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ABSTRACT

Simulation is often used to optimize the performance of an engineering or scientific process. The input-
output relation of a simulation model can be black-box functions and expensive to evaluate. Bayesian
optimization, popularly used to improve efficiency in searching for optimal input settings, has been extended to
bi-objective optimization problems. However, the common challenge in bi-objective Bayesian optimization
is the computational challenge of maximizing the expected hypervolume improvement (EHI) to search for
the input point to evaluate. In this paper, we utilize the transformed additive Gaussian process to simplify
the objectives to additive functions for each dimension of the input space. Under this model assumption,
the maximization of EHI over the entire decision space is reduced to the maximization of the resulting
EHI functions for each dimension separately. We demonstrate the performances of the proposed method
through numerical comparisons of the bi-objective Bayesian optimization with the traditional Gaussian
process model.

1 INTRODUCTION

Simulation is a popular approach used to optimize engineering and scientific design (Lee et al. 2007; Zhang
2008; Fliege and Xu 2011; Hunter and McClosky 2016; Hunter et al. 2019; de Castro et al. 2022). For
complex engineering design problems, running the corresponding simulation codes is often time-consuming.
Also, the input and output relationship of the simulation model may not be expressed in a closed form to
enable gradient-based optimization approaches. Thus, Bayesian optimization is often used to solve these
problems by efficiently guiding new experiments through running the simulation models (Frazier 2018).
Bayesian optimization approaches contain two key components: a computationally inexpensive surrogate
model of the simulation and an acquisition function to select input points for the follow-up experiments.
In terms of surrogate models, Gaussian process is a common choice (e.g., Jones et al. (1998)). A popular
choice of the acquisition function is the expected improvement (EI, e.g, Qin et al. (2017)) to the target
optimization problem over the input space. Then the input point for the new evaluation is given as a
maximizer of EI over the input space.

Some engineering design problems involve two or more objectives. For multi-objective problems, the
solution improvement can not be simply defined as for the single objective problems. In the literature of
multi-objective optimization, the quality of the solution given by an optimization approach can be quantified
by a variety of performance indicators, see various concepts given by Audet et al. (2021). Among them,
the hypervolume indicator is a popular performance indicator to measure the quality of the solutions to
multi-objective optimization problems (Knowles et al. 2003). Hence, in the literature on multi-objective
Bayesian optimization (Hunter et al. 2019), a popular choice for the acquisition function is the expected
hypervolume improvement (EHI), which is the expected difference between the hypervolume indicators
computed after and before adding a new simulation evaluation (Emmerich et al. 2011). Even though EHI
is widely used, there are some computational challenges to maximizing this acquisition function. When the
dimension of the decision space increases, the optimization of EHI becomes much more complex, requires
a longer computing time, and takes more memory space to complete (Hupkens et al. 2015). There are a
number of existing approaches proposed to reduce the complexities of maximizing EHI. Yang et al. (2019)
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consider bi-objective Bayesian optimization and provide an algorithm to evaluate the gradient function of
EHI to enhance the optimization of EHI for searching new input points. A truncated form of the EHI
calculation to optimize computing time is also proposed by Yang et al. (2016). This approach uses prior
knowledge about the objective function values to more efficiently compute EHI. Since the gradient of EHI
can be extremely complex and difficult to compute, Daulton et al. (2020) provide a method for computing
EHI by using the gradients of the Monte Carlo estimator via auto-differentiation. This method simplifies
the calculation of EHI by using first-order and quasi-second-order methods.

In this paper, we provide an algorithm for bi-objective Bayesian optimization to solve the computational
challenges of maximizing EHI. Differently from perspectives in current literature, we approximate the
objective functions to additive functions for each dimension of the decision space using the transformed
additive Gaussian processes (Lin and Joseph 2020). Then the maximization of EHI over the entire decision
space becomes the maximization of multiple univariate EHI functions, i.e., the number of EHI functions
is equal to the number of dimensions of the input space. In our implementation, we maximizes univariate
EHI functions for each dimension of the input space through enumerating on a set of discrete points. We
compare the numerical performance of the proposed approach with the bi-objective Bayesian optimization
under the classical Gaussian process model.

