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ABSTRACT 

The paradigm shift towards Industry 4.0 and the emerging trends of Industry 5.0 present ongoing challenges 
in production planning and control. In response to these dynamics, discrete event-driven simulation 

methods are gaining prominence as an operational decision-support-tool, particularly in the semiconductor 
industry. This paper introduces an automated low-code framework designed to synchronize model 
structures across simulation tool boundaries for extensive simulation studies, using the Semiconductor 
Manufacturing Testbed 2020 as a test reference, and aims to serve as a helpful tool for simulation 
experiments. Key aspects include model structure synchronization, Design of Experiments, and the 
distributed execution of large-scale simulation studies. 

1 INTRODUCTION 

The visions of Industry 4.0 and Industry 5.0 challenge established production planning and control (PPC) 
approaches with new demands on flexibility and dynamics. Due to a rising competition taking place for the 
companies in parallel, discrete-event simulation (DES) methods and tools are of growing importance as key 
technologies, as highlighted by Vieira et al. (2018). Thus, the adaptation of existing production plans during 
operation is often difficult, costly and still must face operational uncertainties. DES models allow the 

consideration and evaluation of different scenarios, e.g. to validate concrete production plans and/or product 
mixes under the assumption of defined conditions in a risk-free environment without the need for excessive 
financial or time resources (VDI 3633 2014, Reif et al. 2023). In addition, DES models can be used to 
conduct extensive simulation experiments and allow the generation of massive synthetic data for the 
prediction and evaluation of a test space, limited only by the number of considered factors of the simulation 
experiment. DES models and their simulation results can be used as a part of the training phase of machine 

learning methods (Mönch et al. 2006, cited in Lendermann et al. 2020). For this purpose, DES models are 
required to represent the real system with its dynamic (and stochastic) processes as good as possible, 
whereby the level of detail of the modelling always depends on the underlying objective. 

Developing and applying DES models in simulation studies or as digital twins (DT) requires a thorough 
description of the production system, adequate data provision, and efficient data management. Simulation 
experts face high demands on time, expertise, and technical resources, driving the need for automated 

modelling and experiment execution (Lugaresi and Matta 2020; Schlecht et al. 2023; Reif et al. 2023). 
One area in which the growing importance of DES is particularly evident is semiconductor 

manufacturing, where production systems and processes have an above-average degree of complexity 
compared to other industries and will become even more complex in the future (Bureau et al. 2006; Mönch 
et al. 2011; Mönch et al. 2013). Developments toward increased product diversity, smaller batch sizes, and 
greater automation complicate PPC. Factors such as limited equipment capacity, stochastic processing 

times, and dynamic constraints add to the complexity (Lendermann et al. 2020). DES models help predict 
and evaluate production scenarios, aiming to reduce cycle times, meet quality standards, minimize 
inventory, and ensure that agreed-upon delivery dates are met. 

This paper presents an automated low-code framework for synchronising model structures across tool 
boundaries and for the execution of large-scale simulation studies, exemplary outlined with the 
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Semiconductor Manufacturing Testbed 2020, short SMT2020, in the form of the low-volume/high-mix 
simulation model (Kopp et al. 2020a). Besides a short presentation of related work, the focus will be on the 
developed approach, pointing out the synchronisation of different conceptual models, the translation into 

executable code snippets as well as the process of defining and performing large-scale simulation 
experiments. On the one hand, these sub-aspects address the weaknesses of existing simulation tools such 
as AutoSched AP in connection with licensing and the associated massive complication of distributed 
simulation. On the other hand, we want to focus on the user and provide a user-centric framework. Our 
experience shows that users sometimes find it difficult to switch to another simulation tool (in this case 
AnyLogic) when their requirements change to meet new goals, such as distributed simulation in this case. 

This is especially the situation when users have no or insufficient knowledge of programming languages. 
The goal of this work is therefore to overcome these challenges by transferring well-known (data-driven) 
modelling concepts from AutoSched AP to AnyLogic, while at the same time opening new possibilities. 
The implementation using the low-code development platform KNIME, and the provision of an intuitive 
user interface complete the presented framework.   

