex systems and their digital counterparts 
need to be treated as collections of modules to facilitate the individual and collective validation processes. 
We propose a modular approach to validation and model recalibration/re-extraction, building on the two-
phase validation framework proposed by Friederich and Lazarova-Molnar (2023). In our expanded two-
phase validation approach, the model is first validated based on historical data, and in the second phase, the 
model is divided into modules and the continuous validation process preserves, recalibrates, and re-extracts 
each module based on their specific characteristics.  
 The paper is organized as follows. In Section 2, we review the background and the current approaches 
to validation of DTs, model partitioning, and reliability of systems. Section 3 focuses on our modular 
approach to validation. In Section 4, we further demonstrate our approach through a case study in reliability 
modeling. Finally in Section 5, we conclude our findings and identify challenges and future directions.  
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2 BACKGROUND 

In the following, we review the current literature on validation of DTs and highlight the need and the 
existing gap in modular approaches, provide an overview of model partitioning, and finally describe 
reliability modeling and analysis. 

2.1 Validation of Digital Twins 

Ensuring DT models accurately reflect their real-world counterparts over time is vital for the core 
functionality and purpose of DTs. Validation is the process of confirming a model’s output, within its 
intended purpose, closely matches the real system’s performance. Although validation of simulation models 
is not a new topic of research, most of the existing approaches, as described by Sargent (2013), are 
applicable to traditional and static simulation models. DT models’ objective of reflecting corresponding 
systems in near real-time seeks a continuous approach and conformance analysis of the model (Hua et al. 
2022).  

Recent studies, albeit with a limited coverage and applicability, have explored approaches for 
continuous validation within DTs. An approach to DT validation based on combining human expert 
knowledge and data collected from IoT devices was proposed by Hua et al. (2022). Similarly, Lugaresi et 
al. (2023) proposed a continuous validation process by comparing the output of the model to sequence of 
data gathered from the system and obtaining a similarity level. Using approximation function for continuous 
validation of DT models was another approach presented by Mertens and Denil (2023). Using machine 
learning and control charts, specifically K-nearest neighbor and p-control chart, dos Santos et al. (2023) 
proposed a periodic validation approach. Overbeck et al. (2023) introduced a periodic validation process 
based on automatic comparison of key performance indicators (KPIs) from the real system and its virtual 
counterpart. Continuous calibration of DTs by particle filtering is another approach proposed by Ward et 
al. (2021). Friederich and Lazarova-Molnar (2023) proposed a two-phase validation approach, illustrated 
in Figure 2, in which the first phase is the initial validation of the model based on historical data and standard 
validation techniques, and the second phase is the continuous validation based on streaming data and 
comparison of the real system’s output and the model’s output. 

All reviewed approaches aim at validating DT models as a whole. These approaches do not consider 
the need for a modular validation process, preserving and calibrating each module depending on its 
requirements. As noted in Section 1, we incorporate our proposed modular validation approach in the two-
phase validation framework proposed by Friederich and Lazarova-Molnar (2023). 

 

 
Figure 2: Two-phase validation approach proposed by Friederich and Lazarova-Molnar (2023).   
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2.2 Partitioning Simulation Models 

Simulation models are powerful tools, helping in exploring and understanding real-life systems. They 
facilitate decision-making, performance optimization, and risk mitigation. However, as systems grow 
increasingly intricate, simulation models replicating their behaviors are also evolving and becoming more 
complex. Running these complex simulations at once is computationally resource exhaustive and time 
consuming. Model partitioning aims at alleviating this difficulty by dividing a complex model into multiple 
components. We investigated model partitioning for research on meaningful ways to partition models that 
can be utilized for modular validation. 

Studies on model partitioning have been published, however, with a focus on time and computational 
optimization. In that sense, GloMoSim library (Zeng et al. 1998) decomposes simulation models into 
smaller components to evenly distribute computational loads. Similarly, Myers et al. (2016) proposed an 
approach to reduce data transfer and storage requirements during simulation by utilizing an online in situ 
method in identifying important time steps and variables. An adaptive solution based on self-clustering of 
autonomous agents and re-allocation of the partitioned simulation components (agents) aiming to reduce 
communication and computational load was proposed by D’Angelo (2017). Another approach aiming at 
simulation efficiency was proposed by Papadopoulos and Leva (2015), utilizing principles of dynamic 
decoupling to partition a model based on relevant time scales.  
 Partitioning simulation models helps reduce computational resource consumption while running the 
complex models. However, our study diverges from this focus on consumption optimization. Our aim for 
partitioning is to preserve, and re-use certain parts of the model during its continuous updating as part of 
the DT setup. In addition, as proposed by Netter et al. (2013), model partitioning can be utilized in validation 
of the system through intermediate, sub-system validation.   