This paper is organized as follows. Section 2 gives a review of related background, including single-
objective Bayesian optimization with Gaussian processes and EI, bi-objective optimization and the hy-
pervolume indicator, and bi-objective Bayesian optimization with Gaussian processes and EHI. Section 3
proposes our method, which uses transformed additive Gaussian process (TAG) models as the surrogate
models and derives the EHI expression under this model assumption. Section 4 provides a numerical study
that demonstrates the advantages of the proposed method. Section 5 concludes the paper and points out
directions for future improvement of the proposed method.

2 BACKGROUND

In this section, we review related background approaches including Bayesian optimization with Gaus-
sian processes and EI, bi-objective optimization, the hypervolume indicator, and bi-objective Bayesian
optimization with classical Gaussian processes and EHI.

2.1 Bayesian Optimization

Let y(xxx) be a scalar deterministic black-box function with inputs xxx = (x1, . . . ,xd)
⊤ ∈ Rd . The goal of

Bayesian optimization is to solve problems in the form:

minxxx∈X y(xxx), (1)

where X is the domain of the decision. Bayesian optimization (Frazier 2018) is comprised of two parts:
the surrogate statistical model and the acquisition function. The surrogate model is fitted by the data
collected from evaluating the function y(xxx) and informs the posterior distribution of y(xxx) given the data.
Under the distribution of y(xxx), the acquisition function is optimized to select a new input point from X .
A generic Bayesian optimization algorithm is shown in Algorithm 1 for a budget of N function evaluation.
The acquisition function is optimized in step 3, and the surrogate model is updated in step 4. Bayesian
optimization algorithms could differ in different target optimization problems (e.g., single or multiple
objectives), surrogate statistical models and acquisition functions.

We illustrate Bayesian optimization in detail using the Gaussian process as the surrogate model and
the EI as the acquisition function. The Gaussian process model is a popular choice of surrogate models
(Sacks et al. 1989). We assume that the function value y(xxx) is a realization of the stochastic process

Y (xxx) = µ +Z(xxx), (2)

where µ is the unknown deterministic mean value, and Z(xxx) with xxx ∈ X is mean zero Gaussian process
with variance σ2 and correlation function R(·), e.g., the Gaussian correlation function (Sacks et al. 1989)
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Algorithm 1 Generic Bayesian Optimization Algorithm
1: Provide a prior distribution of y(xxx)
2: for n = 0,1, . . . ,N −1 do
3: Compute acquisition function based on the distribution of y(xxx) and find xxxn+1 that maximizes the

acquisition over xxx ∈ X
4: Collect a new data point by evaluating y(xxx) at xxxn+1 and update the distribution of y(xxx) as the posterior

distribution of y(xxx) given all existing data.
5: end for

Return the input point with the smallest posterior mean as the optimal decision.

for two inputs points xxx and xxx′ is given by

R
(
xxx− xxx′

)
= exp

(
−

d

∑
i=1

θi(xi − x′i)
2

)
, (3)

where θi’s are the correlation parameters. Under this model assumption, given two input points xxx,xxx′ ∈ X ,
we have that

Y (xxx)∼ N(µ,σ2) and Cov(Y (xxx),Y (xxx′)) = σ
2R(xxx− xxx′).

Assume that we have evaluated the function y(xxx) at n input points xxx1, . . . ,xxxn, and collected the outputs
yyyn = (y(xxx1), . . . ,y(xxxn))

⊤. Under the Gaussian process assumption, the conditional distribution of Y (xxx) given
yyyn at a new input point xxx (see for example, Jones et al. (1998)) is expressed by :

Y (xxx) |yyyn ∼ N(ŷ(xxx),s2(xxx)), (4)

with mean
ŷ(xxx) = µ̂ + rrr(xxx)⊤RRR−1(yyyn −111µ̂) (5)

and variance

s2(xxx) = σ
2

(
1− rrr(xxx)⊤RRR−1rrr(xxx)− (1−111⊤RRR−1rrr(xxx))2

111⊤RRR−1111

)
(6)

where 111 is a vector of ones of size n, µ̂ = 111⊤RRR−1yyyn/111⊤RRR−1111 is the best unbiased linear estimator of
µ , rrr(xxx) = (R(xxx− xxx1), . . . ,R(xxx− xxxn))

⊤, and RRR be the n× n correlation matrix with the (i, j)-th element
R(xxxi − xxx j).

