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ABSTRACT 
 
To evaluate novel solutions for edge computing systems, suitable distribution models for simulation are 
essential. The extensive use of deep learning (DL) in video analytics has altered traffic patterns on edge 
and cloud servers, necessitating innovative models. Queuing models are used to simulate the performance 
and stability of edge-enabled systems, particularly video streaming applications. This paper demonstrates 
that traditional Markovian M/M/s and general distribution G/G/s queuing models must be revamped for 
accurate simulation. We examined these queuing models by characterizing the real data with discrete and 
continuous distributions for arrival rates to homogenous servers in AI-based video analytics edge systems. 
Based on achieved results, traditional methods for finding general distributions are inadequate, and an 
automation method for finding empirical distribution is needed. Therefore, we introduce a novel approach 
using a generative adversarial network (WGAN) to generate artificial data to automate the process of 
estimating empirical distribution for modeling these applications. 

1 INTRODUCTION 

One of the advantages of the 5G and 6G networks compared to their predecessors is the use of edge 
computing (Tyokighir et al. 2024). Edge computing shifts computer storage and processing to the network's 
edge, closest to users and devices and most critically, as close as possible to data sources. The new 
generation of networks, advancements in IoT, and the use of edge and fog devices in conjunction with 
central cloud computing have all advanced the development of edge-enabled computing. Deep learning and 
AI-based methods are increasingly employed in the edge computing applications proposed for smart city 
infrastructure, smart sensors, blockchain/intelligent caching, and deep leap learning video analytics. 

In traditional queuing modeling, arrival rates are usually considered integer discrete values from 
probability functions such as Poisson distribution. In our previous work (Abhari et al. 2022), we measured 
the arrival rates of a real edge-network application with the unit of frame per second. We use the collected 
data in this work to show that general discrete and continuous distributions do not exactly fit the data. We 
obtained real numbers for frame arrival rate by data collection and workload characterization of an edge-
based security camera application. The details of the security camera application used for data collection 
are discussed in (Abhari et al. 2022). The arrival rates of video frames for different application parts were 
measured during the video streaming, including object detection and object tracking, on the edge servers. 
In this work, the collected data is modelled by Poisson and exponential distributions as well as Gamma and 
Uniform distributions, representing M/M/s and general distributions of G/G/s queuing, respectively. For 
the Markovian queuing system, its common formulas are used, and for G/G/s queuing systems, the 
estimation of queuing delay is done using the mathematical formulas adapted from Medhi  (2003) and 
(Whitt 1983). The rationale for using Uniform distribution in G/G/s instead of exponential for service time 
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is that we are dealing with video streaming applications that need specific deadlines that heterogeneous 
servers with different service times can not provide when processing the frames.  

One of the features of current video streaming applications is the use of deep learning artifacts such as 
CNN and DNN for video analytics. These data-intensive video analytic applications can not be 
implemented only by edge computing; they are traditionally called edge killer applications. Therefore, for 
large applications on top of complex networks, including edge, fog, and cloud computing with different 
IoT devices or cellular networks with mobile devices, the Deep Learning (DL) parts are divided and 
distributed to edge/fog devices and the cloud. The problem is that mixing different application workloads, 
latency, and jitters in complex networks constantly changes traffic and arrival patterns. The scope of this 
work is finding accurate distribution models for simulating edge computing when network latency (or 
queuing delay) is small and can be calculated because of the proximity of IoT devices (such as security 
cameras) and edge servers.   

There are limited workload characterization studies (because of the difficulty of collecting real data) 
for edge-enabled DL applications in the literature. Finding the distribution models is necessary for 
generating artificial data for the comprehensive simulation of these systems. In our data collection, we 
measured different processing times of different DL tasks done on edge devices for a security camera video 
streaming application in the units of frames/sec. Similar to the new generation of edge-based applications 
in our tested application, a dynamic scheduler is used called VADRM method that divides different parts 
of each video job and sends the frames of that job to the specific device through the edge/fog network 
(Abhari et al. 2022). We can model this system with one queue under the scheduler and multiple servers. 

