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ABSTRACT

Solving black-box global optimization problems efficiently across domains remains challenging especially
for large scale optimization problems. Bayesian optimization has obtained important success as a black box
optimization technique based on surrogates, but it still suffers when applied to large scale heterogeneous
landscapes. Recent approaches have proposed non-myopic approximations and partitioning of the input
domain into subregions to prioritize regions that capture important areas of the solution space. We propose
a Multi Agent Rollout formulation of Bayesian optimization (MAroBO) that partitions the input domain
among finite set of agents for distributed sampling. In addition to selecting candidate samples from their
respective sub regions, these agents also influence each other in partitioning the sub regions. Consequently, a
portion of the function is optimized by these agents which prioritize candidate samples that don’t undermine
exploration in favor of a single step greedy exploitation. The efficacy of MAroBO is demonstrated on
synthetic test functions.

1 INTRODUCTION

Many real world optimization tasks, including but not limited to, material design (Zhang et al. 2020), hyper
parameter tuning (Bansal et al. 2022), robots planning (Calandra et al. 2014), drug discovery (Negoescu
et al. 2011), neural architecture search (Kandasamy et al. 2018), often rely on noisy, expensive to evaluate
black-box functions that do not have a closed form expression or expose gradient information. Bayesian
optimization is among a class of sample efficient frameworks for global optimization that dates back to
the work by (Jones et al. 1998), where a surrogate model, a Gaussian process in particular, is sequentially
updated by adding samples that maximize an acquisition function (expected improvement) in locations of
the input space that have not been evaluated. While successful several challenges have been faced applying
Bayesian optimization to realistic problems. In fact, among the challenges that require modifications to the
original routine, the following are related to the context of the algorithm presented in this paper: (i) High
dimensional input spaces, are problematic because the cost of training the surrogate kernel increases
non linearly with the dimensions. Most kernels used in Bayesian optimization have a number of hyper
parameters that grows linearly with the dimensionality of the input, thus making the likelihood optimization
an increasingly difficult task. In fact most kernels exhibit challenges for inputs with d ≥ 20; (ii) Large
number of Samples arise with large scale search spaces. This challenge may or may not appear with high
dimensional inputs. Also in this case, the surrogate is the bottleneck of the algorithm. This is due to the
fact that the complexity of training Gaussian Processes grows cubically with the size of the sample.

Demonstrating the relevance of these challenges, important contributions have been made in the
literature for scaling Bayesian Optimization to high dimensions. In particular, approaches that deal with
high dimensionality tend to focus on proposing novel kernels that allow to reduce the difficulty of optimizing
the hyper parameters by introducing structure.

An example of techniques in this area are Projection based approaches that perform the search in lower
dimensional manifolds, assuming a low effective dimensional space exists that contains all the behavioral
information of the original high dimensional function. Contributions in this category include Random
Embedding BO (Wang et al. 2016), Hashing enhanced subspace Bayesian Optimization by (Munteanu
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et al. 2019). However, many real world problems exist where low dimensional manifold may not be
justified. Statistical learning based approaches relax the low-dimensional assumption by relying on
structural properties of the black-box function. Kandasamy et al. (2015) proposes an additive structure
which assumes the function is a sum of small, disjoint groups of dimensions. Success depends on accurately
mimicking inter-dimensional dependencies. Variable selection approaches Variable selection assumes not
all dimensions are important for optimization. SAASBO (Eriksson and Jankowiak 2021) introduces a
novel sparsity inducing SAAS prior which prioritizes dimensions by making the coefficients of unimportant
variables near to zero. For the second category, the objective is to reduce the cost of inference, which
scales cubically with the number of function evaluations. In (Song et al. 2022), a Monte Carlo tree search
(MCTS) is proposed to iteratively partition the variable space, thus reducing the sample sizes, while also
deeming subsets of dimensions as unimportant relying on the low-dimensional assumption. Trust region
based approaches (TuRBO) (Eriksson et al. 2019) uses localized modeling, refining the objective function
within localized regions called Trust Regions. However, TuRBO’s independent learning of trust regions
without data sharing may lead to inefficiencies. In fact the trust regions do not form a partition of the
input. Similarly, SOAR (Mathesen et al. 2021) uses a surrogate model to generate restart locations for
local searches, dynamically allocating function evaluations based on observed performance. This adaptive
approach ensures efficient resource utilization while achieving optimal solutions. MAMBO proposed
by (Wang et al. 2022) utilizes a sub-sampling technique and subspace embedding to reduce computational
effort when dealing with large-scale and high-dimensional problems.