EI, as a popular choice for the acquisition function (Jones et al. 1998), measures the expected
improvement to the target optimization problem at input point xxx. Let ymin

n = min1≤i≤ny(xxxi) be the current
minimum value at step n. Given by Jones et al. (1998), the expected improvement of input point xxx is
defined by:

EIn (xxx) = E
[
max

(
ymin

n −Y (xxx),0
)]
, (7)

where the expectation is taken with respect to the conditional distribution of Y (xxx) given yyyn in (4). Then,
EI can be expressed by:

EIn (xxx) =
(
ymin

n − ŷ(xxx)
)

Φ

(
ymin

n − ŷ(xxx)
s(xxx)

)
+ s(xxx)φ

(
ymin

n − ŷ(xxx)
s(xxx)

)
, (8)

where ŷ(xxx) and s(xxx) are the mean and standard deviation of Y (xxx)|yyyn in (4), and Φ(·) and φ(·) are the
cumulative distribution function and the probability density function of the standard normal distribution,
respectively.
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2.2 Bi-objective Optimization

Let y1(xxx) and y2(xxx) be two scalar-valued deterministic black-box functions with input xxx ∈ Rd . The
bi-objective optimization problem is defined by

min yyy(xxx) = [y1(xxx),y2(xxx)] (9)

s.t. xxx ∈ X

where X ⊂ Rd is a feasible set. Euclidean spaces Rd and R2 are respectively referred to as the decision
space and the objective (outcome) space. Given two input points xxx,xxx′ ∈ X , the outcome yyy(xxx) is said
to dominate the outcome yyy(xxx′), denoted as yyy(xxx) ≺ yyy(xxx′), if and only if yl(xxx) ≤ yl(xxx′) for l = 1,2 and
yl(xxx)< yl(xxx′) for l = 1 or l = 2. If yl(xxx)≤ yl(xxx′) for l = 1,2, the outcome yyy(xxx) is said to weakly dominate
the outcome yyy(xxx′), denoted as yyy(xxx) ⪯ yyy(xxx′). An outcome point is said to be nondominated if there does
not exist another outcome point dominating it. To solve problem (9), we apply the classical concept of
Pareto-optimality, that is to identify the set of all input points whose images are nondominated outcomes
(Ehrgott 2005). The Pareto set is defined by

P = {yyy(xxx) ∈ R2 : xxx ∈ X | ∄ xxx′ ∈ X s.t. yyy(xxx′)≺ yyy(xxx)}. (10)

Since the Pareto set is typically not available in a closed form even if the objective and constraint
functions are available, various computational approaches and algorithms have been developed to provide
approximation of different types (Ruzika and Wiecek 2005; Herzel et al. 2021). Due to the diversity of
these methods and the resulting sets being exactly or only approximating the Pareto set, many ways to
measure their quality have been proposed (Faulkenberg and Wiecek 2010; Audet et al. 2021). One way to
measure the quality of the computed Pareto set is the hypervolume indicator (e.g., Knowles et al. (2003),
Guerreiro et al. (2021)). Given a reference point ttt = (t1, t2) ∈ R2, the hypervolume indicator H(P, ttt) is
the two-dimensional Lebesgue measure Λ of the region weakly dominated by P and bounded above by
the reference point ttt, i.e.,

H(P, ttt) = Λ
(
{vvv ∈ R2 | ∄ ppp ∈ P : ppp ⪯ vvv and vvv ⪯ ttt}

)
. (11)

