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ABSTRACT

In this study, we consider hybrid simulations consisting of an agent-based simulation (ABS) to model
disease transmission in a population, and a discrete-time Markov chain executed as a Monte Carlo simulation
to model the heterogeneous progression of the disease in infected agents. In such scenarios, execution of
the ABS is stopped at a certain time point. At this point, disease-related outcomes for infected agents are
estimated by executing the disease progression Monte Carlo simulation for each infected agent over their
lifespans, well beyond the execution horizon of the ABS. This can incur substantial computational expense.
We present a novel method to alleviate this computational burden by randomly sampling and allocating
disease-related outcomes from a repository of outcomes generated and stored as a one-time exercise prior
to execution of the hybrid simulation. We demonstrate the effectiveness of our approach via a stylized
hybrid simulation of a hypothetical infectious disease transmission scenario.

1 INTRODUCTION

Infectious disease models developed to inform intervention policies typically incorporate disease transmission
dynamics as an important feature, given that doing so captures the second-order benefits of preventing new
infections (Kim and Goldie 2008). Decisions on intervention policies are made based on the effects of
these interventions on population-level disease-related health and economic outcomes. For example, health
outcomes estimated by such models commonly include average life years (the average total time spent alive
by an entity of interest) and quality-adjusted life years (an aggregate measure of time spent in each health
state multiplied by a utility weight taking values in [0,1], reflecting the health-related quality of life in that
state). Economic outcomes commonly include the direct and indirect costs of managing the disease. The
health and economic outcomes associated with an intervention (such as treatment, or a disease screening
campaign) are often integrated into a single measure of cost-effectiveness of the intervention, which is
used to inform decisions around its reimbursement from the perspective of a health payer (such as private
insurance providers in the United States or national health systems in the United Kingdom) (Muennig and
Bounthavong 2016). Key modeling paradigms used to capture infectious disease transmission dynamics
include differential equation based compartmental models and agent-based simulation models (Kim and
Goldie 2008).

In this study, we consider a hybrid simulation scenario that arises in this context, involving an agent-
based simulation (ABS) of infectious disease transmission dynamics, and a discrete-time Markov chain
(DTMC) model of disease progression executed as a Monte Carlo simulation for each infected agent used
to estimate the health and economic outcomes for each infected agent (dos Santos et al. 2020; Kar et al.
2022). Such hybrid simulations arise commonly in the context of hepatitis C virus (He et al. 2014; Das et al.
2019) and HIV/AIDS models (Gopalappa et al. 2017). In such models, the stochastic and heterogeneous
progression of the disease within an infected individual across their lifespan is captured by the execution
of the disease progression DTMC (referred to henceforth as the DP-DTMC) as a single replication of a
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Monte Carlo simulation. The outcomes from this Monte Carlo replication - typically life years and time
spent in each disease state - are used in conjunction with a background non-disease-related mortality model
(referred to henceforth as the non-DRM model) to estimate the total QALYs and costs associated with
management of the disease in this individual. The execution of the DP-DTMC (for infected agents) and
the non-DRM models begins as soon as an agent enters the model via birth, model initiation, or when the
agent experiences a change in infection status (e.g., an uninfected agent acquires the infection). In such
hybrid simulations, the ABS itself is executed for a certain time horizon (e.g., for T years of simulation
time), at the end of which many infected and uninfected agents are typically present. Lifetime outcomes
need to be estimated for each of these agents, which will require continuing the execution of the DP-DTMC
and the non-DRM models for the infected agents and the non-DRM model alone for uninfected agents.
If the disease in question progresses relatively slowly, such as HCV (wherein average life expectancies
are not affected substantially (Aggarwal et al. 2017)) or HIV, and if many agents are present at the end
of T , the execution of the DP-DTMC and the non-DRM Monte Carlo replications beyond T can incur
substantial computational expense. In this study, we propose and demonstrate a method to reduce the
computational expense for such hybrid simulation models of infectious disease transmission dynamics.
The hybrid simulation is depicted in Figure 1.

Figure 1: Hybrid disease transmission and progression simulation. DP-DTMC: disease progression -
discrete-time Markov chain. Agents in red - infected; agents in white - uninfected. Non-DRM model:
non-disease-related mortality model.