 To make the problem simple, we assume the ideal situation where all the streams of frames are coming 
from the camera in a sequence with an interarrival times distribution model and placed on the queue, and 
the factor determining how much they should wait in the queue is whether the servers are busy or not. So, 
with this assumption, the different types of jobs and bulk allocation of all frames of one job to a server will 
be simplified, and the analytical model can be achieved by finding the distribution of arrival rate and 
interarrival times between each frame in a queuing system.   To find the effectiveness of modeling, in this 
work, two M/M/s and  G/G/s queue models (s represents the number of servers) are solved to find the 
queuing delay, which is the edge network latency. Then, the obtained results are compared with simulation 
results conducted with the iFogSim edge/fog simulator done by (Abhari et al. 2022), which are presented 
in Section 4.  

2 RELATED WORK 

Simulation is a well-known method when testing in a real system is expensive, and it is a proven method 
for evaluating complex networks. The most important part of the simulation is modeling. Although there 
are several state-of-the-art simulators for edge /fog and cloud computing, only a few of them use G/G/s 
queuing, which is examined in this work. This section first looks at the literature about queuing modeling 
and then discusses the current edge simulators. Queuing theory has been widely used to model and simulate 
the performance of edge/cloud networks and related video streaming-based systems (Pu et al. 2023), IoT 
task offloading (Fan et al. 2023), and Software-defined networking (SDN) systems (Amadeo et al. 2023). 
However, our recent research shows that queuing modeling has received little attention when the arrival 
rate and service time do not follow the Markovian process. Markovian queuing models are used for stability 
and network delay with interarrival and service times of Poisson and Exponential distributions (Giorno et 
al. 2018). The classical text indicates that the G/G/s queue has no easy solutions and should be solved by 
approximating M/M/s and then validating its results by simulation.  

Here, edge/cloud simulators and the models they provide for edge computing applications are 
discussed. CloudSim (Calheiros et al. 2010 and CloudSim) is a holistic open-source software framework 
for modeling cloud computing environments and performance testing application services. It is the most 
widely used cloud simulator in the research community. However, it does not support the simulation and 
modeling of IoT and edge computing environments, nor its extensions CloudSim Plus (Silva Filho et al. 
2017) or an open source CloudSim 3 (CloudSim and  Cloud Plus).  
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iFogSim (Gupta et al. 2017) is a Java-based simulator that simulates IoT and fog computing 

environments and evaluates resource management techniques in terms of latency, network congestion, 
energy consumption, and cost. The physical topologies can also be built programmatically through Java 
APIs. To demonstrate the effectiveness of iFogSim for evaluating resource management techniques, the 
research paper (Jha et al. 2020) discussed two case studies: a latency-sensitive online game and intelligent 
surveillance through distributed camera networks. The results of this study demonstrated that iFogSim 
could enable simulations on the scale required in the context of IoT. However, iFogSim1 and iFogSim2 
tools do not support any distribution modeling for arrival rates or workloads and use only the Edgeward 
algorithm for module allocation of fog devices. The same lab recently released Fogbus2 (Deng et al. 2021), 
a Python-based fog simulator that provides a mechanism for scheduling heterogeneous IoT applications 
and implements several scheduling policies that still lack queue modeling with predefined distributions.  

A recent survey paper compares several edge simulators with their practical capabilities, such as 
FogNetSim++, EdgeCloudSim, YAFS, LEAF or EdgeSimPy. The comparison shows that some simulators 
are built for specific applications, and only a few continue to extend their features to solve general 
applications (Fahimullah et al. 2023). The novel modeling method proposed in Section 5 of this paper 
suggests using a neural network (called WGAN) to generate artificial data for DL-based video streaming 
applications and potentially for simulations of many other recent applications in 5G or 6G involvements. 

3  ANALYSIS OF DISTRIBUTION MODELS 

As mentioned above, we measured the speed of different parts of a video analytic application, which was 
distributed to edge servers for security camera IoT devices. In that measurement, the arrival rates of frames 
in different edge servers are collected in the unit of frames per second. We have compared many 
distributions with common discrete models used to examine their goodness of fit, which is shown below. 