The hypervolume improvement (HVI) (Hupkens et al. 2015) can be used to assess the effect of evaluating
the vector-valued objective function yyy(xxx) at a new input point xxx ∈ X :

HVI(yyy(xxx),P, ttt) = H(P ∪{yyy(xxx)}, ttt)−H(P, ttt) . (12)

2.3 Bi-objective Bayesian Optimization with EHI

In bi-objective Bayesian optimization, the expected value of the hypervolume improvement (EHI) in (12)
is a commonly used acquisition function (Emmerich et al. 2011). Given that the two objectives y1(xxx)
and y2(xxx) are modeled by two independent Gaussian processes Y1(xxx) and Y2(xxx) as in (2), we provide the
expression of EHI.

Assume that we evaluated the two objectives at n input points xxx1, . . . ,xxxn, and collected the outputs
yyyn,1 = (y1(xxx1) . . . ,y1(xxxn))

⊤ and yyyn,2 = (y2(xxx1) . . . ,y2(xxxn))
⊤. Following (4), we have

Y1(xxx)|yyyn,1 ∼ N(ŷ1(xxx), ŝ2
1(xxx)) and Y2(xxx)|yyyn,2 ∼ N(ŷ2(xxx), ŝ2

2(xxx)), (13)

where ŷl(xxx) and ŝ2
l (xxx) for l = 1,2 are the conditional means and variances, which can be calculated using

(5) and (6). Under the assumption that Y1(xxx) and Y2(xxx) are independent, Y1(xxx)|yyyn,1 and Y2(xxx)|yyyn,2 are also
independent. Note that the two Gaussian processes Y1(xxx) and Y2(xxx) can have different parameters and
correlation functions. Given a reference point ttt, EHI is defined by

EHIn (xxx;P, ttt) = E{HVI((Y1(xxx),Y2(xxx)),P, ttt)} , (14)
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where HVI is given by (12) with the new objective function evaluation (Y1(xxx),Y2(xxx)) and the expectation
is taken with respect to the conditional distributions in (13). By maximizing EHIn (xxx;P, ttt) over xxx ∈ X ,
we find an input point for the new function evaluation. Given an approximation of the Pareto set P by
a set of nondominated points, EHI can be calculated empirically with a closed-form expression (Hupkens
et al. 2015). We denote the nondominated points by yyy j = (y j

1,y
j
2) = (y1(xxxi j),y2(xxxi j)) for j = 1, . . . , p with

{i1, . . . , ip} ⊂ {1, . . . ,n}. Without loss of generality, we assume that those nondominated points are ordered
based on the values of the first objective, i.e., y1(xxxi1)< y1(xxxi2)< .. . < y1(xxxip). Then the approximation of
the Pareto set P is denoted by

P(n) =
{

yyy0,yyy1, . . . ,yyyp,yyyp+1} , (15)

where yyy0 = (−∞, t2) and yyyp+1 = (t1,−∞) with t1 and t2 being the two coordinates of the reference point
ttt = (t1, t2). Following Emmerich et al. (2011), EHI in (14) can be calculated empirically based on the
conditional distributions in (13):

EHIn

(
xxx;P(n), ttt

)
= E

{
HVI

(
(Y1(xxx),Y2(xxx)),P(n), ttt

)}
=

p+1

∑
j=1

(
y j−1

1 − y j
1

)
·Φ

(
y j

1 − ŷ1(xxx)
ŝ1(xxx)

)
·Ψ
(

y j
2,y

j
2, ŷ2(xxx), ŝ2(xxx)

)
+

p+1

∑
j=1

(
Ψ

(
y j−1

1 ,y j−1
1 , ŷ1(xxx), ŝ1(xxx)

)
−Ψ

(
y j−1

1 ,y j
1, ŷ1(xxx), ŝ1(xxx)

))
·Ψ
(

y j
2,y

j
2, ŷ2(xxx), ŝ2(xxx)

)
, (16)

where Ψ(a,b,µ,σ) = σφ

(
b−µ

σ

)
+(a−µ)Φ

(
b−µ

σ

)
. It is worth noting that, the evaluation of this function

is computationally non-trivial as demonstrated by Emmerich et al. (2016) and Yang et al. (2019). Since
the key properties (such as concavity or convexity) of this function can not be justified, the number of
function evaluations of EHI required to obtain a high-quality solution is not negligible for median to high
dimensional decision spaces.