This method is based on the premise of interchangeability of outcomes across iid replications of a
simulation, and the fact that the generation of outcomes for each agent via execution of the DP-DTMC and
the non-DRM models represents the output of a replication of a Monte Carlo simulation. Given that we are
interested in the distribution of outcomes across agents and not in the outcomes associated with individual
agents, we propose a method to randomly sample and allocate outcomes of interest (e.g., QALYs) from a
repository of outcomes to agents. This repository of outcomes is generated as a one-time exercise prior to
the execution of the hybrid simulation model. In subsequent sections, we describe our proposed scheme for
generation of the outcomes repository and appropriate sampling and allocation of outcomes to agents in the
hybrid simulation. We empirically demonstrate the effectiveness of our ‘outcomes sampling and allocation’
(OSA) approach, in terms of comparability of aggregate outcomes and reduction in computational expense,
in comparison to the status-quo ‘without sampling and allocation’ (WSA) approach via a stylized hybrid
agent-based simulation of the disease transmission and progression dynamics of a hypothetical infectious
disease.

We now discuss the literature relevant to outcomes generation for hybrid models of infectious disease
transmission dynamics, and our research contributions with respect to the extant literature.

The hybrid simulation scenario, involving an ABS capturing the transmission and individual-level
interaction dynamics of some phenomenon and a Monte Carlo simulation used to estimate outcomes related
to the heterogeneous, individual-level impact of the phenomenon, most commonly arises in cost-effectiveness
models that inform reimbursement decisions for a health intervention. A significant portion of the health
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economics and cost-effectiveness modeling literature for infectious diseases is based on static modelling
approaches that work with a fixed (closed) cohort of agents without considering individual-level interactions
or growth of the cohort. Examples include VanDeusen et al. (2015), Aggarwal et al. (2017) and Taguchi
et al. (2020) in the context of HIV/AIDS, HCV infection, and human papillomavirus (HPV) infection,
respectively. Dynamic approaches, which advantageously can accommodate individual-level interactions
relevant to disease transmission, include differential equation based compartmental models and individual-
level agent-based simulations. Compartmental models take an aggregate perspective to modelling disease
transmission dynamics, wherein compartments represent different conditions like health and disease states
and transitions between compartments are governed by rates applied to differential equations. Examples of
such modelling approaches are Schobert et al. (2012) (HPV), Song et al. (2015) (HIV), Lim et al. (2018)
and Das et al. (2019) (HCV).

Individual-level models consider individual sample paths, including interactions between individuals,
that are relevant to disease spread and progression. Most hybrid simulations in this context arise in this
case, as described in the beginning of the previous paragraph. Examples of such hybrid simulations, which
include agent-based simulations for modelling disease transmission and disease progression models for
estimating outcomes for those infected, include the studies of Olsen and Jepsen (2010) (HPV), He et al.
(2016) (HCV), Gopalappa et al. (2017) (HIV) and Zhou et al. (2021) (influenza). The disease progression
models used are usually DTMCs, as in Olsen and Jepsen (2010), He et al. (2016) and Ayer et al. (2019),
but may also involve other approaches such as individual-level survival curves (Gupta et al. 2021). Most
of these studies do not report clearly their approach towards outcomes estimation, and it is likely most
either assign average values to individuals (in which case, the stochasticity/heterogeneity of outcomes
is not preserved) or execute an approach similar to the WSA approach. None of these models, in our
understanding, employ an approach similar to the OSA method for reducing the computational expense of
outcomes estimation.

Our research contribution thus involves development of a way for substantially reducing the computational
expense incurred by hybrid simulations with ABSs for modelling interactions relevant to spread of a
phenomenon and individual-level models for estimating the outcomes resulting from interactions within the
ABS, and this forms the key research contribution of this study. Additionally, health economics studies for
infectious diseases only adopt a lifetime horizon for outcomes estimation when working with fixed/closed
cohorts, which is likely why many studies for slow-moving diseases such as HCV only work with fixed/closed
cohorts. This is because of the modeling complexity and computational demands of incorporating lifetime
outcomes within agent-based models that work with much smaller time horizons. Our study, via the OSA
approach, provides a way to conveniently incorporate lifetime horizons for outcomes estimation within
agent-based models. This approach may be extended to such hybrid simulations in other domains as well.