Following a description of the test case and the presentation of selected results, we conclude with a 

summary of key findings and an outlook on future work within the research group. 

2 RELATED WORK 

This chapter provides a brief overview of related work that deals with the research area of model 
generation in the sense of automated modelling and simulation, and with the research area of data farming 
for the evaluation of large-scale simulation experiments, especially in the context of the of generation of 
synthetic data for machine learning algorithms. 

2.1 Model Generation 

In general, the creation of DES models and their execution can be divided into several sub-problems. 
In addition to issues of data availability, data acquisition and data management, there are numerous tasks 
related to the creation, validation and deployment of simulation models and their use to answer specific 
questions given an objective function and corresponding constraints (VDI 3633 2014). 

Accurate simulation models play a critical role in optimising processes and facilitating informed 

decisions within production scenarios. Model generation in the sense of automated modelling and 
simulation is an important area of research, especially in the context of production systems, where different 
methods and approaches are being explored (Schlecht et al. 2023). Based on the literature, Lugaresi and 
Matta (2020) divide the process of automated modelling into several phases, such as data acquisition and 
management, analysis and identification of material flows, statistical analysis and identification of 
influencing factors, identification of priority and control rules, translation of the process model into 

executable code, and validation of the generated simulation models. Schlecht et al. (2023) also mention 
model synchronisation, adaptation and application in simulation studies and experiments and refer to the 
concepts of generic, data-driven, and dynamic data-driven simulation described by Haouzi et al (2013). 
According to Haouzi et al. (2013), generic (template-based) simulation (GTS) uses standardized building 
blocks to create and adapt applications, which facilitates model reuse. In contrast, in data-driven simulation 
(DDS), the model is automatically created and updated using the available in-house data. Dynamic data-

driven simulation (DDDS) represents a new paradigm in which the simulation system is continuously 
influenced by real-time data for improved analysis and prediction.  

There are some interesting contributions and approaches in the literature using different sets of methods 
and techniques: Lugaresi and Matta (2021) and Zhu et al. (2023) include approaches for automated (or 
dynamic) generation of simulation models using process mining methods and techniques. In contrast, 
Goodall et al. (2018) describe a data-driven modelling approach consisting of an adaptive algorithm for 

generic modelling and an information model for structuring the underlying data. Such a data-driven 
approach has already been developed by Wang et al. (2011), with the aim of automatically generating a 
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model of a production system and adapting the model according to dynamic requirements and real-time 
information. In the context of data-driven approaches, Johansson et al. (2003) and Vieira et al. (2018), 
among others, highlight the need for automated data processing systems to reduce manual work and 

minimise associated sources of error. Additionally, the use of reusable model building blocks (or sequences, 
see Reif et al. (2023)) can help to reduce the time required to create simulation models. Finally, the models 
can be adapted and updated more quickly and with more flexibility if process structures or operations 
change (Vieira et al. 2018). 

The semiconductor industry has also seen some interesting contributions and approaches to the 
development of simulation models. For example, Tulis et al. (1990) present a DES model for a 

semiconductor fab to study general characteristics, especially with respect to limited equipment capacities 
and stochastic events (e.g. equipment failures), as well as prioritisation and control strategies in queues. 
Later, Kim et al. (2009) and Rank et al. (2015), among others, deal with fundamental concepts related to 
generic simulation models. Unfortunately, these works are limited to solving a specific problem related to 
the presented model. In contrast, Sadeghi et al. (2016) and Khemiri et al. (2021) discuss data-driven 
simulation models for semiconductor fabs and evaluate different scenarios. The model by Sadeghi et al. 

(2016), developed from real fab data, can import external data but has limitations such as excluding 
equipment failures, maintenance, and material transport. At this point, the model by Khemiri et al. (2021) 
addresses these issues by incorporating these elements into a more modern fab simulation. In addition, the 
authors discuss challenges related to data adequacy and semantic integration in the development and 
deployment of such models. 