3 PROPOSED METHOD

We propose a bi-objective Bayesian optimization algorithm using transformed additive Gaussian processes
(TAG) (Lin and Joseph 2020) as the surrogate model. TAG approximates each of the two objective functions
by additive functions, each additive term associated with one-dimensional decision variable. Under this
model assumption, maximizing the acquisition function EHI given by (14) can be simplified to maximize
the EHI’s for each decision variable. In this section, we introduce using TAG as a surrogate model for
bi-objective problems, develop the EHI functions under the TAG model assumption, and summarize our
algorithm implementation.

3.1 Bi-objective Surrogate with Transformed Additive Gaussian Processes

Transformed additive Gaussian processes aim to simplify a complex response to additive functions. Consider
the bi-objective problem in (9). As noted in Section 2.3, we assume that y1(xxx) and y2(xxx) are the realizations of
two independent transformed additive Gaussian processes Y1(xxx) and Y2(xxx) with xxx ∈X ⊂Rd . Equivalently,
following Lin and Joseph (2020), we have

gλl (Yl(xxx)) = µl +
d

∑
k=1

Zlk (xk)+ εl, for l = 1,2. (17)
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We explain the notation in turn as follows. The function gλl (·) is the Box-Cox transformation (Box and
Cox 1964):

gλl (y) =

{
yλl−1

λl
λl ̸= 0

logy λl = 0,
, for l = 1,2, (18)

where λl is the parameter of the transformation. The deterministic means of TAG are denoted by µl’s. For
k = 1, . . . ,d and l = 1,2, Zlk(xk)’s are mutually independent mean-zero Gaussian processes with variances
τ2

lk’s, and correlation functions Rlk(·)’s. The additive noise εl ∼ N(0,σ2
l ) is independent of Zlk(xk)’s.

Under this model assumption, the correlation of gλl (Yl(xxx)) and gλl (Yl(xxx′)) for xxx,xxx′ ∈ X is

Rl(xxx− xxx′) =
d

∑
k=1

ωlkRlk
(
xk − x′k

)
, (19)

where τ2
l = ∑

d
k=1 τ2

lk and ωlk = τ2
lk/τ2

l . An example of the correlation function is given by (3), which
is associated with some unknown correlation parameters. In Lin and Joseph (2020), empirical Bayes
estimation and non-linear optimization toolboxes are used to estimate those unknown parameters, including
τl , ωlk, λl and correlation parameters, which are referred to as hyperparameters of TAG.

Assume that we collected outputs yyyn,1 = (y1(xxx1) . . . ,y1(xxxn))
⊤ and yyyn,2 = (y2(xxx1) . . . ,y2(xxxn))

⊤. Let
gλl (yyyn,l) = (gλl (yl(xxx1)), . . . ,gλl (yl(xxxn)))

⊤ for l = 1,2. For l = 1,2 and k = 1, . . . ,d, we have that(
gλl (yyyn,l)−µl111

Zlk(xk)

)
∼ Nn+1

[(
000n

0

)
,

(
τ2

l RRRl +σ2
l III τ2

lkrrrlk(xk)
τ2

lkrrrlk(xk)
⊤ τ2

lk,

)]
, (20)

where 000n is the n×1 vector of zeros, III is the n×n identify matrix, rrrlk(xk) = (Rlk(xk−x1k), . . . ,Rlk(xk−xnk))
⊤

and RRRl is the n×n correlation matrix with the (i, j)-th element Rl(xxxi−xxx j) given by (19). Using the conditional
distribution for the normal distribution (e.g., Eaton (2007)), we can derive the conditional distribution of
Zlk(xk) given yyyn,l:

