
Proceedings of the 2024 Winter Simulation Conference
H. Lam, E. Azar, D. Batur, S. Gao, W. Xie, S. R. Hunter, and M. D. Rossetti, eds.

A DIGITAL TWIN APPROACH TO SUPPORT THE EVOLUTION OF CYBER-PHYSICAL
SYSTEMS

Joost Mertens1,2

1 Faculty of Applied Eng.: Electronics and ICT, University of Antwerp, Antwerp, BELGIUM
2 Flanders Make at University of Antwerp, University of Antwerp, Antwerp, BELGIUM

ABSTRACT

A digital twin is a virtual representation of a real-world system of which data is continually collected. The
data is fed back to the digital twin such that it may mirror system it reflects. In exchange, its users gain
a variety of services. A key aspect in all digital twins is that of evolution, and this in two different ways.
The first way deals with the mirroring of the real-world system when it evolves. The models in the digital
twin should reflect that evolution. The second way deals with the evolution of the services in the twin
itself. Like any other software system, the purpose and requirements of the digital twin evolve over time.
In this thesis the focus is on a subset of issues encountered in these two types of digital twin evolution. It
provides techniques that aid digital twin developers with the evolution of their digital twin.

1 INTRODUCTION

A digital twin is a virtual representation of a real-world system of which data is continually collected.
Although various definitions with intricate differences exist, in practice, the essence of a digital twin is
a digital model representing a real-world system, data gathered during the operation of that real-world
system, and a way of adjusting/updating the model based on that data if deemed necessary (Wright and
Davidson 2020). The term real-world system is kept generic on purpose, as the digital twin concept is
found in all kinds of domains, including but not limited to manufacturing, healthcare, urban/city planning,
maritime and shipping, aerospace and automotive fields (Botín-Sanabria et al. 2022; Semeraro et al. 2021).

The key novelty in digital twins compared to traditional modeling and simulation is that the models in
the twin mirror the real-world instance, not only during design time, but also over the entire lifecycle of the
real-world instance. As a consequence, as changes occur to the real-world system and/or its environment
the digital twin is required to evolve. For example, when a new sensor is added to the real-world system, the
model of that sensor should also added to the digital twin. When those components were developed using
model-driven engineering, models of these updated components exist and integration in the digital twin
is straightforward. However, not all cases of evolution of the real-world system are engineered changes,
particularly those changes pertaining to the physical aspects. As the real-world system ages, it suffers wear
and tear, parts break and get replaced, sometimes by suboptimal replacements. Such changes are usually
not documented, yet they can have a considerable impact on the system’s operation. For these cases, how
to update the digital twin is less clear-cut.

Besides the evolution driven by the real-world system, there is also the less frequently considered
evolution of the digital twin’s requirements and/or purposes. As the twin itself is a software system,
these change over the duration of its lifetime. A twin might gain a new service, or an existing service
might be updated. In contrast to the ideal, all-encompassing, view of a digital twin, in practice they are
complicated systems that only address the minimally required set of aspects of the real-world system that
are necessary to provide its services. Hence, introducing a new purpose usually entails addressing a new
aspect of the real-world system. Each aspect relates to a set of properties of interest of the system, that
are potentially coupled to the properties of interest of another aspect. For example, a twin that previously



Mertens

provided movement optimization, but now is also required to provide energy optimization is going to
evolve to contain new software components that address this energy optimization. Such components will
undoubtedly be interwoven with the existing movement optimization, as movement requires energy. As a
result, when adding, removing or updating the functionality of the twin, twin developers are required to
think about the composition of the building blocks/components that constitute the digital twin.

This thesis tackles a subset of issues encountered in these two types of digital twin evolution. It
provides reusable techniques that aid digital twin developers with handling the evolution of their digital
twin. Coupling this back to the title, we note how the title gains two meanings. On the one hand, the
digital twin reflects the real-world system’s evolution. On the other hand, the digital twin, as extension of
the “Cyber” aspect of the Cyber-Physical System, is evolved itself.

2 CONTRIBUTIONS

The main contributions of this thesis can be summarized as follows:

1. Provide a notation and set of patterns supporting digital twin evolution and composition.
This notation and set of patterns allow digital twin developers and stakeholders to reason about
the digital twin’s evolution and composition at a higher level of abstraction. The notation makes
influencing or competing components explicit, allowing developers to make trade-offs and compare
alternative implementations of the digital twin composition with each other.

2. Demonstrate the reuse of model validation methods for divergence detection at runtime.
We demonstrate how model validation methods that are traditionally used during model development
can be reused at runtime to detect divergences between a real-world system and its digital twin.

3. A demonstration of fault-localization in twin systems using state-of-the-art time-series classi-
fication methods combined with training data stemming from the digital twin.
We used state-of-the-art time series classification methods to perform fault localization for twinned
systems. The digital twin was used to provide the large amount of training data necessary to train
the fault localizer.

4. A system variant detection scheme to be used in the continuous evolution process as implemented
in a digital twin.
We developed a workflow that allows system operators to detect system variants during the operation
of the system. These variants are used to parametrize digital twins, which in turn are used to support
the continuous evolution of the system.

5. A Domain-Specific Language (DSL) for model validation.
We created a domain-specific language to be used for the definition of model validation experiments.
Such experiments compare measured results on a real system with a simulated model response and
yield a metric of similarity. Bolstered with model-to-code and model-to-text transformations, the
DSL makes defining such experiments more feasible for non-experts, e.g. digital twin developers.

6. Lab-scale gantry crane with digital twin.
As a case study for our work, we developed a lab-scale gantry crane with an accompanying digital
twin to demonstrate our techniques and findings.

REFERENCES
Botín-Sanabria, D. M., A.-S. Mihaita, R. E. Peimbert-García, M. A. Ramírez-Moreno, R. A. Ramírez-Mendoza and J. d. J.

Lozoya-Santos. 2022. “Digital Twin Technology Challenges and Applications: A Comprehensive Review”. Remote
Sensing 14(6) https://doi.org/10.3390/rs14061335.

Semeraro, C., M. Lezoche, H. Panetto, and M. Dassisti. 2021. “Digital twin paradigm: A systematic literature review”.
Computers in Industry 130:103469 https://doi.org/https://doi.org/10.1016/j.compind.2021.103469.

Wright, L. and S. Davidson. 2020. “How to tell the difference between a model and a digital twin”. Advanced Modeling and
Simulation in Engineering Sciences 7(1):1–13.

https://doi.org/10.3390/rs14061335
https://doi.org/https://doi.org/10.1016/j.compind.2021.103469

	INTRODUCTION
	CONTRIBUTIONS