2.2 Data Farming 

The concept of data farming emerged from military simulation challenges to improve decision making in 
dynamic environments. Horne and Schwierz (2016) define it as an interdisciplinary method that combines 
simulation, high-performance computing, and statistical analysis. Sanchez (2021) notes that data farming 
studies aim to systematically generate and analyze large amounts of simulation data to gain deeper insights 
into complex systems and to access the most comprehensive and qualitatively sufficient data possible. 
Consequently, data farming studies enables the investigation of uncertain events with many possible 

outcomes and provides the ability to conduct enough experiments so that both common and unexpected 
outcomes can be captured, analyzed, and used to learn from them (Horne and Schwierz 2016). 
 With the background of data farming being characterized by military and combat simulations, this is 
also reflected in the related literature. Accordingly, existing models and case studies are often categorized 
in this context, see for example Horne and Schwierz (2008) and Horne and Meyer (2010).  

In the semiconductor industry, the contribution of Pappert et al. (2017) describes an approach to 

estimating utilization targets that uses data farming to create a comprehensive dataset for rapid capacity 
planning. This tool uses regression analysis to interpolate missing data, enabling fast and accurate estimates 
of equipment utilization under different production scenarios. A later contribution from these authors 
(Pappert and Rose 2022) describes how data farming and neural networks streamline decision support by 
pre-generating data points from simulations that train a neural network to provide immediate responses. 
This approach addresses the challenge of time-consuming simulations that are often required when product 

mixes and fab conditions change. As the example shows, data farming, i.e. the generation and evaluation 
of large-scale simulation experiments, can help to improve the quality of forecasts and make planning 
processes more efficient on the basis of a more robust and comprehensive database. 

Despite the fact that the presented works all represent promising applications in the context of data 
farming, Król et al. (2013), Sanchez et al. (2021) and Pappert et al. (2023) point to an increasing demand 
for computing resources and time and see this in the context of an growing complexity of the decision and 

planning problems to be considered and thus the size and depth of detail of the simulation models. The 
authors address this challenge and present approaches for large-scale data farming studies on distributed 
infrastructures. The aim is to support and significantly accelerate the execution of experiments. 
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3 SOLUTION APPROACH 

Below, the results of the above-mentioned research in Section 2 are considered in relation to the challenges 
described and an approach is proposed that aims to break down existing barriers between different 

simulation tools and the execution of large-scale simulation studies. For this purpose, we propose an 
automated approach inspired by the widespread use of commercial simulation tools and their advantage of 
not (necessarily) requiring familiarity with the underlying programming language. Accordingly, Lugaresi 
and Matta (2020) point out that the graphical user interfaces of existing simulation tools already make a 
significant contribution to reducing the programming effort. For very large models and/or complex model 
structures, modelling in the simulation tools can nevertheless be very time consuming. 

3.1 Concept 

The development of DES models and their subsequent investigation and application in simulation studies 
requires a lot of time, (expert) knowledge and technical resources. In practice, depending on the choice 
and/or preferences developed over time regarding the simulation tools used, limitations quickly arise, 
whether in terms of the entry barrier for new employees, insufficient traceability of the underlying 
calculations during the simulation and/or limited licence functions (esp. for distributed execution of 

simulation experiments). Beyond these tool-specific challenges, large DES models require an adequate (and 
accessible) data management process via databases, adding to the overall complexity. 

Based on the cooperation with industrial partners and own experiences, the considerations in this paper 
refer to the synchronisation of existing model structures between the simulation tools AutoSched AP 
(https://automod.de/autosched-ap/) and AnyLogic (https://www.anylogic.com/). AutoSched AP is an 
independent simulation tool specialised for the semiconductor industry and tailored to the Excel spreadsheet 

program. Modelling in AutoSched AP uses (predefined) input tables to enter data relevant to simulation 
and analysis. In contrast, AnyLogic is a dynamic simulation tool that supports all simulation methods, i.e. 
system dynamics as well as discrete event and agent-based modelling. Modelling in AnyLogic is done 
either by drag & drop and configuration of pre-built model blocks or by Java programming and integration 
of custom Java classes.  