2.3 Reliability Modeling and Analysis 

In the following, we provide an introduction to reliability modeling and analysis. Reliability analysis is a 
highly relevant use case for the need of modular validation, especially because faults are rare events, so 
gathering relevant data is not a trivial task (Parhizkar and Mosleh 2022; Niloofar and Lazarova-Molnar 
2021).  Bazovsky (2004) defines reliability of a system as “probability of a device performing its purpose 
adequately for the period of time intended under the operating conditions encountered”. Reliability 
assessment is the evaluation of performance of a system to ensure its operation without failure (Friederich 
and Lazarova-Molnar 2024). Reliability of a system is generally assessed in three main categories: hardware 
reliability, software reliability, and human reliability (Hoyland and Rausand 2009). Reliability modeling 
enables understanding and estimating reliability of a system resulting in improved production management 
and maintenance strategy (Li et al. 2021). Here, our focus is on hardware reliability, namely machinery and 
equipment.  
 Manufacturing systems are comprised of machines and equipment, and with any hardware equipment 
failure is imminent. Failure in the components can lead to downtime in the production process, and even 
accidents. Reliability, maintainability, and availability of a system relies on its hardware which makes 
hardware reliability assessment essential. IEEE defines the three attributes as a system’s ability to perform 
its function without failure over time, the efficiency with which a system can be repaired after a failure, and 
the proportion of time a system is operational (Geraci 1991). 
 Many articles have been published on hardware reliability assessment of manufacturing systems 
utilizing various modeling formalisms. Mubarok et al. (2018) proposed a hierarchical assessment evaluating 
reliability of the system at four different levels, component, machine, system, and cloud level. A method to 
determine critical equipment based on occurrence of failure was proposed by Relkar (2021). Adamyan and 
He (2002) proposed a method utilizing Petri net modeling in assessing reliability and safety of 
manufacturing system with sequential failures. 
 In complex manufacturing systems of today, reliability analysis is essential in ensuring systems’ 
performance. Moreover, reliability models include models of parts such as failures that are relatively fixed 
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and not frequently changing which highlights the need for modular validation and preserving of certain 
parts.   

3 MODULAR VALIDATION 

In this section, we present our modular approach for validation of DTs. Figure 3 illustrates our proposed 
approach for modular validation. Similar to the original two-phase validation approach (Friederich and 
Lazarova-Molnar 2023), the initial extracted model is validated using standard validation techniques such 
as historical data validation and face validation, in the first phase. In case of discrepancies, further 
examination and revision needs to be performed to ensure the extracted model accurately reflects the real 
system process. The second phase is the continuous modular validation process at run-time where the initial 
model is divided into sub-models, and each sub-model is validated separately based on its validation policy. 
In the following subsections, we elaborate on the partitioning, validation policy, and the recalibration 
process.  
 

 
Figure 3: Modular validation process. 

