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ABSTRACT  

Colorectal cancer (CRC) prevention is dependent on increasing screening rates, a strategy proven effective 

in reducing cancer cases and potential life years lost. Simulation models of CRC can be used to project 

expected outcomes associated with different evidence-based interventions. However, traditional simulation 

for each population of interest is computationally intensive and requires a model expert. To address this, we 

proposed a metamodeling approach, considering various techniques such as linear regression and random 

forest. By creating a metamodel of the simulation, decision makers can generate both individual and 

population-level estimates directly and instantaneously. We aimed to create a metamodel of an existing 

CRC simulation model that can be adapted for different interventions and populations to predict cancer 

cases averted and life years lost.  

1 INTRODUCTION  

Colorectal cancer (CRC) is the second most common cause of death by cancer in the United States. It was 

estimated that there would be approximately 153,000 new cases nationally in 2023, with 13 percent of cases 

among individuals under age 50, 32 percent among those 50-64 years, and 56 percent among those 65 years 

and older (Siegel et al. 2023). CRC is the only type of cancer in which increases in screening have been 

proven to reduce cancer mortality (Ladabaum et al. 2020). Additionally, it has been shown that a majority 

of CRC deaths in the United States can be attributed to lack of screening (Meester et. al 2015). Stool-based 

screenings, such as fecal immunochemical tests (FIT) and fecal occult blood tests (FOBT), are 

recommended to be completed annually, while colonoscopies are recommended every 10 years among 

average-risk individuals ages 45-75. (US Preventive Services Task Force 2021). The implementation of 

evidence-based interventions (EBIs) (CDC 2016), including mailed outreach, patient navigation, and 

provider reminders, have potential to increase CRC screening rates in diverse populations.  

In this paper, we build on and create a metamodel of the NC-CRC simulation model (Koutouan et al. 

2021; Davis et al. 2019), which was previously developed by members of our team and named because of 

our original focus on the population of North Carolina residents who were age-eligible for CRC screening. 

The NC-CRC model is a microsimulation model of the progression of CRC that included: polyp incidence 

and development, individual health states over time, and screening and surveillance. Individuals within a 

population are modeled from birth until death by CRC or by another cause. Individuals can develop 

noncancerous or cancerous polyps which, if not removed in time, can cause a CRC death. Modeling the 

implementation of EBIs within a population allows the possibility for polyps to be identified and removed 

before they develop into cancer or progress to a CRC death.   
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 The NC-CRC simulation model has been validated and used in prior research to simulate screening 

prevalence and long-term CRC outcomes including cancer cases averted, cancer deaths averted, and life 

years gained under various intervention scenarios in specific input populations. For example, this model has 

previously been used extensively at the state population level to estimate the health impact of different 

policy scenarios such as Medicaid expansion and the Affordable Care Act (Hassmiller Lich et al. 2019; 

Powell et al. 2020), and interventions including endoscopy expansion, vouchers for individuals without 

health insurance, mailed reminders, mass media campaigns, and patient navigation (Hicklin et al. 2022; 

Davis et al. 2019; Hassmiller Lich et al. 2017).   

More recently, Koutouan et al. (2021) tailored the NC-CRC model specifically to be used to estimate 

the lifetime health impact of the Centers for Disease Control and Prevention’s (CDC) Colorectal Cancer 

Control Program (CRCCP), a national program focused on improving CRC screening in low-income, 

medically underserved populations by funding grantees to provide and promote CRC screening (Bitler et 

al. 2021; Hannon et al. 2013; Joseph et al. 2011). Koutouan used data for individuals who received a CRC 

screening either by stool test or colonoscopy through the CRCCP from the years 2009-2020, with a total of 

62,682 unique patients.  