The development of a comprehensive solution concept requires a structured design and subsequent 

implementation of the individual sub-modules. These sub-modules should include (1) the selection and 
preview of a model in AutoSched AP or AnyLogic with the underlying data structure, (2) the 
synchronisation or translation of the selected model structure to the corresponding other simulation tool, 
(3) the generation of executable code snippets, (4) the detailing of the simulation study, (5) the distributed 
execution of configurations and (6) the (time-delayed) visualisation of results (Figure 1).  

 

Figure 1: Overview of the solution concept. 

1922

https://automod.de/autosched-ap/
https://www.anylogic.com/


Leißau and Laroque 
 

 

The realization of the solution approach using the low-code development platform KNIME 
(https://www.knime.com/) is intended to ensure that the solution approach can be used independently of a 
programming language and can be adapted to individual requirements (and further tools in the future). 

The implementation of the individual sub-modules in a standardised framework is intended to provide 
the user with a simple and intuitive user interface. As a development environment, KNIME should also 
enable users to make adaptations to individual use cases without in-depth programming knowledge. It is 
therefore important to ensure that the framework can be used independently of the operating system and 
the respective DES model. 

3.2 Implementation 

This section provides a brief overview of the implementation of each sub-module.  

3.2.1 Selection and Preview of a Model 

The sub-module for selecting and previewing a model in AutoSched AP or AnyLogic with the underlying 
data structure is intended to provide the user with a quick and uncomplicated procedure for importing a 
DES model for the automated synchronisation or translation of the selected model structure to the 
corresponding other simulation tool and more over execution of large-scale simulation experiments in the 

context of distributed simulation. 
While an AutoSched AP model requires users to select the local .asd folder, an AnyLogic model 

requires users to select the exported and executable .jar file via the graphical user interface. All related files 
and folders are then automatically imported into the KNIME workflow resource directory. Users can 
preview the data structure and navigate through the available tables. This setup ensures OS independence 
and uses flow variables (such as strings, integers, doubles, arrays, or paths) to ensure accurate re-import of 

files and matching of table names with the model selection, keeping the data preview up to date. 

3.2.2 Synchronisation of the Selected Model Structure 

The sub-module for synchronisation or translation of the selected model structure into the corresponding 
other simulation tool is used to automatically match the different conceptual spaces of the underlying model 
structures in AutoSched AP and AnyLogic. Depending on the input, a matching system acts as an interface 
for synchronising or translating the model structures. The matching system is like a database (and a bit like 

an ontology) where both worlds are conceptually stored and related to each other. 
The user interface in KNIME allows the user to switch between the model structures as required and 

provides a useful tool for validating the model being created by comparing the results of the models across 
tools based on ‘identical’ inputs. 

3.2.3 Generation of Executable Code Snippets 

The sub-module for the generation of executable code snippets is intended to provide the user with a useful 

tool regarding the translation and implementation of a certain model structure into AnyLogic. The 
underlying KNIME workflow processes the input data according to pre-defined specifications via a 
matching system and a series of character-based transformation steps, generating individual code snippets 
in Java that simplify modelling in AnyLogic. 

3.2.4 Detailing of the Simulation Study 

The sub-module for detailing the simulation study allows the user the user to select and define the factors 

required for the subsequent simulation study and then choose between a conventional simulation study in 
the form of a selectable Design of Experiments (DoE) or a simulation-based optimisation. 

For a conventional simulation study, the user has several options to choose a DoE-design, such as a full 
factorial design or a Latin Hypercube Sampling (LHS). The DoE can be selected using the provided 
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selection element ('design selection') and then automatically translated into Python code and displayed next 
to it. This is done by accessing a stored table of defined factors, which also ensures independence from the 
specific model and, above all, from the model structure. 