2 METHODOLOGY

We first describe the status-quo WSA approach to provide the necessary context before introducing our
proposed OSA approach for outcomes estimation.

2.1 The Without Sampling & Allocation Method for Outcomes Estimation

Given that, without loss of generality, we consider estimation of outcomes for uninfected agents as well
as infected agents, we assume generation of outcomes begins as soon as an agent enters the model, either
via birth or at model initiation. At each time step, relevant outcomes are incrementally accumulated. If
the agent is uninfected, then the non-DRM model alone is executed and relevant outcomes (usually life
years alone) begin to be recorded and accumulated, and if the agent becomes infected, both the DP-DTMC
and non-DRM models are executed and the relevant outcomes (life years, QALYs and costs) are recorded
and accumulated in each time step. For example, with daily time steps, the daily disease-related cost
corresponding to a particular disease state s is added for every day the agent spends in s. Similarly, for
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QALYs, at every time step, the health-related quality of life weight (say qs) associated with state s is
multiplied with the time step unit (e.g., δ t, corresponding to a day) to yield the QALY value (q×δ t) added
at that time step. The WSA algorithm is presented in Algorithm 1.

Notation:

• t: time index. Note that t can exceed the simulation time horizon n (i.e., the point at which the
execution of the disease transmission ABS is stopped.

• at ∈ {1,2, ...,A}: age at time t, where A is the maximum age limit for an agent in the model; for
example, A = 100 years.

• SIt : status of infection at time t; SIt = 1 if the agent is infected, 0 otherwise.
• st ∈ {1, . . . ,m}: disease state at time t.
• P: outcome of interest.
• Pac

t : Accumulated value of P until time t.
• δPt : incremental value of P at time t.
• Initialize: function that initializes the age, status of infection and disease state for the agent.
• Evaluate: function that evaluates the incremental parameter value δPt at time t to be added to the

accumulated value Pac
t−1 based on at and SIt × st (if the agent is uninfected, then SIt × st = 0, and

if the agent is infected, then SIt × st = st ∈ {1, . . . ,m}, the disease state).
• Update: function that updates SIt and st based on the transmission and progression modules.

Algorithm 1 The without sampling and allocation approach for outcomes generation.
t ← 0
a0, SI0, s0 ← Initialize (a,SI,s)
Pac

0 ← 0
while Agent is alive do ▷ Updates are assumed to occur at the end of t

t ← t + 1
at ← at−1 + 1
SIt ,st ← Update (SI,s)
δPt ← Evaluate (at ,SIt × st)
Pac

t ← Pac
t−1 + δPt

Return Pac
t

Note that Algorithm 1 is developed from the perspective of a single agent - in other words, the value of
the simulation clock at t = 0 may be different for every agent, except for those present at model initiation.
Upon entry of the agent into the model, four variables are initialized - age (at), status of infection (SIt),
disease state (st , if SIt = 1) and accumulated outcomes (Pac

t ) - and indexed by time. Upon entry of the
agent, t is set to 0 and the value of Pac

t is also 0. The values of age (a0), status of infection (SI0) and
disease state (s0, if SI0 = 1) form the initial conditions for the agent. At every time step after entry of the
agent into the model and until its death, the following steps are performed:

• The time step t is incremented by 1 unit.
• The age of the agent is incremented by 1 unit.
• The infection status of the agent is updated, which can change due to disease transmission (if agent

is uninfected) or due to cure (if agent is infected).
• The disease state for infected agents is updated in accordance with the DP-DTMC model.
• The incremental value of the outcome, δPt , is calculated as a function of the infection status, disease

state, and age.
• δPt is added to the variable indicating the outcome value accumulated until time step t−1 (Pac

t−1),
yielding the outcome value accumulated by the end of time step t (Pac

t ).
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When the agent dies (say at time te), the outcome value Pac
te accumulated until te is returned. We assume that

the agent exits the model by death if their age reaches A. Importantly, the process depicted in Algorithm 1
is executed until the death of the agent in question - that is, it can extend well beyond the end of the ABS
execution time horizon n.