Using this model specifically for the CRCCP population has been successful in estimating the 

substantial health impact of the direct screening services provided through the CRCCP. However, to date, 

members of our modeling and research team have needed to run the various intervention scenarios on behalf 

of our public health partners. Ultimately, to inform programmatic planning for a public health initiative like 

the CRCCP and to guide implementation of interventions in individual clinics with varying populations and 

contexts, it will be critical for clinical and program staff and leadership to have a tool that can help them 

make decisions efficiently and independently without the help of a modeling expert. Given that the contexts 

within these programs are diverse, and that there are many interventions that can be considered for 

supporting population-level screening, being able to run a sufficient number of input populations and 

intervention scenarios with the original model would be a large undertaking.    

Therefore, in this paper, our goal was to create a metamodeling approach that allows us to use the 

existing simulation model to estimate the effectiveness of interventions for any population of interest and 

for a wide range of intervention scenarios. This metamodel can then be transformed into a user-interface 

which public health practitioners and clinicians without modeling experience can use to independently 

estimate outcomes of interest based on their program’s own population and specific types of interventions 

being explored.   

The need for this type of approach and practical tool was further highlighted in our prior work with 

diverse stakeholders. O’Leary et al. (2023) collected stakeholder feedback on the use of a CRC screening 

simulation tool, also based on the NC-CRC model, for informing their decision-making related to EBI 

implementation. Following an initial demonstration of the simulation tool and the model inputs and outputs, 

participants (n=17) expressed an interest in using tools like this for decision-making and believed the tool 

could help them to implement strategies for improving CRC screening. However, 76% of participants 

expressed that the simulation model was too “academic” or research focused (i.e., not a pragmatic tool that 

could be used by diverse practitioners with varying levels of modeling experience), and 71% of participants 

had a lack of confidence that EBI implementation results would be appropriate for local settings where the 

population inputs differed from the small set of population inputs in that model. Additionally, 35% of 

participants found that the microsimulation tool was not comprehensive of all EBIs they might consider. 

Thus, practitioners and other types of decision-makers need a tool that is more customizable to their local 

context and comprehensive of intervention scenarios, yet able to be used quickly and with limited technical 

support.   

 A metamodel, also known as a surrogate model, can be used to approximate the outputs of a more 

complex model. Metamodels are applied to models where an input is provided by the user, and the model 

provides an output. The inputs are the different parameters that can be changed in the system and the outputs 

are the measures of the model whose values can change depending on the input values. For example, in our 

work, the inputs were varying populations and screening rates, and the outputs were cancer cases and life 
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years lost. Since the progression of CRC looks different for individuals depending on their age, race and 

gender, changing the population changed the proportion of cancer cases as well as the number of life years 

lost. The original model is often a computationally expensive simulation such as the NC-CRC model. 

Original model outputs given the user input are considered to be accurate. Metamodels seek to produce 

highly similar outputs for the same input, often with the advantage of significantly reduced computational 

time.   

 Metamodel techniques include machine learning, regression, ensembles, and neural networks. Each  

metamodeling technique has a blend of advantages and limitations which must be considered to determine 

its appropriateness for a given situation. Some common characteristics of metamodels to consider include 

interpretability, ease of use, level of statistical expertise required, and performance matching the original 

model outputs given the same inputs (Degeling et al. 2020; McCandlish et al. 2022). Interpretability in this 

case refers to the ability of a user to understand the relationship between the inputs and outputs given the 

metamodel results. High-performing metamodels are able to closely estimate outputs for all input 

parameters across the input space.   

Metamodels are developed through the following steps: sample input parameters to be run through the 

simulation model; run those parameters through the model; generate a metamodel using the inputs chosen 

and the associated outputs; and test the metamodel by running another scenario through both the original 

simulation model and the metamodel to compare estimates. A unique aspect of our model is that we utilized 

metamodels at the individual level and aggregated at the population level to estimate outcomes for any 

given population, see Figure 1.  

 

 
  

Figure 1: Metamodeling approach for cancer cases and life years lost at the population level.  

