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ABSTRACT

Understanding design requirements in engineering design, requires identifying regions in the design space
that satisfy these constraints. This is called feasible region identification. As running (random) simulations
is expensive, a cost- and data-efficient sampling approach is needed to find the feasible designs. Bayesian
Active Learning (AL) is an iterative sampling method that uses a surrogate, e.g. a Gaussian process,
and an acquisition function to select the next sample. This research focuses on creating new acquisition
functions. On the one hand, cost-aware variants are investigated. These acquisition functions incorporate an
unknown simulation cost and sample more designs using the same budget while also finding more feasible
designs. On the other hand, we look at the exploration-exploitation trade-off of the acquisition function
as a two-objective problem which leads to the creation of two acquisition functions based on scalarization
methods. The scalarization-based acquisition functions often outperform most state-of-the-art acquisition
functions.

1 INTRODUCTION

Early on in the engineering design process, the aim is to understand design constraints and their feasibility
before optimizing the design. For a d-dimensional design space with L constraints this becomes the problem
G(x) = (g1(x),...,80.(x))" < (t1,...,11) ", where g; : R? — R is the [-th constraint function with threshold
1. Often G requires expensive simulations. In the case of Feasible Region Identification (FRI) the goal is
to understand the feasibility of the problem and to locate feasible designs (Nikova et al. 2022).

Bayesian Active Learning (AL) is a data-efficient iterative sampling approach that can be used for
FRI. It uses a surrogate, like a Gaussian process (GP), that provides uncertainty with the prediction. A
GP is trained for each g; independently on data Z; and serves as a cheap alternative G that is used in the
acquisition decision. An acquisition function o/(x, G,t), which is being optimized at each iteration, drives
the sampling. These functions balance a trade-off between exploring the full design space or exploiting
the feasible region. The iterations stop when the simulation budget is depleted. This can be a number of
samples or a total simulation cost (e.g., time or energy).

The simulation cost can sometimes depend on the design vector x, while the cost function is unknown.
This unknown and varying cost can influence the sample preference. Hence, Nikova et al. (2023) extend
the Probability of Feasibility and Variance (PoFV) acquisition function using two cost-aware strategies.

We follow the perspective of De Ath et al. (2021) to approach the exploration-exploitation trade-off
in acquisition functions as a two-objective problem. Nikova et al. (2024) show that this trade-off exists in
state-of-the-art acquisition functions, and also create two new acquisition functions based on scalarization
methods, i.e., a strategy to solve two-objective problems as a single objective.

2 MAIN CONTRIBUTIONS

The variance (VAR) 62 of a prediction given by the GP is often used for exploring the design space
and is needed to improve the surrogate performance. Exploiting the design space for feasible regions is
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Figure 1: Exploration-exploitation objective space: each ac-  Figure 2: Matthews Correlation Coeffi-

quisition function chooses another sample on the front. AASF  cient (MCC) of a constraint surrogate:
and ATCH choice depends on weights. (Nikova et al. 2024) mean and standard deviation of 10 runs.

done with the Probability of Feasibility (PoF): F(x) = [T, p(p(gi|x,2;) <1;). PoFV multiplies these
two components: otp,ry = [17, p(p(g1|x, Z1) < t;)67(x), and samples inside the feasible region. Note that
other methods sample along the feasibility boundary (e.g. EF, PBE, B and R) (Rahat and Wood 2020).

To make PoFV cost-aware, the acquisition value is divided by the predicted cost. Nikova et al.
(2023) consider a fixed-cost and cost-cooling strategy for the unknown cost and show their behavior on
an engineering problem. Fixed-cost means the influence of the cost stays the same for all iterations, while
with cost-cooling the influence of the cost decreases at every iteration. Adding cost-awareness leads to
well performing surrogates, while more (feasible) designs are sampled.

Considering 6% and F(x) as a two-objective maximization problem, Nikova et al. (2024) create
acquisition functions based on Augmented Tchebysheff (ATCH) and Augmented Achievement Scalarizing
Function (AASF) scalarization methods which use a reference point z and weights w to choose a sample on
the Pareto front (Figure 1), while achieving surrogate performance that is better than most state-of-the-art
acquisition functions (Figure 2). Depending on the weights in ATCH and AASF, another sample on the
Pareto front can be chosen. This results in a greater choice of samples than with other methods. Experiments
in Nikova et al. (2024) show that using AASF or ATCH also leads to more feasible designs than the
boundary-sampling acquisition functions.
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