The DoE is calculated using the Python package DOEPY (https://doepy.readthedocs.io/), which is an 
open-source alternative to many commercial statistical software packages and focuses on making the 
generation of DoEs accessible in a user-friendly way (Sarkar 2019). The output is presented as a table 
preview and string output with information on the number of configurations required. The resulting 
configurations can be saved for distributed execution in a corresponding DoE folder on the disk in the 
experiment directory of the KNIME workflow. This is done by converting the configured factors from the 

original input file to the desired format and naming the configuration file according to the configuration 
name. This step is critical to the rest of the procedure in the following section, to ensure that input and 
output data is uniquely associated when running distributed using Docker (https://www.docker.com/).   

3.2.5 Distributed Execution of Configurations 

Some preliminary considerations are required to automate distributed execution using Docker. For example, 
it is essential that the input and output data of a configuration are uniquely assigned throughout the process 

to ensure that the simulation is initialised with the correct input values and that the output data can be 
backed up and assigned to the input values, thus enabling proper analysis and visualisation of the results. 
In addition, users should be able to independently determine the utilisation of available resources and, in 
addition to the number of configurations to be run in parallel, also define the percentage utilisation of 
processor cores and memory (RAM) for each configuration. With this specification, we were able to test 
and validate the process outlined in Figure 2, in accordance with the automation of the distributed execution 

of configurations using Docker. 
The implementation and automation of the selection and writing of the required resources for Docker, 

the creation and start, the monitoring and reading of the individual Docker containers and their termination 
were successively realised in KNIME. By providing a user interface, the user has the possibility to define 
various positional arguments. 

 

Figure 2: Using Docker to automate distributed configuration execution. 

3.2.6 Visualisation of Results 

The sub-module for the visualisation of results is one of the biggest challenges in terms of automation. 
Accordingly, and with the requirement that the proposed framework should not only be independent of the 

1924

https://doepy.readthedocs.io/
https://www.docker.com/


Leißau and Laroque 
 

 

operating system, but above all independent of the DES model, it would only be conceivable to implement 
a selection of frequently used visualisations in consultation with the user. This would have the advantage 
that the user would be directly involved and would receive a visualisation module individually adapted to 

his specific wishes and requirements, which he could use continuously for himself, provided that the 
modelling structures recur. 

4 TEST CASE: SEMICONDUCTOR MANUFACTURING TESTBED 2020 

In this section, we give a brief overview of the main characteristics of the selected test case in the form of 
the low-volume/high-mix model (Dataset 2) according to the SMT2020 by Kopp et al. (2020a), before 
describing the modelling process using the AnyLogic simulation tool and discussing the model generation 

following an initialisation at startup. 

4.1 Case Description 

The Semiconductor Manufacturing Testbed 2020, shortly SMT2020, according to Kopp et al. (2020a) 
includes four simulation models, which are supposed to represent the complexity of modern fabs in the 
semiconductor industry sufficiently detailed and can be regarded as an update or extension of the MIMAC 
simulation models. A detailed description of the models is given in Hassoun et al. (2019), 

Kopp et al. (2020a) and Kopp et al. (2020b). In addition, the models (and raw data) can be downloaded 
from https://p2schedgen.fernuni-hagen.de/. 

For the implementation of the approach proposed in this paper, we choose the AutoSched AP model 
developed and validated by Kopp et al. (2020a) of a low-volume/high-mix scenario (Dataset 2) with more 
than 900 tools according to 105 tool groups distributed over 11 functional areas and 10 product types with 
routings and associated operations ranging from 242 operations for product type 5 to 585 operations for 

product type 3. The model assumes a weekly load of 10,000 wafers and the dispatching decisions are 
defined according to the ratio between the time remaining until the due date and the processing time 
required for completion, and thus correspond to the critical ratio rule. 