We now describe the OSA approach for outcomes estimation.

2.2 The Outcomes Sampling & Allocation Method for Outcomes Estimation

Under the OSA approach, none of the components of the hybrid simulation model need to be executed
beyond the ABS execution time horizon n. Allocation of outcomes for each agent is done at model entry
and at time points when they experience a change in infection status. Upon a change in infection status,
the previous allocation of outcomes is cancelled and a fresh allocation is made based on the then age and
disease state. To account for outcomes incurred from the time of model entry to the point at which the most
recent change in infection status occurs, the process of incremental accumulation of outcomes is continued
during the ABS model execution period alone.

Outcomes are randomly sampled and allocated from a repository of outcomes created as a one-time
exercise. The outcome allocated to each agent can be considered as a realization of a random tuple
representing the stochastic progression of the disease as well as non-DRM if the agent is infected, and as
the realization of a random variable representing stochastic non-DRM if the agent is uninfected. We also
recall here that the initial conditions that determine the outcomes for an infected agent are their age and
disease state upon model entry and age at model entry alone for uninfected agents. Note that age and/or
disease state at model entry become relevant only for those agents present at model initiation (i.e., t = 0),
and for those infected or cured at t > 0, only the age at t is relevant. This is because upon infection, the
disease state st is always 1 (the initial stage of the disease). Similarly, upon cure, the agent reverts to a
‘healthy’ uninfected state (SIt = 0). Therefore, the repository consists of vectors of outcome realizations
corresponding to each combination of health state (given by SIt × st) and age. Each such vector consists
of a large number (in our case 10,000) realizations of the outcome generated via a one-time execution of
the DP-DTMC and non-DRM models, as applicable. If there are k outcomes (k = 3 in our case: life years,
QALYs and costs) of interest, then k such vectors are generated for each combination of agent age a and
health state SI× s. Thus if there are A possible ages and m+ 1 possible health states (m disease states
and one uninfected state), then k vectors of outcome realizations are generated for each of the A× (m+1)
combinations of agent initial conditions.

Sampling and allocation from the repository, once stratified by the combinations of age and health
state, is straightforward. Upon model entry, or a change in health state (infected to uninfected, or vice
versa), the vectors of outcomes corresponding to the agent’s then age and health state are identified, and
outcomes are sampled with replacement and allocated per the OSA approach depicted in Algorithm 2. The
algorithm below captures the OSA approach for a single outcome P from the perspective of a single agent
who enters the model at time t0.

Additional Notation:

• Pal
t : Allocated value of outcome P at time t

• Pad : Adjusted (in conjunction with incremental outcomes) value of P
• Allocate: function that randomly samples and allocates Pal

t based on at and SIt × st from the
outcomes repository
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Algorithm 2 The outcomes sampling & allocation approach for outcomes generation.
t ← t0, Pal ← 0 ▷ to is the time at which the agent enters the model
at0 , SIt0 , st0 ← Initialize (a,SI,s)
Pal

t0 ← Allocate (at0 ,SIt0× st0)
Pac

t0 ← 0
while t ≤ n do ▷ Updates are assumed to occur at the end of t

at ← at−1 + 1
Update (SIt ,st)
if | SIt −SIt−1 | > 0 then ▷ Change in infection status occurs

Pal
t ← Allocate (at ,SIt × st)

Pad ← Pal
t + Pac

t−1

δPt ← Evaluate (at ,SIt × st)
Pac

t ← Pac
t−1 + δPt

if agent dies then
Return Pad

if Agent is alive then
Return Pad

It can immediately be seen from Algorithm 2 that no part of the hybrid simulation is executed beyond the
ABS time horizon n. Under the OSA approach, as mentioned before, sampling and allocation of outcomes
occurs upon an agent’s entry into the model or upon a change in health state (infection or cure). The final
value of the outcome returned under this approach is the most recently allocated and adjusted value prior
to the agent’s exit from the model, Pad , and not the most recently recorded incrementally accumulated
outcome value Pac.