Recently, a relevant branch of the literature in Bayesian optimization, has focused on improving the
sample selection by inheriting algorithmic structures from Dynamic Programming. In particular, approaches
that use lookahead schemes and rollout have been investigated to improve the sample efficiency (thus,
reducing the sample size). Examples are the work in (Lee et al. 2020; Jiang et al. 2020). Also, approaches
using Multi-Agent frameworks to reduce the size of the sample sets have been proposed (Ma et al. 2023;
Krishnamoorthy and Paulson 2023) that use agents as a means to split the sample set thus reducing the
dimensionality of the samples for individual searches.

Our work focuses on scaling BO by improving the quality of selection and increasing the efficiency of
the approach when large solution spaces are considered. Similar to MAMBO and the work in (Song et al.
2022) we partition the input space to reduce the sample sizes, and like SOAR and TuRBO we perform local
searches and update local models to regions of interest. However, such regions are generated rigorously
using a Multi-agent scheme where agents are adaptively coordinated, similarly to the more recent literature
in lookahead and multi agent approaches.

The remainder of this paper is organized as follows: Section 2 gives a brief overview of the related work
in the literature, Section 3 introduces the MAroBO algorithm in detail, Section 4 provides the experimental
results of MAroBO on synthetic test functions. Finally, Section 5 concludes the paper.

2 LITERATURE REVIEW

The proposed MAroBO shares aspects with three key classes of algorithms that we discuss herein to
highlight the contributions that our methodology brings compared with these approaches. In particular, we
discuss (i) partitioning based methods, (ii) lookahead based methods, and (iii) multi-agent approaches.

2.1 Partitioning Based Approaches

Exact optimization methods, like branch and bound, are widely used but assume constant correlation
functions within Gaussian processes across the input space. Partitioning the input space into regions with
unique correlation functions proves beneficial when data behavior varies across different parts of the input
space. LA-MCTS (Limited Area Monte Carlo Tree Search) by (Wang et al. 2020) dynamically explores
promising regions using Monte Carlo Tree Search, continuously refining learned boundaries. In contrast,
PART-X (Pedrielli et al. 2023) adaptively branches and samples within the input space using local Gaussian
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process estimations. LA-MCTS establishes nonlinear boundaries, while PART-X employs axis-aligned
branches. While these approaches increase the efficiency of BO when scaled to large solution spaces, the
quality of selection is not addressed by these approaches.

2.2 Lookahead Approaches

While most acquisition functions are myopic, considering only the next function evaluation, non-myopic
ones consider the impact of multiple future evaluations. (Lee et al. 2020) proposes non-myopic acquisition
functions through rollout, which involves simulating multiple steps of BO. These rollout acquisition
functions are defined as high-dimensional integrals, making them computationally expensive to compute
and optimize. The authors propose methods to significantly reduce the computational burden of computing
rollout acquisition functions. (Jiang et al. 2020) proposes a joint Optimization of Decision Variables.
Instead of solving nested optimization problems within a multi-step scenario tree, the paper proposes
jointly optimizing all decision variables in the full tree simultaneously, termed as a one-shot approach.
However, these methods often rely on assumptions about the maximizers of second-stage value functions
and may involve non-adaptive or computationally expensive procedures. The aforementioned approaches
improve the quality of selection but are not computationally efficient. Moreover, propagation of model
mis-specification errors undermine the benefits of longer look ahead horizons.

2.3 Multi Agent Approaches

Multi-agent approaches distribute the workload, allowing parallelization and better exploration-exploitation
trade-offs. Entropy Search (ES) (Ma et al. 2023) is notable for selecting query points maximizing mutual
information about the optimum of the black-box function. However, ES faces computational complexity
challenges, addressed by recent gradient-based multi-agent ES algorithms, although they still require heavy
computations. A framework by (Krishnamoorthy and Paulson 2023) adds a penalty term to BO acquisition
functions to account for agent coupling, solved in parallel using alternating directions method of multipliers
(ADMM). Our work refers to the a Multi-Agent Rollout approach as proposed in (Bertsekas 2019) and
adapts it to the idea of partitioning and to the problem of BO sampling. The inherent coordinating nature
of the agents in this approach enables the agents to act in a coordinated manner while taking independent
decisions.