Zlk(xk)|yyyn,l ∼ N
(
ẑlk(xk),s2

lk(xk)
)

for l = 1,2, (21)

with
ẑlk(xk) = ωlkrrrlk(xlk)

⊤ (RRRl +δlIII)
−1 (gλl (yyyn,l)−µl111),

and
s2

lk(xk) = τ
2
l ωlk

(
1− rrrlk(xlk)

⊤ (RRRl +δlIII)
−1

ωlkrrrlk(xlk)
)
,

where δl = σ2
l /τ2

l and µl can be replaced by µ̂l = 111⊤ (RRRl +δlIII)
−1 gλl (yyyn,l)/111⊤ (RRRl +δlIII)

−1 111 as a plug-in
estimator. The conditional distribution of Zlk(xk) will then be used to develop EHIs for each dimension of
the decision variable.

3.2 Expected Hypervolume Improvement with Transformed Additive Gaussian Processes

Based on the conditional distributions in (21), we simplify the EHI in (14) to the expected hypervolume
improvements for the bi-objective problems for each dimension of the decision variable. Provided by the
approximation of TAG, we have

gλl (yl(xxx))≈ µl +
d

∑
k=1

zlk (xk) for l = 1,2, (22)

where zlk(xk) is a realization of Zlk(xk). Assume that the decision space X = X1 × . . .×Xd . Under this
approximation, we obtain a surrogate optimization problem of the the original bi-objective optimization
problem in (9)

min
xk∈Xk

zzzk(xk) = [z1k (xk) ,z2k (xk)] for k = 1, . . . ,d (23)
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Let Pk be the Pareto set of the k-th problem in (23), i.e.,

Pk = {zzzk(xk) ∈ R2 | ∄ zzzk(x′k) ∈ R2 : zzzk(x′k)≺ zzzk(xk)} (24)

for k = 1, . . . ,d. Under TAG, we can define the EHI for the problem in (23) by:

EHIn,k (xk;Pk, tttk) = E{HVI((Z1k(xk),Z2k(xk)),Pk, tttk)} , (25)

where the expectation is taken with respect to the conditional distribution of Zlk(xk) in (21). As a result, instead
of maximizing EHIn (xxx;P, ttt) over xxx ∈ X , a new input point is given by maximizing EHIn,k (xk;Pk, tttk)
with one dimensional decision variable xk ∈ Xk for k = 1, . . . ,d. To be specific, the new design point is
generated by selecting xxxnew =

(
x∗1, . . . ,x

∗
d

)
with

x∗k ∈ maxx∈Xk EHIn,k (xk;Pk, tttk) for k = 1, . . . ,d.

Given an approximation of the Pareto set Pk, EHI can attain a close form expression as in (16) using the
conditional distribution in (21). In the next subsection, we describe our detailed implementation of the
proposed algorithm.

3.3 The Proposed Algorithm

We detail our implementation of the proposed bi-objective Bayesian optimization algorithm in this subsection.
The surrogate model is a TAG model in (17) implemented by the R package TAG (Lin and Joseph 2021).
The calculation of EHI depends on the approximation of the Pareto set in (15). We use the R package ecr
(Bossek 2017) to approximate Pareto set. Given responses yyym,1 and yyym,2 of size m, the approximations of

the Pareto sets of P in (10) and Pk in (24) are denoted by P(m) and P
(m)
k , respectively. We summarize

our implementation in Algorithm 2. We first generate an initial dataset of size n (line 1 in Algorithm 2),
and then add one more data point at each step until we exhaust the budget of function evaluation N (line
2-10 in Algorithm 2). In each step, we fit a TAG model for each objective function. For simplicity, the
maximization of EHIn,k (xk;Pk, tttk) is done by evaluating q random candidate points in Xk (line 4-9 in
Algorithm 2). In our implementation, we set q = 10 and generate a q×d random Latin hypercube design
using the R package lhs (Carnell 2022) with k-th column being the candidate points in Xk (line 4 in
Algorithm 2). At each step, we compute the hypervolume indicator in (11) based on the approximated
Pareto set P(m) (line 10 in Algorithm 2).