The basic notion underlying the OSA approach is that under the same initial conditions of agent age
and health state (the tuple (a,SI× s)), the outcome for each agent can be considered as the output of a
Monte Carlo simulation replication. The vectors of outcomes in the repository, for a given tuple (a,SI× s),
are also generated as the outputs of a large number (10,000 in our case) of iid replications of the same
DP-DTMC and non-DRM (where applicable) Monte Carlo simulation models.

Under the OSA approach, the outcome returned for an agent is based on the most recently allocated
and adjusted outcome prior to its exit from the model. If this allocation and adjustment is done at time
t, this outcome is the sum of the incrementally accumulated outcome Pac

t−1 and the allocated outcome
Pal

t . Under the WSA approach, the outcome returned for an agent can be also be broken down similarly,
as the sum of the incrementally accumulated outcome until and excluding t, Pac

t−1 and the incrementally
accumulated outcome from t onwards (including t), which we can denote as Pac

t+. Pac
t+ can be thought of

as being estimated by executing the DP-DTMC and the non-DRM models as a Monte Carlo simulation
from t onwards.

Now, under the OSA approach as well, Pal
t is estimated in the same manner - by executing the DP-DTMC

and the non-DRM models as a Monte Carlo simulation assuming that the agent starts their sojourn in the age
group a and the health state (disease state if infected) at the time the allocation is done (t). However, in this
latter case, the execution is done as a one-time exercise external to the execution of the hybrid simulation,
and is done to generate a large number of iid outcome realizations that form the outcomes repository. Even
in the WSA case, execution of the DP-DTMC model begins only when the agent is infected (if infection
occurs at t > 0) or enters a particular state (for infected agents present at t = 0). Further, the Markovian
assumption underpinning the DP-DTMC renders unnecessary the consideration of any time spent in the
state prior to its execution. Similarly, we assume that the agent ages or age groups are also determined
such that the risk of non-DRM is approximately the same for all agents within an age group regardless of
how much time they have spent in the age group. For example, the risk of non-DRM is the same regardless
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of whether an agent is of age a or a+0.5 as long as the ages a and a+0.5 are considered to be within
the same age group a. Under these conditions, it is likely that Pal

t (from the OSA approach) converges in
distribution to that of Pac

t+ (from the WSA approach) as long as the number of agents in the ABS cohort is
sufficiently large and the number of samples corresponding to the (a,SI× s) is also sufficiently large.

An explanation of why outcomes need to be reallocated each time the infection status changes and why
outcomes need to be incrementally accumulated during the ABS model execution period is warranted here.
First, we recall that the outcomes repository is stratified by the age and health state that represent the point
from which the outcome needs to be estimated - that is, the point at which the agent is assumed to begin
their sojourn in said age (group) and health state. We also note that the outcome returned for an agent is
the most recently allocated and adjusted outcome prior its exit from the model. The need for reallocation
of outcomes is immediately clear from this fact: given that we do not know if and when the next change
in health state will occur prior to an agent’s exit from the model, reallocation must be done upon initiation
(an agent’s health state may not change at all prior to its exit) and each time its health state changes.

The need for adjustment of the allocated outcome with the incrementally accumulated outcome also
emerges from the need for reallocation of outcomes each time an agent’s health state changes. Consider
an agent B that enters the model in an infected state at time t1 and is cured at t2. This implies that the
outcome for this agent - for example, QALYs - is the sum of the QALYs incurred between t1 and t2 and the
QALYs incurred from t2 onwards. Given that the QALYs that are allocated are predicated on the agent’s
age and health state at t2, and do not consider the agent’s trajectory prior to t2, it is clear that they represent
the QALYs incurred from t2 onwards. Therefore, adding the incrementally accumulated outcomes until t2
to the allocated outcomes at t2 is required to estimate the outcome in its entirety.

We now describe the computational illustration of the OSA approach.

3 COMPUTATIONAL IMPLEMENTATION OF THE OSA APPROACH

3.1 Hybrid Simulation Development

All computation relevant to this study was conducted on the MATLAB scientific computing platform, and
empirical experiments were executed on a workstation with a 12th generation Intel Core i9 processor, with
a a base clock speed of 3.2 gigaHertz and 32 gigabytes of memory.