3.1 Model Partitioning for Validation 

To ensure a robust continuous validation process, the initially validated model is partitioned into smaller 
sub-models. Breaking down the model allows for targeted validation of the underlying sub-models as well 
as facilitates validation of complex models. In our approach, we use stochastic Petri nets as the modeling 
formalism. A stochastic Petri net can be extracted from event logs of the system containing timing 
information (Rogge-Solti et al. 2014). In addition, focusing on event logs is beneficial as interactions and 
dependencies among different processes are captured in the event logs and ultimately reflected in the 
stochastic Petri net model. This is essential to partitioning as it ensures that the sub-models, though 
validated individually, are not treated as complete standalone models. Without consideration of the 
interactions, every sub-model can be valid while the complete model remains invalid. As noted in the 
previous section, the criterion for partitioning simulation models is mostly computational cost. However, 
our criteria for partitioning are the significance of events and their rate of occurrence, as well as comparable 
data availability. In a Petri net, transitions are used to describe events that occur in the system, and we look 
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at the frequency of the firing of the transitions to calculate the rate of occurrence and a transition’s 
significance. Moreover, as event logs may be missing events represented by corresponding transitions, we 
partition the model in a way that equivalent data from the system is available to evaluate validity of the 
sub-models.  
 The partitioning process is a bottom-up process in which the model is first divided based on the 
transitions. For each individual transition, its rate of occurrence is calculated to determine if it is a frequent 
activity. Depending on the frequency of occurrence, we prioritize if the transition and its associated arcs 
and places need to be preserved or if it is necessary to regularly investigate for modifications. To confirm 
transitions correctly represent the real events, corresponding data from the real system must be available. 
However, real system limitations may hinder data collection and availability. To mitigate this challenge, 
inspired by (Netter et al. 2013), for every transition in the model, we look for corresponding event data 
from the real system. In case of availability of data, the transition is individually assessed for validation. 
While in the case of missing data, the transition is combined with its preceding and succeeding transition 
creating a composite sub-model which can be compared to corresponding data from the real system.               

3.2 Frequency of Validation 

Depending on the objective of the model, the model’s accuracy demands may differ. For example, a model 
focusing on safety requires a high level of accuracy, and it needs a more precise validation process. 
Moreover, sufficient data must be available to validate a model as validation based on insufficient data may 
result in inaccurate models and an incorrect reflection of the system. Frequency of validation is an important 
step in defining the requirements of a continuous validation process from quantity of data needed for a 
reliable validation process to the rate at which validation process is conducted. 
 Rate of occurrence of events is a measure by which frequency of validation can be determined. Frequent 
processes, such as production processes, may require more regular validation to ensure an accurate 
reflection of the production. While infrequent events, such as failures, require less validation as they are 
rare events and the sufficient data needed for validation may take time to be collected. Therefore, for every 
individual or composed sub-model, a validation policy is set based on its occurrence frequency stating how 
often validation process needs to be performed. This means that at every iteration, the DT model’s accuracy 
is investigated through validation of a subset of the underlying sub-models. This modular approach not only 
ensures a precise representation of the system, but also facilitates a more cost and time efficient validation 
process.   

3.3 Model Recalibration and Re-extraction  

Recalibration/re-extraction is another essential step in continuous validation processes of DTs as a system 
may change throughout its lifecycle. This iterative process addresses these changes and reduces the 
discrepancies between the model and the real system ensuring the model closely reflects the system’s 
functioning over time. However, determining what simulation models’ parameters need to be adjusted as 
well as deciding on when recalibration is no longer feasible, and model re-extraction is needed, is 
challenging. The modular approach aids in the recalibration process as only sub-models where 
discrepancies are detected need to be considered. Therefore, the parameters to be adjusted are confined 
within the sub-models where discrepancies are detected. Moreover, the model re-extraction process is made 
easier as the re-extraction applies to the sub-model, or a subset of sub-models affected by the discrepancies.  

Defining what constitutes a discrepancy is contingent upon the goals of the model and the requirements 
and limitations of the users. For instance, in a model prioritizing safety, the margin of error must be small 
as even a slight deviation from the real system could result in accidents and safety risks. In contrast, a model 
prioritizing production throughput may be more lenient towards minor variations. In our proposed 
approach, two thresholds are established for the recalibration/re-extraction process. The first threshold is 
used to identify if a discrepancy has occurred by comparing the outcome of the sub-model with that of the 
actual system. If the result falls outside the threshold limits, the recalibration process is initiated. The second 
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threshold limits the number of recalibration iterations a sub-model can undergo. If the discrepancy remains 
and recalibration process fails to yield satisfactory results, it may indicate that recalibration approach is not 
effective, and re-extraction is required. Algorithm 1 presents a high-level narrative form algorithm for our 
proposed approach.  

 
Algorithm 1 Algorithm for Modular Validation. 
Input: stochastic Petri net model, event log from the real system, validation policy, discrepancy 
threshold, recalibration threshold. 
Output: recalibrated/re-extracted sub-models. 

Step 1 Calculate frequency of occurrence of transitions (events). 
 