The hyperparameters (such as λl’s and τl’s etc) in TAG are not updated in every step in our implementation.
To save computation time and resources, we will refit those hyperparameters in every ten steps. The size of
Latin hypercube design in line 4 of Algorithm 2 can be adjusted according to the computational requirement
of the implementation of the algorithm. Also note that, for convenience, we use the enumeration approach
to maximize univariate EHI functions in our implementation. In practice, alternative univariate optimization
algorithms can be applied here to improve the efficiency and accuracy.

4 NUMERICAL RESULTS

In this section, we compare the proposed algorithm as described in Section 3.3 with the bi-objective Bayesian
optimization procedure implemented with the function GParetoptim in the R package GPareto (Binois
and Picheny 2019). This algorithm uses independent Gaussian processes as a surrogate model for the two
objectives, and uses EHI in (16) as the acquisition function. To distinguish between the two approaches, our
method is denoted by “Transformed Additive GP”, and the method in GPareto is referred to as “Classical
GP”. The purpose of the numerical comparison is to explore the situations that the proposed algorithm shows
competitive performances or advantages by incorporating the additive assumption. Therefore, “Classical
GP” with original EHI is the key benchmark without the additive assumption.
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Algorithm 2 Bi-objective Bayesian Optimization with TAG
1: Given an initial dataset with inputs xxx1, . . . ,xxxn and the outputs yyyn,1 and yyyn,2, compute an initial Pareto

set approximation P(n) and compute H(P(n), ttt).
2: for m = n,n+1, . . . ,N do
3: Fit the TAG models based on yyym,1 and yyym,2 and xxx, find P

(m)
k for k = 1, . . . ,d.

4: Generate a q×d matrix D as a random Latin Hypercube design with i j-th entries Di j.
5: for k = 1, . . . ,d do
6: Evaluate EHIn,k

(
Dik;P(m)

k , tttk

)
for i = 1, . . . ,q.

7: Select point D∗
k that maximizes EHIn,k

(
Dik;P(m)

k , tttk

)
over i = 1, . . . ,q.

8: end for
9: Set new input point xxx(m+1) =

(
D∗

1, . . . ,D
∗
d

)
and obtain yyy(xxx(m+1)).

10: By including the new response, update yyym,1 → yyym+1,1, yyym,2 → yyym+1,2, and P(m) →P(m+1). Compute
H(P(m+1), ttt).

11: end for
Return H(P(m), ttt) for m = n,n+1, . . . ,N.

First, we generate initial data using the R package lhs (Carnell 2022). Next, we fit an initial surrogate
model to the data. For our method, the surrogate model is a TAG model as in (17). The classical GP
approach will use the Gaussian processes as the surrogate models using the R package (Roustant et al.
2012) DiceKriging. The reference point ttt is chosen as a point that bounds the outcome space of the
bi-objective problem when 0 ≤ xk ≤ 1 for k = 1, . . . ,d. In our numerical examples, we careful select a
common reference point ttt for all tttk’s. We sequentially add new points one by one using EHI for 20 steps.
In each step, we compute H(P, ttt) in (11) based on approximations of P following (Fonseca et al. 2006).

We replicate the whole procedure 30 times (with 30 different random initial datasets) for both methods.
For the returned hypervolume values of each method in each step, we compute their average and use 10th

and 90th quantiles to construct a confidence band. For our method, in the R package TAG, the default range
of λl in (18) is −2 to 2, we use this default range for the examples unless otherwise noted.

4.1 Example 1

We construct bi-objective functions as follows:

yl(xxx) = exp
(

Σ
d
k=1 (xk −al)

2 + clx1x2

)
for l = 1,2, (26)

which can be transformed to additive functions using the Box-Cox transformation (18) for λl = 0 and
cl = 0.

We first study the impact of the dimension of the decision space on the proposed method as compared
to the classical GP approach. We consider the performance of the proposed algorithm under different sizes
of d. We specify three cases with parameters of (26) in Table 1, where the dimension of input spaces
changes from 4 to 8. To ensure there are a sufficient number of initial points for d = 8, we use 25 initial
data points in this study. The results are depicted in Figure 1. As the dimension of the decision space
increases, the advantage of the proposed method is greater in temrs of both mean and variance of the
approximated hypervolume indicators.