Regarding continuous distributions, Beta and Gamma distributions are better candidates for simulating 
the collected arrival rates of traffic from IoT devices to edge servers, which are measured in frames/sec. In 
the queuing models, knowing interarrival times determines whether it is the Markovian models. For 
example, if the interarrival time is exponential and the arrival rate is Poisson, then the model is M/G/s. If 
service time is also exponential, then the queuing model is M/M/s for s servers. In the case of collected data 
that is shown below, the arrival rate is not Poisson distribution and interarrival time and service times are 
unknown; thus, the curve fitting method was used for finding the empirical distribution model from the 
following video analytics data, which are measured in edge devices in the units of frames per second. Since 
in edge-based video streaming applications, different parts of video analytics may be sent to the edge 
devices, the collected data shown below is categorized:   
 
Motion Detection: 9.21, 8.88, 9.51, 9.26, 9.12, 9.01, 8.95, 9.11, 8.96, 9.03, 8.99, 9.02, 9.30, 9.22, 9.25, 
9.14, 9. 17  
Object Detection: 7.56, 7.50, 7.65, 7.90, 7.67, 7.66. 7.88, 7.77, 7.85, 7.62, 7.48, 7.69, 7.83, 7.56, 7.49, 7.72, 
7.81 
Object Tracking: 6.14, 6.0, 6.11, 6.17, 6.09, 6.19, 6.05, 6.13, 6.14, 6.12, 6.23, 6.15, 6.25, 6.29, 6.05, 6.17, 
6.22 
 

Analyzing the CDF plot provides insight into the fact that the empirical distribution of the dataset does 
not match the expected patterns of common distributions such as uniform, Poisson, or Exponential models 
(shown by Figure 1-a). The empirical distribution's shape suggests that different specific distributions, such 
as the Beta or Gamma distributions, can provide a better and more insightful presentation of the data's 
distribution (shown by Figure 1-b).  

Another candidate is the family of normal distribution such as Weibull and Lognormal that, although 
not a good match, can show data trends. To complete the visual inspection, we used the Q-Q plots that 
visually examine the data's alignment with two distributions of Log-normal and Beta distributions in Figure 
2. The theoretical line observed in the QQ plots of Figure 2 shows that deviations are most noticeable in 
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(a) 

(b) 
Figure 1: CDF comparison of  (a) common  and  (b) candidates with empirical distribution. 
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the tails. The Beta distribution demonstrates the closest fit to the expected line, particularly in the middle 
quantiles, although it also shows some divergence at the extremes.  

The Log-normal distribution, in comparison, exhibits more significant departures from the line, 
especially in the lower quantiles. This suggests that it can somewhat accurately model the central portion 
of the data. 
 

Figure 2: QQ plots for Log-normal distribution (left) and Beta distribution (right). 
 

After visual observation, the Kolmogorov-Smirnov (K-S) test was used for the closest candidates with  
the specific p-values and K-S parameter to assess the strength of evidence for each distribution fit in Table 
1: The results of the K-S test are illustrated in Table 1, and the hypothesis for statistical tests is explained 
below. 

 
Table 1: Kolmogorov-Smirnov (K-S) test results for selected distributions. 

Distribution K-S Statistics P-Value 
Poisson 0.3576  2.4e-06 

Exponential 0.4924 6.15e-12 

Gamma 0.6939 9.00e-21 
Beta 1.0 0 
Normal 0.2007 0.028068 

  
• Null Hypothesis (H0): The distribution of video frame arrival rates follows the specified 

theoretical distribution (Poisson, Exponential, Gamma, or Uniform). This suggests that the observed data 
fits well with the specified distribution model, indicating no significant deviation from these theoretical 
distributions. 
 • Alternative Hypothesis (H1): The distribution of video frame arrival rates does not follow the 
specified theoretical distribution (Poisson, Exponential, Gamma, or Uniform). This implies that the 
observed data significantly deviates from the specified distribution model, indicating that another 
distribution may better represent the data. 