In order to illustrate the OSA approach, we create a stylized hybrid simulation consisting of four
modules: (i) demographics, (ii) disease transmission, (iii) disease progression, and (iv) treatment. This
stylized model was based on the hybrid simulation developed for modeling the transmission and progression
of the hepatitis C virus in the Indian context (Das et al. 2019).

The model consists of a dynamic cohort of agents, initialized with 10,000 agents (with 400 infected
agents) and with non-DRM mortality operating in the background. At 100 years of age, an agent dies
automatically. The distribution of the ages of the 10,000 agents was determined based on data from the
2011 Indian census (Ministry of Home Affairs, Government of India 2011). New agents enter the model
through births, incorporated through an hourly probability of birth. We executed the model using daily
time steps. The model execution time horizon was 10 years. The OSA approach was executed only for
these 10 years (3600 time steps). However, the WSA approach was executed until the deaths of all agents
who entered the model until the end of the 10-year model execution time horizon. However, non-DRM
and the DP-DTMC models were executed after the intervention period.

Disease transmission is modeled via an environment within the model created to facilitate agent
interactions. Any agent could visit this environment during a time step with a certain probability. We
assume that infection transmission takes place in groups of size 10, and the composition of these groups
changes daily. The presence of one infected agent can contaminate the group with a certain probability,
and once the group becomes contaminated, any uninfected agent within an interaction group could get
infected.
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With regard to disease progression, the DP-DTMC model comprises four disease states other than
disease-related death (DRD). The DP-DTMC model is depicted in Figure 2. Quality of life and disease
state costs vary according to the disease state. Treatment takes place at the end of every year (including
once in the beginning), hence there are 11 treatment ‘camps’ over the 10-year period. We explored three
uptake rates (30%, 50% and 70%) for treatment. The uptake rate represents the proportion of infected
agents who undertake treatment every year. By treatment-naive patients, we imply patients who had not
failed treatment earlier. The cure rates of treatment are assigned such that they decrease and the treatment
costs increase as the disease stage (state) becomes more advanced. Experiments using each uptake rate
are carried out for ten replications. Both undiscounted and discounted values of life years, QALYs and
costs are calculated as averages over the cohort of interest. The parameterization of the stylized hybrid

Figure 2: The disease progression discrete-time Markov chain. Notes. DRD = disease-related death.

simulation is provided in Table 1. The same parameterization was used for generating the repository as
well as for carrying out simulation experiments using the WSA and the OSA approaches. Also, while the
ABS and the DP-DTMC and the non-DRM models were executed using daily time steps under both the
OSA and the WSA approaches, the generation of the repository was carried out by Monte Carlo simulation
replications of the DP-DTMC and the non-DRM models using annual time steps. This is because a large
number of agent age and health state combinations needed to be executed for the generation of the outcomes
repository and using daily time steps would have substantially increased the computational runtime of the
exercise.

We now describe the results of our computational experiments.

3.2 Computational Experiments: Results

Computational experiments were conducted comparing the outcomes generated by the hybrid simulation run
under both the OSA and the WSA approaches. Our hypothesis is that the distributions of the outcomes from
the hybrid simulation under both approaches will be similar (no statistically significant differences) with
a substantial reduction in average runtimes for the OSA approach. First, in Table 2, we provide outcomes
(life years, QALYs and costs, both discounted and undiscounted) and runtimes from 10 replications for the
OSA and the WSA approaches for a single treatment uptake rate (50%) to illustrate in detail the results
from the hybrid simulation model. Then, in Table 2, we provide summary statistics (averages and standard
deviations) of the outcomes and runtimes from both approaches for three uptake rates: 30%, 50% and 70%.

1146



Das, Venkataraman, and Ramamohan

Table 1: Parameterization of the stylized hybrid simulation. Notes: DRD = disease-related death.