  

 In healthcare and public health settings, it is important to consider common inputs and outputs and the  

general tendencies of these variables. Health care decisions can be informed by new information related to  

new technologies or interventions (McCandlish et al. 2022), new information related to already existing 

technologies or interventions, or increased access to technology or interventions. Metamodels may be 

created based on simulation models with the goal of providing feedback for policymakers in real-time based 

on changes that have occurred since the original simulation model. Further, in health settings, metamodels 

can be used as the basis of online decision support systems which can be used by any user with relative ease 

to see the impact of a change in the input parameters on the outputs. These metamodeling techniques have 

previously been used in health settings to conduct value of information and cost effectiveness analysis, as 

Step 1: Generate  
population of 180  
individual types, each  

with unique combination  
of age  i , race  j   and  

gender  k .   

Step 2: Provide range of  
values to sample from  
for FIT and COLON  
screening. Consider  
relevant constraints.     

Step 3: Grid sample  
from feasible space for  
FIT (n=35) and COLON  
( n=35) and combine.  
(n=1,225) .   

Step 4: Create  
metamodels at the  
individual level (180  

metamodels in total).   

Step 5: Create sample  

population from  U.S.  
C ensus data. Consider 2  

intervention scenarios  
with screening levels  
different from initial  

input scenarios.     

Step 6: Run each  
population and scenario  
through each  

metamodel.    
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well as other analyses. However, there remains a dearth of applications of metamodels to health settings in 

the literature (Degeling et al. 2020). 

Many simulation models have been generated to assess CRC screening delivery, typically for the  

purpose of assisting decision-makers with implementing interventions to improve screening. However, 

according to a systematic review that assessed 43 different publications related to CRC screening simulation 

models, only 12% have been used in practice for decision making (Smith et al. 2020). We believe that by 

creating a metamodel of a validated and well accepted simulation of CRC, such as the NC-CRC model, we 

will reduce the effort, time, and expertise required to use the model and thus increase model usage by 

stakeholders to inform decision-making.  

 

2 LITERATURE REVIEW OF METAMODELING  

Metamodel methods reviewed include linear regression, Gaussian process, machine learning, random forest, 

neural networks, and ensemble methods. Linear regression metamodels are effective in modeling the 

relationship between inputs and outputs in the case where the inputs and outputs have a moderately strong 

to strong linear relationship. Linear regression metamodels can handle sparse data (Koffijberg et. al  2021). 

These models are the easiest to interpret compared to other metamodels in this report. Their inclusion of 

coefficients, confidence intervals and p values allow for the understanding of parameter contributions to the 

model. It also allows users to understand the levels of uncertainty. Many software packages can easily 

perform linear regression in a time efficient way. One of the most significant limitations related to linear 

regression metamodels is that they lack the robustness to model nonlinear relationships effectively. Making 

the necessary adjustments to create linear regression metamodels which can better account for nonlinear 

relationships is time consuming and is more susceptible to biased estimates. For example, a full order second 

model with 40 input parameters would require 902 coefficients (Hastie et al. 2001). Additionally, decision-

making models are becoming increasingly complex, and therefore including many coefficients may be 

required for linear regression metamodels, decreasing overall interpretability. Overall, if a simulation has a 

moderately strong to strong linear relationship between inputs and outputs and few coefficients, linear 

regression is an attractive metamodeling technique (McCandlish et al. 2022).  

Gaussian process metamodels use the spatial distance between inputs and outputs. They are  

significantly better than linear regression metamodels at modeling nonlinear relationships between inputs 

and outputs. Additionally, they have a smooth prediction function, meaning that some of the noise and 

variation is reduced. However, one of the setbacks associated with Gaussian process metamodels is that 

they require statistical expertise to capture the relationship between inputs and outputs accurately. 

Additionally, most Gaussian process software cannot handle more than 30 parameters and may take days 

or weeks to train for datasets with at least 10,000 observations (Rojnik & Naveršnik 2008). These 

metamodels assume that the output distribution is a joint Gaussian distribution. The details of the Gaussian 

process metamodels are specified by the mean as well as the covariance. The output values are not overly 

sensitive to input values, meaning small changes in input values should result in small or no changes in 

output values (Zhong et al. 2022). An additional benefit is that Gaussian process metamodels are particularly 

suited for problems with a low number of observations and input parameters (<25) (Koffijberg et al. 2021).  