2.4 Contributions

We present an approach that integrates Partition-based methods with a multi-agent methodology. In
particular, we propose to integrate a class of Approximate Dynamic Programming technique known as
Multi-agent Rollout (Bertsekas 2019) within the Bayesian optimization routine.

The inherent collaborative nature of the agents allows the approach to effectively screen the input space
and quickly focus on relevant regions. By assigning regions within the partition to agents, the input space
is sequentially split based on the non-myopic actions taken by the agents.

The result of this work is a Multi-agent formulation of Rollout for Bayesian optimization (MAroBO).
The key contributions of this paper are as follows:

• Given the high-dimensional nature of many real-world functions, a multi-agent algorithm that focuses
on specific regions of the unknown function by partitioning the search space and distributing them
among the agents is proposed. These agents provide point estimates from their assigned active
sub-regions, facilitating better performance compared to vanilla Bayesian optimization.

• The inherent collaborative nature of Multi-agent Rollout allows us to direct the agents towards
the optimum. At the same time the explorative nature of BO makes our approach robust to multi
modality.

3520



Nambiraja, and Pedrielli

3 MULTI AGENT ROLLOUT FOR BAYESIAN OPTIMIZATION

We introduce the multi-agent rollout (MARO) method, with the notation required by its use in the BO
context, thus leading to the MAroBO algorithm in section 3.2. In MARO, an action or control consists of
or can be decomposed into multiple components, with a separable control constraint structure, and each
component at each stage is chosen by a separate decision entity referred to as “agent” (Bertsekas 2021).
In MARO, the action from the original decision problem x is decomposed across a number of agents. As a
result, the evolution of the algorithm together with the cost function are now defined over the cross-product
of the agent-level actions. When the problem structure lends itself to the definition of agents, MARO can
lead to more efficient solutions compared to traditional Rollout that, as mentioned in the literature review,
has already been tested in Bayesian optimization contexts (Bertsekas 2021; Bertsekas 2022a; Bertsekas
2022b).

3.1 Multi Agent Bayesian Optimization Formulation

In the MARO context, the optimization problem we are trying to solve can be formulated as:

min
x∈X

[
min

i
( f (xi))

]
(1)

Where X is the input space, and the decision variable is encoded as x =


x1
x2
...

xm

, where the component xi

is an agent feasible solution, and xi ∈ Xi : ∪iXi = X ,∩iXi = /0. MAroBO returns as solution the location
associated with the agent that achieves the lowest cost. More specifically, we define a decision vector at
algorithm iterate k that can be decomposed according to a separable input structure, i.e., xk =

(
x1

k , . . . ,x
m
k

)
,

where xi
k ∈ X l

k, l = 1, . . . ,m (Bertsekas 2021). Thus the domain of the original problem can be expressed
through the product (Bertsekas 2021):

Xk = X1
k ×·· ·×Xm

k .

MAroBO not only samples points iteratively but also sequentially defines and evaluates agent config-
urations that induce a solution. For a partition with m subregions, i.e., ∩iX i

k = /0,∪iX i
k = X , each agent is

assigned a subregion X i
k, a data set Di

k within that subregion, and a surrogate model Y i
k trained on Di

k. These
elements define the agent configuration, ci

k, at iteration k, and a configuration ck is the collection of all agent
configurations. At each iteration k, the i-th agent can modify the configuration based on information from
agents j = 1, . . . , i−1 and their predictions on the remainder of the agents configurations j = i+1, . . . ,m.
Definition 1 (Agent Configuration) An agent configuration is a defined by the tuple (X i

k,D
i
k,Y

i
k) where X i

k
represents the region assigned to the ith agent, Di

k denotes the dataset utilized by the ith agent, Y i
k indicates

the surrogate model utilized by the ith agent. Each component of the tuple defines a specific aspect of the
ith agent’s setup within the overall configuration.
Definition 2 (Configuration) A configuration ck is defined as the collection of m agents configurations
represented as

(
X i

k,D
i
k,Y

i
k

)m
i=1.

