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ABSTRACT

This extended abstract is an overview of ranking and contextual selection (R&CS), a new procedure for
ranking and selection with covariates. R&CS runs individual ranking-and-selection experiments at each
covariate in an experiment design sampled from the covariate distribution. The systems selected by the
ranking-and-selection procedures and the design itself form a classifier for selecting the best system at
any future covariate value. Associated with the classifier is an assessment of its accuracy that is proven to
satisfy a finite-sample coverage guarantee.

1 INTRODUCTION

In operations research there is significant interest in optimal decision making among systems with stochastic
outputs. Specifically, a set of alternatives, {1,2, . . . , p} are associated with a measure of performance,
µi, i∈ {1,2, . . . , p}, which is the expectation of a stochastic output from system i. The optimal decision, j⋆, is
the system that attains the maximum mean performance across the set of alternatives: j⋆ ∈ argmaxi∈{1,2,...,p}µi.
The setting of simulation optimization (SO) further assumes that each system can be simulated to generate
synthetic replications which mimic the behavior of the true system to estimate µi. Such decision-making
problems are typically referred to as ranking-and-selection (R&S) problems. Decades of literature has
focused on designing procedures to solve R&S problems. For a more in-depth overview, see Nelson and
Pei (2021).

More recently a context-sensitive version of R&S has been studied. Rather than selecting a static single
best system, the goal is to select the best conditional on additional covariate information, xxx ∈ X . The
covariate is modeled as a random vector with a distribution F . Associated with each system is the mean
performance function conditional on the value of the covariate, µi(·), i ∈ {1,2, . . . , p}.

A simple approach to accommodate the inclusion of the covariate is to run a R&S procedure after the
user observes the realization of the covariate, XXX = xxx. The problem with this approach is that all simulation
must be done “online,” so only after the covariate is realized can inference about the performance of any
system be gleaned. If the computational effort required to simulate each system is large, or the allowable
time to make a decision after the covariate is realized is short, then running a full blown R&S procedure
may be impractical or infeasible. Instead, approaches have been developed that simulate “offline” prior to
the realization of the covariate.

For the purposes of the extended abstract, we call these “offline” procedures ranking and selection
with covariates (R&S+C). To obtain strong finite-sample guarantees, existing R&S+C procedures assume
known structure about each µi(·). For example, Shen et al. (2021) assume µi(·) is linear in the covariate.
Further, R&S+C procedures do not exploit the wealth of existing and highly efficient R&S procedures,
which makes implementation more difficult.

To rectify these problems, Keslin et al. (2022) and Keslin et al. (2024) introduced ranking and contextual
selection (R&CS). Further, Keslin et al. (2024) provides finite-sample guarantees for the R&CS procedure
that require no knowledge about the structure of each µi(·).
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2 R&CS OVERVIEW

We assume that there exists a covariate XXX ∼ F obtaining values in X . For each system j and covariate
xxx ∈ X , replications can be simulated, Yℓ, j(xxx), ℓ = 1,2, . . . with E

(
Yℓ, j

)
= µ j(xxx). These replications are

used to fit a nearest-neighbor classifier, Ĵ(·), which selects a system for each covariate value. Because the
replications are random, Ĵ(xxx) is a random function of xxx.

R&CS requires a design consisting of m covariates, Dm = {XXX1 XXX2, . . . ,XXXm}. For each design covariate,
XXX i, a R&S procedure is run and a system is selected, R(XXX i). The corresponding set of R&S choices is
Rm = {R(XXX1),R(XXX2), . . . ,R(XXXm)}. The pairing of Dm and Rm forms a database used to fit a nearest-neighbor
classifier function. Keslin et al. (2024) provide a detailed justification for using a single neighbor.

Along with the classifier, R&CS provides an associated performance assessment ∆̂1−α
m . Details about

∆̂1−α
m can be found in Keslin et al. (2024); here we present the finite-sample guarantee provided by ∆̂1−α

m .
We define the optimality gap for covariate xxx as the difference between the mean of the optimal and

selected system at xxx: ∆(xxx) = µ j⋆(xxx)(xxx)−µĴ(xxx)(xxx). Controlling this optimality gap across the covariate space

is the primary goal of an effective classifier, Ĵ(·). If this optimality gap is “small” across the covariate
space, a user can be confident that the systems selected by Ĵ(·) are “good.”

Because ∆(xxx) may be small at some values of xxx and large at other values, an assessment with guarantees
on the optimality gap across the entire covariate space must be considered. Therefore, R&CS requires
a user-specified confidence level, 0 < 1−α < 1, for the assessment ∆̂1−α

m . Theorem 1 proves that the
probability that the optimality gap at a random covariate will be below ∆̂1−α

m is above 1−α . Thus, ∆̂1−α
m

assesses the performance of Ĵ(·). If ∆̂1−α
m is below a user-specified acceptable gap, δ , then the classifier

has sufficient performance. On the other hand, if ∆̂1−α
m > δ , then there exists a non-negligible probability

that the optimality gap of the covariate will be above δ .
Theorem 1 assumes the following (i) Each XXX i ∈Dm is i.i.d. with XXX i ∼F ; (ii) Ĵ(·) is a nearest-neighbor

classifier that breaks ties by choosing the design point with smallest index in Dm; and (iii) ∆(·) is a known
function at the design points, XXX1,XXX2, . . . ,XXXm.
Theorem 1 Under Assumptions (i)–(iii),

P
(

∆(XXX)≤ ∆̂
1−α
m

)
≥ 1−α.

Notice that the probability in Theorem 1 is for the random covariate, XXX , and the random classifier
function, Ĵ(·). The guarantee given by Theorem 1 places no assumptions on each µi(·) or the R&S procedure
used to generate the database. However, Assumption (iii) from Theorem 1 is unlikely to be satisfied in
practice. Therefore, Keslin et al. (2024) provide asymptotic inference when using plug-in estimators of
∆(XXX i) instead of ∆(XXX i) for each design covariate XXX i.

Extensive empirical results in Keslin et al. (2022) and Keslin et al. (2024) demostrate not only that the
desired optimality-gap coverage is achieved, but also that R&CS makes effective use of offline simulation
by exploiting highly efficient, off-the-shelf R&S procedures.
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