Parameter Estimate
Demographics

Initial population 10,000 (initially infected: 400)
Maximum age limit (A) 100 years
Birth rate 0.2 / hour
Background mortality 1.6×10−5 / agent / day

Disease Transmission
Probability of an agent visiting the environment on a day (representing
an interaction with a non-zero risk of infection)

0.05

Interaction group size (group changes every day) 10
Probability that an infected agent contaminates the group sub-
environment

0.1

Probability of an uninfected agent getting infected from a contaminated
group sub-environment

0.02

Disease Progression

Annual Disease Progression probabilities

S1 to S2: 0.10
S2 to S3: 0.05
S3 to S4: 0.15
S3 to DRD: 0.10
S4 to DRD: 0.25

Disease state distribution among the pool of infected agents present at
model initiation

S1: 200, S2: 150, S3: 40, S4: 10

Health-related quality of life utility weights S1: 0.80, S2: 0.70, S3: 0.55, S4: 0.40
Disease state costs (annual) S1: 1,000, S2: 4,000, S3: 10,000, S4:

50,000
Treatment

Percentage of infected patients treated every year (uptake rate) 50%
Cure rates for patients S1: 0.95, S2: 0.90, S3: 0.85, S4: 0.80
Treatment costs (INR) S1, S2: 10,000; S3, S4: 20,000

Table 2: Model outcomes at 50% uptake rate for the WSA and the OSA approaches for 10 replications.
Notes. Runtimes are in seconds. WSA: Without sampling & allocation approach, OSA: Outcomes sampling
& allocation approach, u/d: undiscounted, d/c: discounted.

WSA Approach

Outcome of interest Replication
1 2 3 4 5 6 7 8 9 10

Runtime 334 330 319 540 323 623 319 324 320 325
Life years (u/d) 60.39 60.33 60.34 60.48 60.57 60.71 60.78 60.2 60.39 60.44

QALYs (u/d) 57.89 57.86 57.8 57.98 58.1 58.2 58.31 57.66 57.89 57.91
Costs (u/d) 60,791 60,236 61,530 60,951 60,590 60,879 60,198 61,186 61,049 62,516

Life years (d/c) 27.63 27.53 27.64 27.64 27.67 27.72 27.71 27.57 27.6 27.67
QALYs (d/c) 26.13 26.04 26.12 26.14 26.18 26.21 26.24 26.05 26.1 26.16
Costs (d/c) 35651 35,346 35,768 35,590 35,390 35,576 35,147 35,736 35,575 36,262

Outcome sampling outcomes

Outcome of interest Replication
1 2 3 4 5 6 7 8 9 10

Runtime 164 199 167 200 165 200 258 167 198 167
Life years (u/d) 61.97 61.92 61.84 61.85 61.56 61.51 61.7 61.64 61.92 61.43

QALYs (u/d) 59.32 59.33 59.2 59.24 58.99 58.89 59.11 59.03 59.34 58.84
Costs (u/d) 63502 62770 64323 62691 62094 63141 62826 63261 61826 62963

Life years (d/c) 28.08 27.94 27.99 27.99 27.95 27.92 27.94 27.95 27.98 27.88
QALYs (d/c) 26.52 26.41 26.43 26.44 26.41 26.26 26.41 26.41 26.44 26.33
Costs (d/c) 36373 35,980 36,884 36,318 36,001 36,309 36,077 36,258 36,022 36,316
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The results in Tables 2 and 3 indicate that the OSA approach yields comparable estimates of the average
life years, QALYs and costs in comparison to those from the WSA approach, in both undiscounted and
discounted terms. However, the outcomes yielded by the OSA approach marginally overestimate those
from the WSA approach. To explain this, let us assume that an agent is of age a when a change in status of
infection takes place. Under the OSA approach, outcomes are randomly sampled from the repository and
allocated based on age a and the new health state. In doing so, the fact that agent has most likely already
spent some time in the age a prior to the change in their infection status is not taken into consideration. On
the other hand, the initial conditions during the Monte Carlo simulation replications executed to generate
the repository represented the point at which an agent started their sojourn in age a. This slight mismatch
in initial conditions most likely is the cause for the marginal overestimation of outcomes by the OSA
approach.

Table 3: Summary statistics of model outcomes at three treatment uptake rates under the WSA and OSA
approaches for outcomes estimation. Notes. Runtimes are in seconds, standard deviations are in parentheses.
WSA: Without sampling & allocation approach, OSA: Outcomes sampling & allocation approach, u/d:
undiscounted, d/c: discounted.

