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ABSTRACT

Motivated by the need to develop simulation optimization methods for more general problem classes, we
consider a convex stochastic optimization problem where both the objective and constraints are convex
but possibly complicated by uncertainty and nonsmoothness. We present a smoothed sampling-enabled
augmented Lagrangian framework that relies on inexact solutions to the AL subproblem. Under a constant
penalty parameter, the dual suboptimality is shown to diminishes at a sublinear rate while primal infeasibility
and suboptimality both diminish at a slower sublinear rate.

1 INTRODUCTION

Consider the convex optimization problem with possibly nonsmooth expectation-valued constraints.

min
x∈X

{
f(x) ≜ E[f̃(x, ξ)] | gi(x) ≜ E [g̃i(x, ξ)] ≤ 0, i = 1, · · · ,m,

}
(NSCopt)

where X ⊆ Rn is a closed and convex, ξ : Ω → Rd is a d-dimensional random variable, (Ω,F,P) denotes
the probability space, Ξ ≜ { ξ(ω) | ω ∈ Ω }, and for any ξ ∈ Ξ, f̃(•, ξ) and g̃i(•, ξ) are real-valued
possibly nonsmooth (but smoothable (see Def. 1)) convex functions on X for i = 1, · · · ,m. Over the last
fifteen years, there has been a pronounced effort in developing inexact Augmented Lagrangian Methods
(AL) schemes with complexity guarantees for addressing deterministic convex optimization problems with
possibly composite objectives and either conic or more general constraints. When f and g are expectation-
valued, the only two available schemes are provided in (Zhang et al. 2023; Zhang et al. 2022) and both
are equipped with a rate of O( 1√

K
), but the first algorithm necessitates solving the AL problem exactly in

finite time. Our approach aims to address the lack of efficient Augmented Lagrangian (AL) schemes for
convex programs with nonsmooth, expectation-valued constraints.

2 A SMOOTHED STOCHASTIC AUGMENTED LAGRANGIAN FRAMEWORK

Definition 1 (Beck and Teboulle 2012) Consider a closed, convex, proper function h : Rn → R. A convex
function is said to be (α, β)-smoothable if for any η > 0, there exists a convex C1 function hη such that

∥∇zhη(z1)−∇zhη(z2)∥ ≤ α
η ∥z1 − z2∥, hη(z) ≤ h(z) ≤ hη(z) + ηβ,∀z1, z2, z ∈ Rn.

The augmented Lagrangian (AL) function and the smoothed AL function are defined as

Lρ(x, λ) ≜ min
v≥0

{
f(x) + λ⊤(g(x) + v) + ρ

2∥g(x) + v∥2
}

Lη,ρ(x, λ) ≜ min
v≥0

{
fη(x) + λ⊤(gη(x) + v) + ρ

2∥gη(x) + v∥2
}

where v ∈ Rm is a slack variable and λ ∈ Rm denotes the Lagrange multiplier.
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Variance-reduced augmented Lagrangian scheme (VR-AL). Given x0, λ0 and sequences
{ρk, ϵk, ηk, Nk,Mk}. For k = 1, · · · ,K,

[1] xk+1 satisfies E[Lηk,ρk(xk+1, λk)−Dηk,ρk(λk) | Fk] ≤ ϵkη
b
k a.s. with Nk evals of SOfir;

[2] λk+1 = λk + ρk (∇λLηk,ρk(xk+1, λk) + wk) , where wk requires Mk evals of SOzer,

where wk ≜
(
Π+

(
λk
ρk

+ [ḡηk,Mk
(xk+1)]

)
−Π+

(
λk
ρk

+ gηk(xk+1)
))

and Fk is defined as F0 ≜

{x0},Fk ≜ Fk−1 ∪ {g̃ηk(xk, ξj)}Mk
j=1 ∪

{
∇xf̃ηk(x, ξj) ∪ {∇xg̃i,ηk(x, ξj)}

m
i=1

}Nk

j=1
, SOzer, SOfir are zeroth

and first-order oracles, Dη,ρ is the corresponding dual function.

Assumption 1 (i) f̃(•, ξ) and gi(•, ξ) are smoothable real-valued functions; (ii) There exists a point (x∗, λ∗)
satisfying the KKT conditions; (iii) X ∈ Rn is convex and compact; (iv) There exists a vector x̄ ∈ X such
that gi(x̄) < 0 for i = 1, . . . ,m. (v) For any j ∈ [m] and x ∈ X, E[∥g̃η,j(x, ξ) − gη,j(x)∥2] ≤ ν2j ; (vi)

Suppose {ρk, ϵk, ηk,Mk, Nk} be such that
{√

2ρkϵkη
b
k +

νgρk√
Mk

+ 2
√
ηkρk

}
be summable.

Proposition 2 (Under constant ρk) Consider the sequence {(xk, λk)} generated by (VR-AL). Suppose

ρk = ρ for every k ≥ 0. Then the following holds for x̄K =
∑K−1

i=0 xi

K and for any K > 0.

E
[
f∗ −Dρ(λ̄K)

]
≤ 1

KE[∥λ0 − λ∗∥2 + 1
K

K−1∑
k=0

((
νG√
Mk

+

√
2ϵkη

b
k√

ρ + ηkmβ

)
Bλ + 2ηk(bλm+ 1)β

)

E [d−(g(x̄K))] ≤

√√√√m
K

K−1∑
i=0

(
6ϵiη

b
i

ρ + 3m2η2i β
2
)
+ 6mCD

ρK + CB
ρK

K−1∑
i=0

ηi≜
√

C̃d
K

f(x∗)− E[f(x̄K)] ≤ ηKβ + ρC̃d
2K +

bλ,η
√

C̃d√
K

≤ Cf√
K

f(x∗)− E[f(x̄K)] ≥ −∥λ0∥2
2ρK − 1

K

K−1∑
k=0

(
(Bλ + bλ)

νG√
Mk

+
(ρ+1)ν2G

Mk
+ ϵkη

b
k + ηkβ

)
≥ − C̃f

K

where C̃d, Cf , C̃f are non-negative constants, d_(•) is the distance function to non-positive orthant.
When {ρk} is an increasing sequence and ηk = O(1/ρk) and Mk = O(1/ρ2k), then it can be shown

that the expected suboptimality and infeasibility diminish at the rate of O(1/ρk).

3 CONCLUDING REMARKS

In this paper, we present an efficient inexact sampling-enabled AL framework for contending with convex
optimization problems with possibly nonsmooth and convex expectation-valued constraints with rates
guarantees. Future work will consider developing an overall complexity analysis as well as extensions to
compositional constraints.
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