Given a configuration, the MAroBO incumbent solution is:

x̂∗k = argmin
i

(
min
xi∈Di

k

f
(
xi)) . (2)

We distinguish two types of agent. Agents i = 1, . . . ,m−1 are active agents and they can at each iteration
actively change the subregion of interest and sample new locations, agent m is an inactive agent. The
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inactive agent is responsible to collect all the subregions that the m−1 active agents disregard as a result
of their update. The inactive agent can hence have associated multiple subregions and while it maintains
the locations and the surrogate model no new sampling is performed by this agent. Subregions contained
by the inactive agents can receive new locations if an active agent decides to jump into an inactive region.

At iteration k, we define the state of MAroBO Sk as the set of agents and the corresponding tuple
Sk =

(
X i

k,D
i
k,Y

i
k

)m
i=1, considering this state, the algorithm generates number NC of alternative configurations,

i.e., different possible agent assignments for a given state Sk. To do so, we sequentially solve the following
equations starting at agent i = 1:

c̃i
k ∈ argmin

Ci
Fa(c̃1

k , . . . ,c
i
k, . . . , ĉ

m
k ) i = 1, . . . ,m. (3)

Where Ci represents the set of feasible configurations for the i-th agent, and Fa is a cost function that the
agent uses to sample the configuration component, which is nothing but the minimum encountered function
value. In fact, each agent can change its assigned subregion X i

k, and, given the subregion, it will sample
novel locations following an acquisition function implied by a surrogate model built with the locations
already assigned to X i

k that have been sampled from previous iterations. The additional points are added
to those currently present within the generated X i

k. The sample points are then added to the data set Di
k,

and, upon evaluation of the locations, each agent can update a surrogate model Y i
k . Once updated, different

possible agent assignments from the new state yield Nc configurations, which is user defined. Once the
configurations are generated, the rollout method is called to evaluate the competing configurations and
move MAroBO to the best configuration.

At iteration k, the rollout algorithm, is used to evaluate the candidate configurations, namely cg
k ,g =

1, . . . ,Nc. To do so it applies a base-heuristic to simulate the evolution of each configuration for an horizon
of length h, namely, (c̃1, . . . , c̃k−1, c̃k, ĉk+1, . . . , ĉk+h).

The configuration that minimizes the approximate Q-factor, here referred to as FRO, is selected. The
MAroBO implementation for the function FRO will be detailed in section 3.2.2.

c̃k ∈ argmin
cg

k

FRO (c̃g
1, . . . , c̃

g
k−1,c

g
k , ĉ

g
k+1, . . . , ĉ

g
k+h

)
. (4)

It then repeats with (c̃1, . . . , c̃k−1) replaced by (c̃1, . . . , c̃k). After K iterations the rollout algorithm produces
the complete sequence of configurations

c̃ = (c̃1, . . . , c̃N)

which is called the rollout solution. The fundamental result underlying the rollout algorithm is that under
certain assumptions, we have cost improvement, i.e.,

F(c̃1, . . . , c̃N)≤ F(ĉ1, . . . , ĉN), (5)

where (ĉ1, . . . , ĉN) is the configuration produced by the base heuristic and c̃1, . . . , c̃N is the configuration
produced by the rollout policy.
MAroBO full step example (Figures 1-2). Figures 1-2 show an example of configuration update.
Specifically, Figure 1 shows that at iteration k = 1, there are 4 subregions (active agents), each with an
associated dataset Di

1, i = 1, . . . ,4 (dots). Each agent builds its own surrogate Y i
1, i = 1, . . . ,4 using the

respective datasets. Figure 2 shows the configuration obtained after a full MAroBO iteration, for k = 2,
where we see two subregions in gray that are now associated with the inactive agent. We observe that the
iterate has produced a new set of subregions and, as a result of the sampling decision made by the agents,
updated data sets Di

2, i = 1, . . . ,4 and surrogates Y i
2, i = 1, . . . ,4. The detailed process for the generation of

a configuration will be detailed in Section 3.2.2 (Step 1).
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Figure 1: MAroBO iteration k =
1, number of active agents m= 4,
the inactive agent is associated
with the empty set.