Next, we study the performance of the proposed method when the objective functions have an interaction
term and are not strictly transformed to additive functions with one-dimensional input. We consider the
performance of the proposed algorithm under different values of cl . We specify three cases with parameters
of (26) in Table 2, where the value of c2 changes from 0 to 0.5. For this example, 15 initial data points are
used. The results are depicted in Figure 2. The results show that when the interaction term is negligible as
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Table 1: Table of parameter settings of (26) for the three cases in Figure 1.

Cases (1) (2) (3)

l d al cl d al cl d al cl

1 4 0.3 0 6 0.3 0 8 0.3 0
2 4 0.4 0 6 0.4 0 8 0.4 0

d = 4 d = 6 d = 8
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Figure 1: The mean, 10-th and 90-th quantiles of approximated hypervolume over 30 replications and 20
steps for optimizing the objective functions in (26) with the parameter settings in Table 1.

c2 = 0 or 0.01, our method is more robust than Classical GP in early stages. However, when the interaction
term increases to c2 = 0.5, classical GP slightly outperforms the proposed algorithm in terms of robustness.

Table 2: Table of parameter settings of (26) for the three cases in Figure 2

Cases (1) (2) (3)

l d al c1 d al c1 d al c1

1 4 0.3 0 4 0.3 0 4 0.3 0
2 4 0.4 0 4 0.4 0.01 4 0.4 0.5

4.2 Example 2

We use the example FES1 from the literature of bi-objective optimization (Fieldsend et al. 2003) to
demonstrate the performance of the proposed method. The original problem of FES1 is given below:

FES1 =

y1(xxx) = ∑
4
i=1 |xi −

exp{( i
4)

2}
3 |0.5,

y2(xxx) = ∑
4
i=1
(
xi −0.5cos

(10πi
4

)
−0.5

)2
.

(27)

For a comparison purpose, we construct a modified version of FES1 by taking the exponential values of
the original objectives:

FES1-modified =

y1(xxx) = exp{∑
4
i=1 |xi −

exp{( i
4)

2}
3 |0.5}

y2(xxx) = exp{∑
4
i=1
(
xi −0.5cos

(10πi
4

)
−0.5

)2}
(28)
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Figure 2: The mean, 10-th and 90-th quantiles of approximated hypervolume over 30 replications and 20
steps for optimizing the objective functions in (26) with the parameter settings in Table 2.

FES1 in (27) is an additive function, whereas FES1-modified in (28) can be transformed into an additive
function. For FES1, we restrict λl for l = 1,2 in TAG to be between 0.5 and 1.5 since the existing
procedure does not estimate it properly. For this example, 20 initial data points are used. The results are
depicted in Figure 3. Classical GP is more robust than our method when the function is originally additive
without transformation. However, when the additive objective functions are not originally additive (for
FES1-modified), our method outperforms the classical GP method in the early stages.
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Figure 3: The mean, 10-th and 90-th quantiles of approximated hypervolume over 30 replications and 20
steps for the two problems in (27) and (28).

3539



Kerfonta, Zhang, and Wiecek

5 CONCLUSION

We have proposed a method for bi-objective Bayesian optimization using TAG as the surrogate model
to simplify the optimization of EHI by decomposing the decision space into one-dimensional additive
subspaces. Through a numerical study, we compare the performances of the proposed method with a
classical bi-objective Bayesian optimization algorithm under different situations. The proposed algorithm
can be further enhanced by improving the parameter tuning under the TAG framework, utilizing better
algorithms in maximizing univariate EHI functions and integrating other existing approaches into the
proposed algorithm to optimize EHI. Also, motivated by the promising computational results, it can be
beneficial to develop theoretical justification of the proposed method. We aim to overcome the limitation
of the current work in future and extend the method to the multi-objective case.
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