Compared to the other three models in the testbed, the selected Dataset 2 offers due dates for the 
predefined schedules. This was of particular interest for future studies and influenced our decision to choose 
this model. 

4.2 Modelling 

For modelling in AnyLogic, a generic and data-driven approach has been chosen and the model is initialised 
with the appropriate dataset at the start of the simulation. For this purpose, we use an adapted version of 
the generic model structure, which was provided by the developers of SMT2020, as a result of the 
synchronisation of model structures between AutoSched AP and AnyLogic described in Section 3.2.2. 

Basically, the modelling in AnyLogic is based on the development of 2 agents, representing a tool 

group and a representation of the tools contain in it. In the main agent, the tool group agent is implemented 
as a population. This is used for initialization at startup and ensures that each of the 105 tool groups and the 
delay do not have to be modelled or mapped individually. According to an infeed list and the start date 
shown there, production lots are injected into the model and receive a defined number of wafers via a 
parameter called wafer size. Furthermore, a recipe is attached to the lots using the parameter product type, 
in which all necessary steps are indexed and can be called up with the respective variables such as process 

time and sampling probability. 
The selection of the tool group is then based on a search for the properties specified for the subsequent 

process step in the recipe and the associated step population. Finally, all processes are performed in the 
agent of the tool group itself, where it makes sense to perform them before or after the selection and 
subsequent processing at the tool level, e.g. regarding sampling, ranking, dispatching, and reworking. 
Similarly, all batching processes are performed at the tool group level to avoid unnecessary waiting times 
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at the tools and to combine suitable lots with the same product types and process steps into a batch in 
advance, see Figure 3. The tool groups are parameterized by initializing the main agent at startup. 

 

Figure 3: Tool group agent containing the tools as a population. 

Once the processes that precede processing on the tool itself have been completed at tool group level, the 
tool is selected based on availability and, if necessary, lot-to-lens dedication or the required setup. Each 
tool's capacity is limited by a restricted area, which is automatically parameterized for certain tools 

according to a cascading setting via the initialization in the main agent at startup. While downtime can be 
defined directly in the implemented resource pool, preventive maintenance is modelled separately so that 
both time-based and counter-based maintenance events can be considered, see Figure 4. 

 

Figure 4: Tool agent for the main processing. 

4.3 Validation 

As this paper goes to press, the validation of the model has not yet been finally completed. However, the 

results of the validation phase to date indicate that the modelling is progressing successfully and that the 
expected objectives are likely to be achieved. Accordingly, key figures such as throughput and the ratio 
between breakdowns, preventive maintenance and utilisation already show comparable values to the 
original modelling in AutoSched AP. The remaining discrepancies must be analysed and reduced to a 
minimum in the further course of the validation. Once validated, the model will be made available at 
https://github.com/mdlnlss/smt-2020-lvhm-anylogic.  
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5 EXPERIMENT 

Based on the solution approach as a proof of concept, the test case described in the previous section is now 
considered within the framework in terms of the execution of large-scale simulation studies. 

5.1 Objectives and Definition of the Simulation Experiment 

We set out to achieve two objectives using a particular setting: Firstly, to showcase the applicability of the 
solution approach, verifying that the framework can handle all necessary inputs, build designs using various 
DoE methods, and execute across different operating systems. Secondly, we aimed to demonstrate the 
effectiveness of the solution via a large-scale simulation study. 

For the first goal, we rigorously tested and optimized the framework on both Linux and Windows 

platforms, focusing on reducing run-time issues. As a result, the primary computational demand now stems 
from starting the containers and storing results in .xlsx files, while other delays have been minimized. 

For the second goal, we examined how tool availability in the Diffusion functional area of the 
simulation model affects processing, particularly through a batching process in the underlying tool groups 
that groups lots into batches based on a minimum and maximum number of wafers per batch – ensuring 
that the lots grouped together share the same product type and process step. 

