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ABSTRACT

The Monge optimal transport (OT) problem seeks to optimize the transportation cost between two probability
measures. The optimization is over a function space and the transportation cost is defined by a cost
functional of the maps. Many recent works focus on addressing the OT problem computationally using
finite approximations. In this work, we present the infinite-dimensional OT problem over a Banach space.
We provide explicit expressions for the first and second-order variation of the objective functional, and of
the function form constraint. We propose a Sequential Quadratic Programming (SQP) framework and show
that subject to reasonable regularity assumptions, our framework satisfies Alt’s SQP condition, immediately
yielding local convergence. Moreover, we demonstrate that a merit functional effectively serves as a
step-size monitor, leading to global convergence towards a critical point. To the best of our knowledge,
this is the first attempt at a globally convergent SQP operator recursion over infinite-dimensional spaces.

1 PROBLEM SETTING

Let X ⊆ R, S = {s(·) : X → X } be a normed space of transport maps, and C(·) : R → R be a cost
function. Denote f : R→ R and g : R→ R as two fixed probability density functions. Let P(R) be the
space of probability density functions on R. Consider the Frobenius-Perron (FP) operator P f : S →P(R),

P f (s) :=
{

d
dx

∫
s−1((−∞,x])

f (y)dy,x ∈ R
}
.

Consider the optimal transport problem:

min
s∈S

J(s) =
∫

X
C(x− s(x)) f (x)dx (NLP)

s.t.

P f (s)−g = θM ,

where θM is the zero element in M . We can view this objective as minimizing the total transportation cost
under the constraint that the transport map s pushes forward the source measure associated with f to exactly
match the target measure associated with g". In other words, the transport map s is measure-preserving.

2 NOTATION

Let X ⊆ R and S = {s(·) : X → X } be a normed space of transport maps. Denote F (R) as the
space of real functions on R, B(S ,R) the space of bounded linear functionals with domain S . As
introduced in the problem-setting, J : S → R is the objective functional. Its first and second variation
operators are J′ : S → B(S ,R) := S ∗ and J′′ : S → B(S ,B(S ,R)) := S ∗∗ defined through maps
J′ : s ∈ S 7→ Js ∈ S ∗ and J′′ : s ∈ S 7→ Hs ∈ S ∗∗. Recall the FP operator P f : S → P(R), its first
variation operator is P f ′ : S → B(S ,F (R)) defined through the map P f ′ : s 7→ P fs ∈ F (R).
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3 MAIN CONTRIBUTIONS

3.1 Sequential Quadratic Procedure over Infinite-dimensional Space

Consider a sequential quadratic procedure. Let sk represent the transport map computed at the kth step of
the procedure and let h ∈S be a perturbation direction to the transport map. We approximate J(sk +h) up
to the second-order term and the constraint up to a first-order term. We now propose to solve the following
quadratic problem:

min
h∈S

J(sk)+ Jsk(h)+
1
2

Hsk(h)(h) (QPk)

s.t P f (sk)(x)+P fsk(h)(x)−g = 0.

Let hk be a direction that satisfies the above first-order optimality conditions associated with the
Lagrangian of (QPk), the update rule is given by:

sk+1 = sk +αkhk,

where αk is a suitable step size.

3.2 Local Convergence

Under reasonable regularity conditions on the smoothness of the cost function and densities f and g, we
can analytically derive the first and second variations of the objective and the function-form constraint.
This enables us to verify Alt’s conditions for local convergence of SQP over function space (Alt 1990),
yielding the following result:
Theorem 1 For s ∈ S, let φ defines the Lagrange multiplier for s in the quadratic sub-problem. Let s∗ be
a critical point of (NLP) and φ ∗ be the function that defines the Lagrange multiplier for s∗. Modulo some
regularity conditions, there exists a neighborhood of (s∗,φ ∗) such that (sk,φk) is a unique sequence that
converges quadratically to (s∗,φ ∗) starting from any point in the neighborhood.

3.3 Global Convergence to Critical Points

Consider the merit functional:

M(s,η) = J(s)+
∫

X
φ(x)(P f (s)(x)−g(x))dx+

η

2

∫
X

|P f (s)(x)−g(x)|dx

where η is the penalty parameter of the merit functional. The merit functional serves as a step-size monitor,
as the standard line-search methods can be implemented on this unconstrained objective. We can show
that global convergence can be achieved with the help of merit functional.
Theorem 2 For a sufficiently large η , starting from any initial location, a critical point s∗ of M(s,η) can
be reached through the SQP procedure. Moreover, s∗ is a local min of (NLP) if and only if it is a local
min of the merit functional M(s,η).
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