Step 2 Flag each transition for preservation or regular validity checking based on its occurrence 

                   frequency. 
 
Step 3 Partition the model based on the preservation/regular validity checking flag into set of sub- 

                  models. 
 
Step 4 For every transition, find corresponding data from the event log. If no corresponding event 

                  data is found, combine the transition with its preceding and/or succeeding transitions creating 
                  a grouped sub-model. 

 
Step 5 Based on the validation policy and the discrepancy threshold, validate the sub-model. 
 
Step 6 If the results are outside the discrepancy threshold boundaries, start the recalibration process. 
 
Step 7 If the results are still not within the discrepancy threshold boundaries, go to Step 6 while 

                  the recalibration threshold is not reached. 
 
Step 8 If the recalibration threshold is reached and no acceptable result is found, re-extract the sub- 

                  model. 

4 CASE STUDY 

To demonstrate our approach for modular validation of DTs, we conducted two experiments using 
reliability models. As noted earlier, reliability models are highly adequate examples because of the 
significant varying frequencies of occurrence of events.  
 Our first case study is a continuous validation process of a simple sequential manufacturing system 
where without preservation, the recalibrated model may fail to correctly represent the real system. In the 
second case study, we focus on the need for intermediate validation points as opposed to validation of final 
output. 

4.1 Modularity for Preservation of Model Parts 

In the approach proposed by Friederich and Lazarova-Molnar (2023), the whole model is re-extracted when 
a discrepancy is detected. However, depending on the frequency of the validation process, key events may 
not occur during the validation timeframe, and the corresponding re-extracted model may not correctly 
reflect the system.  
 In this experiment, we considered a simple wood manufacturing system consisting of two 
interchangeable and sequential operations, drilling and sanding, and an AGV responsible for transferring 
the material. To develop the initial reliability model, we applied the model extraction approach based on 
event data and process mining presented by Friederich and Lazarova-Molnar (2022). The initial extracted 
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model based on a month-long event data, illustrated in Figure 4 as stochastic Petri net, was then validated 
by comparing its production throughput (number of completed products) to that of the system.   
 

 
Figure 4: Initial extracted reliability model of the system. 

 After the extraction and validation of the initial model, we calculated the frequency of occurrence of 
events. As expected, activities related to production processes, such as transfer of material and operations, 
were more frequent than failures and repairs. Therefore, the model was divided to sub-models of production 
processes and failures/repairs.  

To continuously validate our model, we set a daily validation policy for the production throughput. 
Daily events of the real system were captured and the system’s productivity KPI was calculated. To generate 
the corresponding result from the model, we conducted 100 terminating simulation replications based on 
the validation policy. The discrepancy threshold was set based on the confidence interval generated from 
the simulation runs. If the result from the system was outside the confidence interval boundaries, the 
recalibration process was initiated only for frequent events, namely the production sub-models, preserving 
failures/repairs. Moreover, the limit for recalibration attempts was set to five before the sub-model was re-
extracted from the daily logs.  

To better highlight the need for model parts preservation, we also conducted a daily re-extraction of the 
model. Depending on the events that occurred during the day, the daily extracted models were inconsistent. 
For example, on day 3, when the system had no failures, the extracted model only captured the production 
processes, completely losing the fault models. Comparing the result of daily extraction with our proposed 
approach, presented in Figure 5, we found that our approach and the recalibration of the sub-models keeps 
the model consistently accurate while daily re-extraction of the model depending on the data available on 
the day yields inconsistent models, losing both parts of the model, that may have been unavailable on the 
day, and accuracy. 
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Figure 5: Results of daily modular validation and daily model re-extraction (error bars representing 95% 
confidence interval for 100 independent replications). 