The analysis involves a simulation at a simulated semiconductor fab for one year, starting with initial 
work-in-progress (WIP). The objective is to collect data on the impact of tool availability, crucial for further 
analysis such as scheduling preventive maintenance to enhance tool group performance and stabilize 
material flow throughout the fab. Within this setup, factor constraints on the number of tools are set for 
each tool group in the Diffusion area, ranging from a minimum of 50 percent to the original number of 
tools, see Table 1. Exceptions are made for the Diffusion_FE_100 and Diffusion_FE_94 tool groups, which 

have high usage rates of 99% and 95%, respectively, according to the current validation phase. In this paper, 
the LHS design was used to implement an experimental design, performing 5,000 simulation runs. LHS 
provides a comprehensive statistical analysis by evenly sampling across all potential scenarios, thereby 
enhancing the reliability of the simulation results by ensuring thorough exploration of the parameter space. 

Table 1: Definitions for the Latin Hypercube Sampling 

Tool group Minimum number of tools Maximum number of tools 

Diffusion_BE_123 5 9 
Diffusion_FE_101 5 10 
Diffusion_FE_120 4 8 
Diffusion_FE_122 3 6 

Diffusion_FE_125 3 5 
Diffusion_FE_126 2 4 
Diffusion_FE_127 4 8 

Diffusion_FE_44 4 7 

 

5.2 Results 

All configurations were automatically started in Docker containers on a large virtual machine with Ubuntu 
22.04 LTS as operating system on a dedicated simulation server of the University of the Bundeswehr 
Munich. An Intel Xeon Platinum 8362 with 2.80 GHz is installed as the CPU in the simulation server. The 
virtual machine is assigned 128 cores and a total of 2 TB RAM and 1 TB hard drive storage.  

As part of the simulation study, 50 Docker containers were started in parallel and the results from the 

Docker container were extracted following the completed simulation run and saved them systematically in 
a corresponding folder structure. For 5,000 configurations and a real duration of around 12 minutes for each 
simulation run, this meant a total processing time of ~24 hours. By way of illustration, it would take 
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approximately 42 days to run the configurations sequentially – assuming they can be started immediately 
one after the other. 

The results for all 5000 configurations and a correlation analysis between the number of tools in the 

tool groups and the outcome variables relating to the number of completed lots, the average cycle time and 
the number of lots on time (compared to the specified due date) show a high correlation between the number 
of completed lots and the number of lots on time (Figure 5). This simply indicates that a higher number of 
completed lots is often associated with a higher number of punctual lots. The correlation between the 
average cycle time and the number of lots completed on time is similarly unspectacular, suggesting that 
longer cycle times make it more difficult to complete lots on time. 

 

Figure 5: Correlation matrix for input and output variables. 

These results show that certain tool groups correlate to varying degrees with the number of completed 
batches, the average cycle time and the lots on time. In particular, the tool groups Diffusion_FE_122, 
Diffusion_FE_126 and Diffusion_FE_127 appear to have a consistent influence across the different 
performance indicators. 

6 CONCLUSION AND OUTLOOK 

Simulation experiments take time and effort. There is little difference between whether a model must be 
created or already exists. Even if an existing model only needs to be updated with new parameters, the 
simulation itself takes time to run (Pappert/Rose 2022). 

Our proposal and the implementation of a solution approach in the context of model generation and 
distributed simulation, and the underlying (partial) automation of these processes, can not only lead to time 
savings for the simulation experts themselves, but also enable trained users to start modelling simulation 

models and run experiments. The experiments themselves achieve a significant increase in efficiency and 
a lower susceptibility to error due to the elimination of manual intervention. 

The modular structure of the framework allows it to be customized and easily adapted to specific 
requirements at any time. Accordingly, we are planning to implement further test cases in the context of a 
backward simulation (see Leißau and Laroque 2023). The investigations regarding model structure 
synchronization will also be pursued with the integration of ontologies as well as the integration of other 

DoE methods and optimization techniques. 
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