For each distribution model tested, the K-S test results will help us determine if we can accept the 
distribution as a suitable model for our data or if we need to consider alternative distribution models. If the 
p-value obtained from the K-S test is greater than the significance level (typically 0.05), in that case, we 
fail to reject the null hypothesis for that distribution, suggesting that the data does not significantly deviate 
from the specified distribution. Conversely, if the p-value is less than the significance level, we reject the 
null hypothesis, indicating that the data significantly deviates from the specified distribution model. Based 
on the p-values of the Kolmogorov-Smirnov (K-S) test  (which are less than 0.05) shown in Table 1,  we 
reject the null hypothesis, meaning none of the distributions fit the data.   
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4 PERFORMANCE VALIDATION OF QUEUING MODELS 

Although we didn't find the best fit for the collected data, the easiest way to select the simulation models is 
to find the distributions for queuing models. For M/M/s model, its common distributions can be used but 
for G/G/s queue we need to select the distribution of arrival rate and service time. For arrival rate we 
considered both Beta and Gamma distributions as they are visually closer to the empirical distribution of 
collected data as shown in Figure 1. Beta distribution shows a better match to empirical data; however, we 
used Gamma distribution as it is more common in queuing modeling and is related to Poisson and 
Exponential distributions, so it can be used for arrival mode (i.e., both arrival rates and interarrival times). 
Gamma distribution has two parameters (a, b), a is shape and b is the scale parameter, sometimes shown by 
its inverse, which is called rate parameter. For showing λ arrival rate we used the mean value of the Gamma 
distribution with two parameters a and b, which is ab for the Gamma distribution when considering b as 
the scale parameter.   

For service time, we use the Uniform distribution with the range (v1, v2)  seconds for processing 
incoming frames from the IoT devices. So, we can calculate the mean service time as 𝑣𝑣2+𝑣𝑣1

2
 and 𝜇𝜇 = 2

𝑣𝑣2+𝑣𝑣1
,     

where 𝜇𝜇 is the service rate and 𝜎𝜎𝑠𝑠2 is the variance of service time, which for Uniform distribution is:𝜎𝜎𝑠𝑠2 =
(𝑣𝑣2−𝑣𝑣1)2

12
. Therefore, considering identical s servers the stability of system can be shown as: 

                                                             𝜌𝜌 = λ
𝑠𝑠𝑠𝑠

= 𝑎𝑎𝑎𝑎
𝑠𝑠𝑠𝑠

= 𝑎𝑎𝑎𝑎(𝑣𝑣1+𝑣𝑣2)
2𝑠𝑠

                                                           (1) 

There is no formula to calculate queuing delay in G/G/s queues. , the frame arrival mode acts similarly to  
𝑊𝑊𝑊𝑊𝑀𝑀𝑀𝑀𝑀𝑀  of M/M/s queue where 𝑊𝑊𝑊𝑊𝑀𝑀𝑀𝑀𝑀𝑀  is a queuing delay for M/M/s .  𝑊𝑊𝑊𝑊𝐺𝐺𝐺𝐺𝐺𝐺 queuing delay of  G/G/s 
can be estimated by using the above constants and the following formula:     

                                                                  𝑊𝑊𝑊𝑊𝐺𝐺𝐺𝐺𝐺𝐺 = 𝑊𝑊𝑊𝑊𝑀𝑀𝑀𝑀𝑀𝑀
𝐶𝐶𝑎𝑎2+𝐶𝐶𝑠𝑠2

2
                                                     (2)                  

Where, the 𝐶𝐶𝑎𝑎2 constant for the arrival is calculated by the ratio of variance over the square of inter-arrival 
time and similarly the  𝐶𝐶𝑠𝑠2 for service is calculated by dividing the variance of service time by the square of 
the mean of service time. All the calculations, including the estimation of  𝑊𝑊𝑊𝑊𝑀𝑀𝑀𝑀𝑀𝑀 are done according to 
Medhi  (2003) and Whitt (1983). 

To validate the proposed model, the results used from the simulation of edge computing performed by 
the iFogSim simulator with the same data set discussed above and three edge servers with the same 
configuration as explained in (Abhari et al.2022). In that simulation, iFogSim was used for a security 
camera edge-computing application with the video input sizes mentioned in the previous section and its 
default configuration for three edge servers. It reported a latency of  5.12 milliseconds for this edge network, 
which can result from the addition of the latency of each device and waiting time in the network for each 
frame. The iFogSim simulation papers for the same application but different servers report a network delay 
close to zero for edge-only configuration and one camera (Fahimullah et al. 2023; Gupta et al. 2017).  