Figure 2: BO iteration k = 2,
number of active agents m = 4,
the inactive agent includes the
subregions “abandoned” by the
active agents.

3.2 Multi Agent Bayesian Optimization Algorithm Overview

In this section, we provide the algorithmic details associated with our MAroBO. We repeat this procedure
for K iterations, i.e., until the available function evaluation budget is exhausted. Upon termination MAroBO
returns the rollout solution as explained in Section 3.1.

Figure 3: MAroBO progression.

Figure 3 provides an overview of the key components of the algorithm that we further detail below.
MAroBO evolves using two key functions (Figure 3): (i) the configuration generator responsible for
producing the tuple ck =

(
X i

k,D
i
k,Y

i
k

)m
i=1; and (ii) the configuration rollout responsible for the simulation

(h-step) and evaluation of the generated configurations at each iteration. While several surrogates and
acquisition functions can be used by these two functions, MAroBO adopts a Gaussian process to produce
the needed predictions for the function value in each of the subregions (see Section 3.2.1).

3.2.1 Gaussian Process regression

Given n input locations in p-dimensional space X ⊆ Rp, X = {x1, . . . ,xn}, with associated output values
y = { f (x1), · · · , f (xn)}, a Gaussian process model M (x) = µ +Z(x) can be constructed with mean µ , and
Z(x)∼ G P(0,τ2R), where R is the n×n variance-covariance matrix whose (i, j)-th entry is the correlation
terms built from the distance between pairs of input locations, namely Ri j = r(xi,x j) =Corr(xi,x j) for i, j =
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1, . . . ,n. In general, the correlation function is parameterized by a vector of hyper parameter θ that requires
estimation. The process mean and variance, µ and τ2 estimates are

µ̂ = (1T R−11)−11T R−1y (6)

and
τ̂

2 =
1
n
(y−1µ̂)T R−1(y−1µ̂) (7)

respectively (Santner et al. 2003), obtained maximizing the log likelihood:

L(y|x,θ) =−1
2
(y−1µ)(τ2R)−1(y−1µ)− 1

2
log |τ2R|− n

2
log(2π). (8)

Substituting eqn. (6) and (7) into eqn. (8) we get the concentralized log likelihood formula which only
depends on the hyper parameters θ . We then achieve R through optimization of the concentralized likelihood.
The best linear unbiased predictor is given by (Santner et al. 2003):

ŷ(x) = µ̂ + r(x)T R−1(y−1µ̂),

where r(x) is the n×1 vector of known correlations of a prediction sample with each sampled location
x ∈X :

ri(x) =Corr(Z(x),Z(xi)), xi ∈X

and 1 the n-vector of ones.

3.2.2 MAroBO Algorithm Steps

Below, we provide the MAroBO algorithmic details.
Step 0. Initialization: Provide the feasible region X, the number of active agents m−1, the total budget K;
Define the number of configurations per iteration Nc; The rollout simulation horizon h; the inactive agent
is assigned the empty set, i.e., Xm

0 ← /0. Initialize the active agents considering: (i) An agent is defined by
the tuple

(
X i

k,D
i
k,Y

i
k

)
; (ii) Each active agent a j is assigned to only one sub region X i

k and each sub region
X i

k contains only one agent a j.

Step 1. Configuration Generation: A configuration is defined as a tuple
(
X i

k,D
i
k,Y

i
k

)m
i=1. Hence, a

configuration update starts from the first agent and updates the tuple by: (1) letting the agent choose
whether to stay in its present region or jump into any of the successive agents region; (2) if the agent jumps
it will branch the target region according to a partitioning scheme; (3) the agent samples a location in the
target region thus updating the data set and the surrogate. We encode such update step for the i-th agent as:

X i
g← Pa

({
X i

k,D
i
k,Y

i
k

}m
i=1

)
(9)

The i-th agent generates the related configuration component fixing the tuples associated to agents 1, . . . , i−1,
and may change X i

k: (i) Jump to a subsequent agent: agent i has a positive probability to jump into any agent
region l = i+1, . . . ,m−1 or jumping into the inactive region (m); (ii) once a jump has been determined,
the agent can probabilistically branch the target subregion. To manage the partitioning of the space, we
adopt a tree encoding (see Figure 4). More specifically, the probability to jump to a candidate region σ