Machine learning methods are known to perform better than traditional statistical models when high 

degrees of nonlinearity exist between input and output variables, or the variables are noncontinuous. In the 

context of healthcare, a frequently desired output is cost-effectiveness. This particular output is nonlinear, 

and the outputs are highly sensitive to inputs. There are few examples of metamodeling using machine 

learning in healthcare settings to date (McCandlish et al. 2022).  

 Random forest is an ensemble machine learning method (Zhong et al. 2022).  It creates decision trees  

and uses a maximum voting or averages over trees to calculate outputs. Random forest is known to perform 

better than other methods such as linear regression or other machine learning methods (McCandlish et al. 

2022), partially due to the fact that it makes no initial assumptions about the data (Zhong et al. 2022). 

Random forest can be conducted using the R software package ranger. While it is not as easily interpretable 

as linear regression metamodels with few coefficients, there still remains some degree of interpretability in 
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Random forest, which is not always true of machine learning metamodeling techniques. Additional 

advantages include measures of which input parameters are most significant and the ability to cluster 

observations based on characteristics displayed in the inputs and outputs (McCandlish et al. 2022).  

 

3 METHODOLOGY  

3.1 Population  

The population input file parameters which impact the progression of CRC include age, race, and gender. 

The age range at which adults are eligible for CRC screening is 45-74, reflecting current screening 

recommendations (US Preventive Services Task Force 2021). The age in the model is the age of the 

individual in the year of intervention. Additionally, CRC progression differs between races (white, black 

and other) and between genders (male and female). Therefore, our metamodel must account for each unique 

combination of these parameters. Our input population consisted of 180 individuals, one representing each 

unique combination of these three parameters. A given output X could then be represented the following 

way.   

  

Xijk = value of outcomes X for a person of age i with race j and gender k. 

3.2 Intervention Scenarios  

The two types of screening tests included in this model are colonoscopy and FIT. There are two types of 

colonoscopies included in the model. A routine colonoscopy occurs when someone with colonoscopy 

modality undergoes a colonoscopy as their method of screening. A diagnostic colonoscopy occurs when 

someone with FIT modality gets a positive FIT result, and undergoes a diagnostic colonoscopy to check for 

colorectal cancer. In our model, we assume that each person starts with a FIT modality. Then, if they get a 

positive FIT and a diagnostic colonoscopy, their modality switches to colonoscopy. We define these as the 

interventions in this model because the screenings were provided to eligible patients through the CRCCP. 

In previous work, the model has been used to test the impact of an intervention within a given year on 

outcomes of interest. It has included a screening rate during the year of intervention for each modality, as 

well as a screening rate for the years post-intervention for each modality. In this work, we added a 

preintervention screening rate, once a given person in the population is age-eligible for screening. These 

screening rates are reflective of potential adherence levels within the population. In other words, these 

variables are estimates of what percentage of the age-eligible population will screen under their assigned 

modality each year. In our work, we consider 6 different intervention screening rate parameters. These 

parameters include FITbefore, FITduring, FITafter, COLONbefore, COLONduring, COLONafter. FITbefore and 

COLONbefore represent screening rates for each modality before the year(s) of intervention. FITduring and 

COLONduring represent the screening rates for each modality during the year(s) of intervention. In this work, 

we consider a 5-year intervention period, starting with the intervention year provided to the model as year  

1. We made this decision since grantees of the CRCCP are funded for 5 years. FITafter and COLONafter 

represent the screening rates for each modality after the years of intervention (for the unique lifetime of 

each individual). We consider the colonoscopy parameters as the adherence to routine colonoscopy, while 

we kept the adherence to diagnostic colonoscopy constant throughout our experimentation. 