4.2 Modularity for Intermediate Validation 

In today’s dynamic manufacturing, the production lines might frequently undergo modifications, and DTs 
should be able to reflect these changes. Validating the underlying components of DTs, and intermediate 
validation points aids in achieving this objective. To demonstrate the need for intermediate validation, we 
used the same manufacturing system from the previous experiment. Similarly, we extracted and validated 
the initial model, calculated the frequency of occurrence, and divided the model to sub-models of 
production processes and failures/repairs. However, we alternated the order of the two production 
operations of the system and captured the new event data. As mentioned earlier, the two production 
operations are interchangeable, and the order of their operations does not affect the final output of the 
production.  
 Focusing only on the final throughput of the model and the altered system, the original model was still 
deemed valid. However, when comparing the sub-models, a discrepancy in the production processes was 
detected. Sanding is a longer process than drilling, and when altered, throughput of drilling is bottlenecked 
by the sanding process. This bottleneck and the interaction between the two operations is captured in the 
event log, making it possible to detect the discrepancy. Figure 6 illustrates the validation result of the model 
highlighting the discrepancy in the drilling operation. 
 

 
Figure 6: Results of validation of sub-models (production processes) (error bars representing 95% 
confidence interval for 100 independent replications). 
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  To reflect the change of the real system in the model, recalibration was initiated with the recalibration 
threshold of five attempts. The recalibration process was unable to achieve results within the accepted 
discrepancy threshold, and therefore the sub-model was re-extracted using the altered system’s logs while 
the unchanged processes, such as fault models, were preserved. Finally, the new estimated distribution 
times of events in the model, derived from the altered system’s logs, were set to the model, and the model’s 
performance was compared to the actual system, illustrated in Figure 7.  

 

 
Figure 7: Results of validation of sub-models (production processes) after sub-model re-extraction 
(error bars representing 95% confidence interval for 100 independent replications).  

As evident by the results, using a modular approach to validation can aid in detection of discrepancies 
in the underlying models of a complex DT model. Moreover, we showed that considering the interaction 
among the sub-models derived from the event log is critical in ensuring the complete model validity. 
Finally, the model was validated and accurately reflected the system without the need of complete re-
extraction as only the parts, where discrepancy was apparent, were re-extracted and the consistent parts 
were left intact.    

5 CONCLUSION  

Digital Twins are a valuable tool in the manufacturing industry as they enable optimization and decision-
making support. Utilizing the full potential of Digital Twins depends heavily on having a reliable and valid 
model of the real system. However, validation of these models is a challenging task, especially in 
manufacturing systems of today as their complex and dynamic nature requires a robust and continuous 
model validation approach capable of distinguishing the significance and characteristics of the underlying 
models to accurately reflect the real-system’s intricacies over time. Depending on the underlying model, a 
validation process must be able to detect if it or some of its parts need to be preserved, recalibrated, or re-
extracted to correctly represent its real-world counterpart.  
 In this paper, we proposed a modular approach to the validation problem, building on the two-phase 
validation framework by Friederich and Lazarova-Molnar (2023). Similar to their approach, the first phase 
is the initial validation of the model based on standard validation techniques. In the second phase, however, 
we propose a partitioning algorithm based on frequency of occurrence of events and data availability to 
divide the model into sub-models. Furthermore, we focus on the events captured in the event log, making 
detection of interaction among the sub-models possible resulting in validation of the complete model. Every 
sub-model, depending on its rate of occurrence, is given a validation policy by which it is continuously 
validated over time. In case of detecting discrepancy in the validation process, the sub-model under question 
goes through a recalibration process and if the recalibration fails to achieve satisfactory results within the 
recalibration attempt threshold, the sub-model is re-extracted. Finally, through an example of reliability 
modeling, we examined our approach and further demonstrated the need for preservation of parts and 
intermediate validation of the model.  
 While we have addressed several challenges in continuous validation of Digital Twins and the need for 
modularity, it is important to recognize certain challenges and limitations remain to be addressed to achieve 
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a robust validation mechanism. For the partitioning of the model and the validation policy, we only used 
the data available and focused on the frequency of occurrence of events. However, incorporating expert 
knowledge in the partitioning and validation policy processes may yield more optimized sub-models and 
ultimately an accurate model. In the recalibration process, we used a simple threshold to determine when 
re-extraction is necessary. Deciding on when to recalibrate or re-extract is a complex challenge that may 
need a more comprehensive approach. Moreover, we implemented an iterative optimization method for the 
recalibration process. However, the challenge of selecting an appropriate recalibration algorithm capable 
of achieving satisfactory result persists. As future work, we suggest further testing of the proposed approach 
on more complex systems, and against other applicable validation approaches, as well as integration of 
expert knowledge in the process.  
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