+
e f t

from the agent-associated subregion σ
+
e f t is proportional to the maximum Expected Improvement (Jones

et al. 1998) calculated in each region as:

EI∗· = max
x∈σ

γ
·

EI(x) = max
([

f ∗− Ŷ γ
· (x)

]
Φ

(
f ∗− Ŷ γ

· (x)
ŝγ
· (x)

)
+ ŝγ
· (x)φ

(
f ∗− Ŷ γ

· (x)
ŝγ
· (x)

)
,0
)
.

p· ∝
EI∗·

∑i EI∗i
, (10)
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(a) BO iteration k = 1, number of active agents
m−1 = 4.

(b) BO iteration k = 2, number of active agents
m−1 = 4, the inactive agent has two subregions.

Figure 4: An example of input space partitioning at iteration k = 1 and k = 2 into sub regions σ
γ

e f t . The
indices e, f refer to the leaf e located at the f -th level of the tree in the tth iteration. Each leaf is a sub
region that is either depicted in green or γ =+ to denote active agents, inactive regions depicted in grey
or γ =− are all assigned to the inactive agent, i.e., Xm

k can be a disconnected set.

where f ∗ is the best function value sampled so far across the entire input space, and p· ∝
EI∗·

∑i EI∗i
is the jump

probability to subregion (·). If an agent jumps to a target region, then it will branch it by choosing uniform
at random a dimension and a cutting point. Upon branching the agent makes a sampling decision based on
the region-Expected improvement, i.e., the agents adds a location to the selected region according to (Jones
et al. 1998):

xi
g ∈ arg max

x∈σ
γ

e f t

EI(x) = max

([
f ∗i − Ŷ γ

e f t (x)
]

Φ

(
f ∗i − Ŷ γ

e f t (x)
ŝγ

e f t (x)

)
+ ŝγ

e f t (x)φ

(
f ∗i − Ŷ γ

e f t (x)
ŝγ

e f t (x)

)
,0

)
. (11)

where f ∗i is the best function value sampled so far in subregion σ
γ

e f t . Once the location has been sampled, the
true function is evaluated and the following updates are performed by the agent to complete the configuration
generation:

Di
g← Di

g∪xi
g : Di

g =
{

x ∈ ∪lDl
k : x ∈ X i

g

}
, (12)

Y i
g← GP|X i

g,D
i
g. (13)

Once all agents have performed the generation step, and Nc configurations have been generated, the rollout
is needed to evaluate the configuration. The algorithm proceeds to Step 2.
Step 2. Configurations Rollout: The agent configurations are rolled out for an horizon of length h. As
previously mentioned, this means that MAroBO, for each configuration resulting from Step 1, simulates Step
1-Step 2 of the algorithm using a base heuristic in place of the exact evaluations. A graphic representation
of this process is depicted in Figure 3 along with the progression of each of the Nc configurations.

At each step of the rollout, the configurations are sequentially updated (i.e., region partitions updated
and sample points selected) based on the base heuristic, i.e., the Expected Improvement (Jones et al. 1998)
(eqn. (11)). In fact, the base heuristic simulates the evolution of the agents configurations for the rollout
horizon according to the following:

X i
k+r← PRO

({
X i

k+r−1,D
i
k+r−1,Y

i
k+r−1

}m
i=1

)
, r = 1, . . . ,h (14)

Di
k+r←

{
x : x ∈ X i

k+r,x ∈ ∪lDl
k+r−1

}
∪ xi

k+r−1 : xi
k+r−1 ∈ argmaxx∈X i

k+r\D
i
k+r

EI (x) , r = 1, . . . ,h (15)

Y i
k+r← GP|X i

k+r,D
i
k+r, r = 1, . . . ,h (16)

In eqn. (14), PRO represents our partitioning scheme. In our implementation, the i-th agent receives as
input the subregions from the other agents and follows the two mechanisms we discussed in Step 1 i.e.,
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the probability to jump to any agent region l = i+1, . . . ,m and the probability to jump to inactive region
(m+1) given by eqn. (10).
Example of tree update simulation step. An instance of the partitioning scheme is depicted in Figure 4.
Agent i = 1 assigned to subregion σ1,1,2, following PRO, it jumps to subregion σ