3.3 Sampling of Intervention Scenarios  

We sampled intervention scenarios which we could run through the model and use the inputs and outputs 

generated to create a metamodel. In theory, these 6 different adherence levels could vary anywhere from 0 

to 1 probabilistically; however, ranges seen in practice are much more narrow. For FIT, we considered the 

lower bound for annual screening adherence before, during or after the years of intervention as 6%, and the 

upper bound for screening adherence before, during or after the years of intervention as 11%. For 

colonoscopy, we considered 30% and 66% for the lower and upper bounds of all colonoscopy parameters, 
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respectively. These estimates came from the literature as explained in Koutouan (2023). We considered 

screening rates that fell approximately halfway between the lower and upper bound for both modalities as 

medium adherence. Screening rates that fell halfway between low and medium screening and medium and 

high screening were also considered as low-medium adherence and medium-high adherence, respectively.  

The different parameters that we sampled from are summarized below. For each parameter, one of the listed 

values was selected. (Table 1)  

  

Table 1: Summary of sample space for each intervention parameter. 
 

Intervention Parameter   Sample Space   

FITbefore  (6,7,8,9.5,11)  

FITduring  (6,7,8,9.5,11)  

FITafter  (6,7,8,9.5,11)  

COLONbefore  (30,39,48,57,66)  

COLONduring  (30,39,48,57,66)  

COLONafter  (30,39,48,57,66)  

 

Before combining these 6 parameters to create different scenarios we applied these constraints to avoid  

 generating intervention scenarios that were unlikely to occur and thus less informative. From previous work, 

we observed that screening rates during the year(s) of intervention are at least as high as the year(s) of 

intervention and are most commonly higher. This makes sense, since you would expect a program that aims 

to increase screening rates in a given population to have a positive impact or, at worst, no impact.  

Additionally, we noted that the screening rates typically did not increase after the intervention period since 

funding is no longer being provided. However, while screening rates do not typically increase after the 

intervention from what they were during the intervention period, screening rates after year(s) of intervention 

were consistently higher than screening rates before the year(s) of intervention. In summary, our constraints 

ensured that prior screening was always less than or equal to screening post-intervention, and screening 

post-intervention was always less than or equal to screening during the intervention period (e.g. FITbefore ≤ 

FITafter ≤ FITduring).  

From these screening parameter values and constraints we generated different scenarios. Each scenario  

consisted of a different set of the six parameters. We exhausted every combination of the FIT and 

colonoscopy parameters and then removed the ones that did not adhere to the constraints listed above. We 

considered 35 different FIT scenarios and 35 different colonoscopy scenarios and then evaluated each FIT 

scenario and each colonoscopy scenario together for a total of 1,225 different scenarios. (First 35 scenarios 

had FIT scenario 1 with colonoscopy scenarios 1-35, second 35 scenarios had FIT scenario 2 with 

colonoscopy scenarios 1-35 etc.)   

 

3.4 Outcomes of Interest  

For this paper, we are interested in cancer cases and life years lost. Cancer cases represent the number of 

CRC cases after screening. At the individual level, cancer cases take on the value of 0 or 1, representing 

whether an individual did not or did develop CRC after the screening, respectively.   

Individuals are given a life expectancy based on life expectancy tables (Arias 2012) and these values 

are used to calculate life years lost, which is the difference between the life expectancy from the tables and 

the lifetime of an individual who dies from CRC. For a given individual, these outcomes can be summarized 

the following way:  

  

CCijk = Cancer case estimate for a person at age i with race j and gender k.  

LYLijk = Life years lost estimate for a person at age i with race j and gender k.  
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For each metamodeling technique, we show performance metrics but not results of the metamodel 

themselves, due to difficulty in showing the results in 6 dimensions (FITbefore, FITduring, FITafter, COLONbefore, 

COLONduring, COLONafter).  

3.5 Aggregating Outcomes at the Population Level  

We estimate the model outputs for each person type in a population, as opposed to a population in its entirety. 

Unlike the previous works based on this model, our results are not population estimates of outcomes, but 

we want to find outcomes at the individual level. We are able to generate individual level estimates and then 

aggregate into population level estimates since individuals do not interact or share resources in our model, 

as they might in other types of health simulation models such as infectious disease modeling. Therefore, 

once we find estimates at the individual level, we can create a weighted average of the estimates for different 

individual types to represent a unique clinic population. The clinic level outcomes are calculated by 

equations 1 and 2.  