Considering the specification of the real data shown in Figure 1, we measured the shape and scale 
parameters of the  Gamma distribution as 38.97 and 0.19,  respectively, which shown as Gamma (38.97, 
0.19). We solved equations (1) and (2)  above for the real arrival data that we collected and characterized. 
By using the same edge devices used in iFogSim simulation with a processing power of a minimum of 10 
and a maximum of 17 fr/sec (equal to v1= 1/10 and v2=1/17  seconds), we calculated queuing delay or 
network latency. According to Equation (1)  this system is stable  (ρ<1) and with more than one server and 
the utilization factor ρ is decreased when increasing the number of servers. According to Equation (2) the 
queuing delay for 𝑊𝑊𝑊𝑊𝐺𝐺𝐺𝐺𝐺𝐺, for the same edge network used in the iFogSim simulator, calculated as 0.2 ms 
for three servers which is negligible and becomes very close to zero beyond four servers. We used Excel 
and manually calculated these equations 1 and 2, and the left graph of Figure 3 shows the network delay of 
G/G/s model simulation results. We calculated the network delay (i.e., queuing delay) of M/M/s model 
which has the available solution in the literature by using the web site Queuing Theory Calculator | Math 
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of Waiting (omnicalculator.com) to make cross-validation. The right graph of Figure 3 shows the M/M/s 
model generated the latency for three servers as 0.8 ms which is higher than G/G/s results. Thus, G/G/s 
queuing with Gamma and Unifrom distributions for arrival and service time is closer to zero, which we 
expect for edge computing AI-based video streaming applications where edge and IoT devices are close to 
each other. However, none of these models result in the network delay achieved by the iFogSim simulator, 
which adds the delay for fog devices (further than edge servers in a network).  

Figure 3: Queuing delay with increasing number of servers using G/G/s (left) and M/M/s (right) queuing 
models. 

5   PROPOSED METHOD 

As the general distribution cannot be found for collected data the final solution is to use an empirical 
distribution from the data. However, finding empirical distribution required collecting each application's 
data periodically and performing workload characterization. The novel idea presented in this paper is to use 
an artificial neural network (ANN) to automate workload characterization by estimating empirical 
distributions based on the periodically collected data from a real system. Automatic workload 
characterization includes finding the distribution models and their mathematical formulas provided by 
ANNs and Generative Adversarial Networks (GANs). These neural networks can learn from data to build 
a model and generate large amounts of data (i.e., synthetic data),  which is considered a new era in Artificial 
Intelligence that made it possible to produce remarkably realistic and high-quality data in different formats, 
including text, photos, and videos. This feature not only makes synthetic data more realistic but also offers 
up a wide range of applications, from creating art that can be useful in many fields, including the gaming 
industry, to solving intricate data augmentation tasks in fields as varied as autonomous driving and medical 
(Goodfellow et al. 2014). In the rest of this section, we first discuss some problems with training GANs 
from the related works to provide background information. Then, we show the result of our work, which is 
focused on automatic data generation by estimating empirical distribution when the workloads of an edge-
enabled application change.  

Instability and mode collapse are two major training problems for classic GANs that can noticeably 
reduce their performance. Wasserstein GANs (WGANs) were developed as a solution to the classic GANs 
problems in which the method of measuring and optimizing distances across data distributions is 
reformulated, resulting in a more robust framework. 

It has been demonstrated that applying a gradient penalty and the Wasserstein distance makes the 
training process more stable and results in a more reliable production of a variety of high-quality data. This 
development allows researchers and developers to fully utilize generative models while avoiding typical 
errors like mode collapse that will result in more dependable and adaptable solutions. In this work, we 
implemented the Wasserstein GAN with a gradient penalty. 

There are two ways to enforce Lipschitz continuity: weight clipping and gradient penalty (Lui et al. 
2020). In WGAN-GP, weight clipping is replaced by the gradient penalty, which addresses the drawbacks 
of the weight clipping method (Li et al. 2023). In this method, if the gradient norm deviates from the ideal 
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value of 1, the model will be penalized, and this procedure will result in a more stable and smooth training 
process (Arjovsky et al. 2017). 