+
4,1,2 thus splitting the

subregion into σ1,2,2 and σ
+
4,2,2 with agent and i = 4. Next, agent i = 2, stays in its assigned subregion

σ2,1,2. And agent 3 jumps to subregion σ1,2,2 to split it into σ
+
1,3,2 and σ

+
3,3,2. Finally, agent 4 stays in

its subregion σ
+
4,2,2. Consequently, the inactive agent a′ collects the subregions σ

−
1,1,2 and σ

−
3,1,2. During

each jump, the agent level updates to the dataset and GP follow eqn. (15)-(16). To increase the stability
of the approach NRO independent replications of the rollout are performed for each configuration and the
approximate Q-factor (FRO in eqn. (4)) is updated as follows:

f RO
g,ℓ = min

i=1,...,m

(
qg

1,ℓ

(
Ŝ1

k+h,ℓ

)
,qg

2,ℓ

(
Ŝ2

k+h,ℓ

)
, . . . ,qg

m,ℓ

(
Ŝm

k+h,ℓ

))
g = 1, . . . ,Nc, ℓ= 1, . . . ,NRO

FRO
g =

1
NRO ∑

ℓ

f RO
g,ℓ. (17)

where
(

Ŝi
k+h

)
represents the state of the i-th agent at the end of the rollout horizon and the cost component

qg
i is nothing but the minimum predicted function value by the i-th agent. Based on the approximate

Q-factor, we can choose the configuration ck+1 as follows:

ck+1← argmin
g

FRO
g , (18)

x̂∗k+1← arg min
x∈∪iDi

K

Ŷ (x) . (19)

This renders the other configurations in iteration k as losing configuration depicted in gray in Figure 3.
From the configuration ck+1 , the sampling decision x̂∗k+1 is obtained from all the agents. The locations
sampled are a result of predicted values Ŷ (x) as opposed to actual function evaluations.
Update the iteration index, k← k+1.
Step 3. Stopping Condition if k == N, STOP, return the best so far x̂∗K argminx∈∪iDi

k+1
f (x). Else Go to

Step 1.

4 PRELIMINARY ANALYSIS OF MAROBO

We present MAroBO results on synthetic test functions, focusing on the impact of user-defined parameters:
rollout horizon, number of agents, and number of configurations on the performance of the algorithm. We
evaluate the impact of multi-agent nature coupled with rollout approach across increasing dimensions to
assess the rate of performance deterioration. Results are compared against Bayesian optimization.

4.1 Experimental Settings

We consider the difference between the best observed function value and the true optimum value | f̄ K− f ∗|
averaged across 25 macro-replications. The mean along with the standard error of the metric are recorded.

We considered the following synthetic test functions:

• Shubert 2-d function has feasible region [−10,10]d , has many local minima and one global minima
at (−7.0835,4.8580);

• Rastrigin 10-d function has a feasible region [−2.5,3]d , with several local minima and one global
minimum at 0;
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• Schwefel 4-d and 10-d function has a feasible region [−500,500]d , with several local minima and
one global minimum at 0;

• Langermann 6-d and 10-d function has a feasible region [0,10]d with many local minima and one
global minimum with a function value (−5.16)

All the experiments were performed with an initial budget n0 = 10d where d is the dimension of the
test function. These samples were generated using Latin Hypercube Sampling. Across the experiments
we modify the number of configurations Nc, the rollout horizon h and the number of agents m. In the
following we show a selected fraction of the experiments. All the experiments were executed on Sol -
High Performance Computing infrastructure at ASU with 64-core node and 2GB of RAM per core.

4.2 Performance Analysis

In the following, we verify the hypothesis concerning the performance of MAroBO. In fact, we want to
verify the following: (H1) Increasing the number of configurations improves the performance of MAroBO;
(H2) The number of agents and the rollout horizon length have a positive impact on the performance of
MAroBO; (H3) MAroBO is more robust to higher dimensions than BO.

Figure 5: 2-d Shubert with Nc = 25,Nc = 50. Figure 6: 10-d Schwefel with m = 4,h = 4.