  

P ijk = number of persons of age i, race j and gender k in a given clinic population 

  

                                                      Clinic CC = ∑ ∑ ∑ 𝐶𝐶𝑖𝑗𝑘𝑃𝑖𝑗𝑘𝑘𝑗𝑖                                                              (1)  

                                             Clinic LYL =  ∑ ∑ ∑ 𝐿𝑌𝐿𝑖𝑗𝑘𝑃𝑖𝑗𝑘𝑘𝑗𝑖                                                           (2)   

3.6 Running the Simulation Model for Individual Level CC and LYL Estimates  

We ran 5,000 replications (r) for each of the 180 individuals (i) in each of the 1,225 sampled scenarios (s). 

Therefore, we generated results for 1,102,500,000 individuals. We used the outcomes of the 1,225 different 

scenarios to create 180 different metamodels per metamodeling technique, one for each person type. Each 

scenario took approximately 104 seconds to complete. The total computational time is linearly associated 

with the number of sampled intervention scenarios, assuming the number of replications and the population 

size is the same for each intervention scenario. Therefore, the computational effort is dependent on how 

many samples are considered. As the number of replications and the population size increases, running one 

scenario through the model is computationally intensive. Creating population level estimates using the 

metamodel takes almost no time, since it is a matter of multiplying the individual level estimate for a given 

individual type by the number of individuals in the population. Once individual estimates are available, no 

computation time is required, and we can consider many different intervention scenarios.  

4 RESULTS  

4.1 Linear Regression Metamodel   

The first metamodeling technique we selected was linear regression since it is commonly used and more 

interpretable than other metamodeling techniques. We created 180 different linear regression metamodels 

for both cancer cases and life years lost. In each linear regression model, our response variable was the 

output of interest (cancer cases or life years lost), and our 6 predicting variables were the screening rates of  

FITbefore, FITduring, FITafter, COLONbefore, COLONduring, and COLONafter.  

 Consider 𝛽0
𝐶 and 𝛽0

𝐿𝑌
 as the intercepts and 𝛽𝑙

𝐶 and 𝛽𝑙
𝐿𝑌 as the coefficients provided by a given metamodel 

for a person of age i, race j, gender k and screening parameter l for cancer cases and life years lost 

respectively. Consider Sl as the screening rate for each parameter.   

  

i = 45,46,…,74, j=1,2,3 , k=1,2, l=1,2,3,4,5,6 where 1=FITbefore, 2=FITduring, 3=FITafter, 4=COLONbefore,  

5=COLONduring, and 6=COLONafter.  
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                   CCijkl  =  𝛽0𝐶 + ∑ 𝛽𝑙
𝐶6

𝑙=1 𝑆𝑙                                                 (3)   

                           LYLijkl  = 𝛽0𝐿𝑌 + ∑ 𝛽𝑙
𝐿𝑌𝑆𝑙

6
𝑙=1                                                      (4)  

 For each linear regression metamodel, multiple R squared values based on the 1,225 scenarios were 

calculated to assess performance of the individual metamodels. The results are shown in Figure 2.  

 

 

Figure 2: Linear regression R values for cancer cases and life years lost. 

4.2 Polynomial Regression Metamodel  

We also created 180 different polynomial regression metamodels for both cancer cases and life years lost. 

This metamodeling technique maintained some level of interpretability but was not as interpretable as the 

linear regression. Consider the following equations to estimate the cancer cases and life years lost for an 

individual of age i, race j, gender k and screening parameter l.   

  

                        CCijkl = 𝛽0
𝐶 +  ∑ 𝛽𝑙

𝐶6
𝑙=1 𝑆𝑙 + 𝛽𝑙

𝐶𝑆𝑙
2                 (5)  

                 LYLijkl = 𝛽0
𝐿𝑌 + ∑ 𝛽𝑙

𝐿𝑌6
𝑙=1 𝑆𝑙 + 𝛽𝑙

𝐿𝑌𝑆𝑙
2               (6)  

  

Similar to the linear regression metamodels, we found multiple R2 values for the polynomial regression  

approach. These R2 values, based on the 1,225 test scenarios, are shown in Figure 3.   