Gradient penalty fosters smooth gradients and helps ensure reliable convergence, whereas weight 
clipping may result in unexpected gradients and even cause training instability. WGAN-GP usually 
generates higher-quality synthetic images since the generator receives and is trained with more precise and 
reliable feedback. In the work done by  Gulrajani et al. (2017), the authors proposed a method to improve 
the standard WGAN and enable stable training of a wide variety of GAN architectures. Their proposed 
method includes Gradient penalties implemented by computing the gradients of the critic function's output 
in relation to its inputs, which are a combination of generated and real data, and then adding a term to the 
loss function that penalizes the deviation of these gradients from the norm. 

To test the feasibility of using generative adversarial networks to produce empirical distribution, we 
have used a simple generator in WGAN with a standard architecture responsible for creating synthetic data 
that resembles real data. It starts with a noise vector as its input and goes through a series of linear layers 
with ReLU activation functions. These layers transform the input noise vector into a more complex structure 
that eventually turns into the desired output shape. In the last layer, Tanh is used as the activation function, 
which normalizes the output to the range [-1, 1]. 

 Figure 4, below shows the histogram of the generated data. The critic assesses the realism of the data 
produced by the generator by assigning it a score that reflects the quality of the generated data. The critic 
uses a series of linear layers that contain a batch normalization layer and a leaky ReLU activation and 
outputs a single value that shows the quality of the data. We used these parameters to improve the quality 
of generated data and make it closer to empirical distribution.  

 
Figure 4: Histogram of empirical WGAN-generated data (left) and original data (right). 

 
Figure 5 below shows the comparison of the distribution shape between the original and generated data. 

The limitation of our work, as Figure 5 shows, is that there is no perfect match between the empirical 
distribution and generated data by WGAN. The reason is the limited collected data, which is only 51 
measured data in our edge-enabled video streaming applications. A large amount of collected real data is 
required, along with more advanced WGAN training for complex fog/cloud-based video streaming 
applications, which forms the future direction of this research.  
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Figure 5: Comparison of CDF distributions of real data and WGAN-generated data. 

6   CONCLUSION 

In summary, the motivation of this work is to develop novel models that can be utilized in the simulation 
and evaluation of intelligent edge-enabled AI applications. The extensive use of AI techniques, such as 
Convolutional Neural Networks (CNN) in video analytics, frequently alters the workload pattern in edge-
enabled applications. The models are needed to generate data automatically from these changing workloads.   

In our recent experiments, we modelled the traffic patterns for different parts of a security camera IoT 
device application that was distributed to edge servers. We used G/G/s queuing systems with a general 
distribution of inter-arrival times and service times for s servers. In that application, network latency was 
negligible due to the proximity of IoT and edge devices. By comparing two models of G/G/s and traditional 
M/M/s queuing models, we found that using Gamma Distribution for arrival rate with the G/G/s model 
produces closer results to the previously simulated edge network and our expectation of the behaviour 
stability of the system. However, none of the distribution models were validated by simulation results 
because distributions cannot model real data accurately. The proposed solution in this work is to estimate 
the empirical distribution by using  Generative Adversarial Networks called Wasserstein GANs (WGANs) 
to generate traffic patterns similar to the real data of DL-based video streaming applications running on top 
of edge/fog and cloud-based networks. In this work, we have developed a program to generate artificial 
data using WGANs to estimate the empirical distribution of the collected data for the tested application.  

A potential direction for future work is to integrate the generative model-based workload 
characterization approach with popular edge computing simulators such as iFogSim or EdgeCloudSim. 
This would enable the evaluation of the impact of using synthetic workload data on the accuracy and fidelity 
of edge computing simulations. Future work could involve exploring more advanced generative models 
beyond WGANs. Models such as diffusion models or transformer-based architectures could be investigated 
to generate synthetic workload data. Comparing the performance and quality of data generated by different 
state-of-the-art generative models would be a valuable avenue for research. While this work focused on 
finding models for the simulation of edge-enable video streaming applications, the proposed approach of 
using generative models for workload characterization could be employed in real emerging applications 
such as the metaverse, digital twins, or blockchain-based systems. Evaluating the effectiveness of the 
methodology across diverse application domains would further demonstrate its generalizability. 
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