Uptake rate 30% 50% 70%
Outcomes of interest WSA OSA WSA OSA WSA OSA

Runtime 311 158.2 375.7 188.5 489.8 314.7
Life years (u/d) 55.80 (0.14) 57.21 (0.22) 60.71 (0.22) 61.86 (0.13) 63.32 (0.15) 64.61 (0.13)

QALYs (u/d) 52.08 (0.15) 53.43 (0.21) 58.21 (0.23) 59.26 (0.12) 61.61 (0.16) 62.85 (0.14)
Costs (u/d) 83857 (593) 84507 (711) 61006 (671) 63096 (613) 46772 (621) 47599 (546)

Life years (d/c) 26.38 (0.04) 26.78 (0.05) 27.65 (0.06) 27.97 (0.05) 28.32 (0.04) 28.62 (0.04)
QALYs (d/c) 24.20 (0.05) 24.58 (0.05) 26.15 (0.07) 26.43 (0.04) 27.28 (0.04) 27.55 (0.04)
Costs (d/c) 45133 (285) 45214 (366) 35605 (299) 36254 (268) 29691 (309) 29955 (270)

Table 3 explores how the OSA approach performs at multiple uptake rates. Consistent comparability
in the magnitudes of the outcomes can be seen across uptake rates, accompanied by significant reductions
in runtimes. The average runtime reduction was 49.13% for a 30% uptake rate, 49.83% for a 50% uptake
rate, and 35.75% for a 70% uptake rate, with an overall average reduction of 44.90%.

Finally, in Figure 3, we provide the cumulative distribution functions (CDFs) for each outcome -
discounted and undiscounted - for an uptake rate of 50% for one replication under both approaches. It is
evident from the plots that the CDFs for all outcomes generated by both approaches are nearly identical,
reinforcing the effectiveness of the OSA approach with respect to the WSA approach.

4 DISCUSSION

In this paper, we present a novel ‘outcomes sampling and allocation’ approach for estimating outcomes
from individual-level hybrid simulation models of infectious disease transmission dynamics. We consider a
specific hybrid simulation scenario wherein the infectious disease transmission dynamics are captured by an
agent-based simulation and the progression of the disease and background non-disease-related mortality are
captured by Monte Carlo simulation models. We demonstrate the effectiveness of our proposed approach
in terms of the similarity of distributions of outcomes and substantial reductions in computational runtimes
in comparison to the status quo ‘without sampling and allocation’ approach.

The OSA approach yields average reductions in computational runtimes ranging from 35% - 50%,
with reductions in runtimes going up to approximately 70% for individual replications. This can alleviate
the computational burden of hybrid simulations involving component agent-based models that may already
incur a substantial computational overhead, especially if the cohort sizes considered in the ABSs are large.
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Figure 3: Cumulative distribution functions (CDF) for model outcomes from a single replication, with 50%
treatment uptake rate. Notes. WS: without sampling & allocation approach, OS: outcomes sampling &
allocation approach, LY: Life Years, QALY: quality-adjusted life-year.

The computational experiments described above use a repository that is large enough to yield outcomes
that are identically distributed to those from the WSA approach. However, when generating the repository
is more computationally intensive, estimating the minimum size of the repository becomes important.
This may be done by using power calculations around the hypothesis tests used to determine whether the
outcomes from the OSA and WSA approaches exhibit statistically significant differences.

Several future avenues of research can be pursued with regard to this approach. Our approach currently
requires incremental accumulation of outcomes for each agent during the execution of the component ABS
that are then used to adjust the allocated outcomes to yield the final outcome for an agent. An outcomes
repository generation, sampling and allocation scheme that completely obviates the need for incremental
accumulation of outcomes may lead to considerable increases in computational runtime reductions. In
addition, the impact of intervention uptake rate, which directly influences the number of agents remaining
at the end of the model execution time horizon, may also be explored in more detail. Finally, the extension
of this approach to hybrid models involving compartmental models of the dynamics of transmission of
some phenomenon (including infectious diseases) that may require heterogeneous estimates of outcomes
at the individual entity level within certain model compartments may also be investigated.
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