 

Figure 3: Polynomial regression R values for cancer cases and life years lost. 
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4.3 Random Forest Metamodel  

The final metamodeling technique was random forest, which has lower interpretability but the potential of 

higher performance. For each person type, we used a random forest metamodel to estimate cancer cases and 

life years lost. Each random forest metamodel had 500 trees. All values of percent variance explained were 

above .95 for both cancer cases and life years lost.  
 

4.4 Metamodel Performance on Test Population   

The three different metamodeling approaches and their corresponding 180 metamodels, one per individual 

type, were used to generate population level estimates. These estimates were then compared to the actual 

values provided by the simulation model with the same input parameters (which were different than the 

input parameters used to build the model).   

We considered a population of 1,500 individuals to test performance. We used data from the U.S. Census 

Bureau related to the proportion of people in different age brackets and different genders and races to inform 

our approach (Bureau 2022).  

We considered 2 different intervention scenarios. Scenario 2 had screening levels very close to one of 

the scenarios we tested, and Scenario 1 had screening levels that were halfway between a few different 

scenarios we tested. This allowed us to test if proximity to sampled scenarios used to build the metamodels 

impacted metamodel performance. The two screening scenarios are provided in Table 2.  

  

Table 2: FIT and COLON screening parameters for the two screening scenarios tested. 
 

  FITbefore  FITduring  FITafter  COLONbefore  COLONduring  COLONafter  

Scenario 1  9.875  10.625  10.250  59.25  63.75  61.50  

Scenario 2  10.9  10.9  10.9  65.4  65.4  65.4  

  

We ran the population through each scenario in our original NC-CRC model as well as the three different 

metamodels provided. We then calculated the mean absolute percentage error (MAPE) per-person between 

the actual values and the estimates provided by each metamodel for both outcomes: cancer cases and life 

years lost. Figure 4 summarizes our findings for 10 replications of the NC-CRC simulation model.  

  For both outcomes we see very good performance by all models. For the cancer cases outcome, we 

see similar MAPE values across the metamodels for both scenarios. For the life years lost outcome, we 

observe that for both scenarios, the polynomial regression and random forest metamodels have lower 

average MAPE values than that of linear regression, but the range of MAPE values across the 10 replications 

are similar, suggesting that these metamodels perform similarly for life years lost.

 

5 CONCLUSION  

This work provided an initial metamodeling strategy for the NC-CRC simulation model. It considered 

screening parameters before year(s) of intervention, during year(s) of intervention, and after year(s) of 

intervention. It also considered a variety of intervention scenarios, with each screening parameter ranging 

from low to high values. We built upon previous work using this simulation model to predict population 

outcomes and built metamodels that could provide useful information when it comes to predicting cancer 

cases and life years lost both at the individual and the population level. This work found that more 

computationally expensive metamodeling techniques (random forest, polynomial regression) had lower 

average MAPE values at the individual level as opposed to simpler techniques (linear regression) for life 

years lost, and similar performance for cancer cases. From this, we learned that the best metamodeling 

approach when combining models to create a population estimate may be different across outcomes, and 

depend on the desired level of interpretability.   
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6 FUTURE WORK  

This work considered a population where each individual was assigned an initial modality of FIT. If they 

had a positive FIT result, they received a diagnostic colonoscopy and their modality switched to 

colonoscopy in future years. Future work could address individuals whose modality begins with routine 

colonoscopy. One limitation of this work is that it did not consider correlations in the outputs. This could 

be addressed in future work. Additionally, we could consider a “no intervention” scenario. This scenario 

would allow us to be able to generate averted outcomes, which represent the difference between the number 

of cancer cases after if there is an intervention with higher screening levels versus if there is no intervention. 

More test scenarios also have the potential of increasing metamodel performance. Future work could sample 

from a range of screening levels using other techniques such as Latin hypercube sampling.  

 

Figure 4: Cancer cases (top) and life years lost (bottom) mean absolute percent error for each 

intervention scenario tested. 
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