Experiment 1: Performance in low dimensional settings for varying configurations. Table 1 shows
the results of different 2d functions. We see here the effect of the number of configurations. We expect
that the higher the number of configurations evaluated the better the solution. The choice of number of
configurations is arbitrary. This is confirmed by the empirical results in all the cases Figure 5 shows how
MAroBO Shubert has better performance when the configurations are doubled from 25 to 50.

Table 1: Results for low dimensional experiments. Across the experiments m = 4, h = 4.

Function d Nc | f̄ K
MAroBO− f ∗|± stdErr | f̄ K

BO− f ∗|± stdErr K
Shubert 2 25 62.20±6.56 48.50±6.05 78
Shubert 2 50 10.27±4.39 48.50±6.05 78

Langermann 2 25 0.83±0.17 1.62±0.22 78
Langermann 2 50 0.03±0.09 1.62±0.22 78

Experiment 2: Performance for varying number of agents and higher dimensions. MAroBO was run
with Nc = 100 configurations across all the cases and we notice that it is always superior to BO (Table 2).
We can also observe how doubling the number of agents does not seem to have a remarkable effect. We
also observed an important variability in the quality of the solutions which may be brought back to the
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low number of rollout replications NRO, which we set to 10 across all the experiments. Observing the
Rastrigin results, we notice how increasing the rollout horizon has a positive impact, but this finding is not
confirmed under the Schwefel which calls for a further experimental fraction and a deeper understanding
of the impact of the interaction between the agents and the horizon.

Table 2: Experiments to assess the impact of more agents and longer lookahead horizon. All the functions
were evaluated with Nc = 100.

Function d m h | f̄ K
MAroBO− f ∗|± stdErr | f̄ K

BO− f ∗|± stdErr K
Langermann 6 4 4 4.09±0.03 4.50±0.05 100
Langermann 6 8 4 4.02±0.001 4.50±0.05 100

Rastrigin 6 4 2 2.34±0.24 2.42±0.25 80
Rastrigin 6 4 6 2.04±0.20 2.42±0.25 80
Schwefel 4 8 2 464.15±24.15 518.85±36.22 100
Schwefel 4 8 6 516.13±27.76 518.85±36.22 100

Experiment 3: Effect of increased dimensionality. Table 3 reports the results for the higher dimensional
cases. First off we observe the detrimental effect that the increased dimensionality has on the performance
of the algorithms. In fact, while MAroBO was not designed for high dimensional inputs, we observed that
the algorithm is relatively more explorative than BO by distributing the sampling among agents. Figure 6
shows an exemplar behavior where BO has a very hard time initially to identify improving areas and
MAroBO with its agents succeeds in moving towards improved values.

Table 3: Experiments on higher dimensions. Langermann used Nc = 500, while Rastrigin and Schwefel
were evaluated under NC = 600.

Function d m h | f̄ K
MAroBO− f ∗|± stdErr | f̄ K

BO− f ∗|± stdErr K
Langermann 10 4 4 4.95±0.0002 4.99±0.0002 47
Langermann 10 10 4 4.64±0.01 4.99±0.0002 47

Rastrigin 10 4 4 1.31±0.09 3.39±0.31 53
Schwefel 10 4 4 2188.67±48.44 2816.05±42.49 42

5 CONCLUSIONS AND FUTURE DIRECTIONS

We present, for the first time, MAroBO a Multi-Agent Implementation of non-myopic Bayesian optimization.
Agents decompose the input space in a partition and sequentially decide whether to enter and partition
another subregion or continue investigating their current region. Given an input space, an algorithm
for coordination and a heuristic for multi-step simulation, MAroBO allocates agents to different areas,
distributing modeling and sampling efforts. The algorithm relies on a collection of Gaussian processes,
each defined over a single subregion, estimate the unknown objective function in unsampled areas. Upon
communication, the agents simulate their actions without evaluation for a specific horizon, update the
partition, and make sampling decisions until the budget is exhausted. Our results show the impact of the
number of solutions considered simultaneously by the agents, simulation horizon length, and number of
agents. Preliminary results indicate that a version of MAroBO always outperforms BO, granting further
analysis. Future work will focus on increasing agent exploration and improving computational efficiency.
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